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Abstract

Recent advances of kernel methods have
yielded a framework for nonparametric sta-
tistical inference called RKHS embeddings,
in which all probability distributions are rep-
resented as elements in a reproducing kernel
Hilbert space, namely kernel means. In this
paper, we consider the recovery of the in-
formation of a distribution from an estimate
of the kernel mean, when a Gaussian kernel
is used. To this end, we theoretically ana-
lyze the properties of a consistent estimator
of a kernel mean, which is represented as a
weighted sum of feature vectors. First, we
prove that the weighted average of a function
in a Besov space, whose weights and sam-
ples are given by the kernel mean estimator,
converges to the expectation of the function.
As corollaries, we show that the moments
and the probability measures on intervals can
be recovered from an estimate of the kernel
mean. We also prove that a consistent esti-
mator of the density of a distribution can be
defined using a kernel mean estimator. This
result confirms that we can in fact completely
recover the information of distributions from
RKHS embeddings.

1 Introduction

The RKHS embedding approach for nonparametric
statistical inference has been developed in the ma-
chine learning community as a recent advance of kernel
methods (Smola et al., 2007; Sriperumbudur et al.,
2010; Song et al., 2013). This approach has been
successfully applied to a wide variety of applications
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ranging from hypothesis testings (Gretton et al., 2012;
Gretton et al., 2008) to machine learning problems in-
cluding state-space modeling (Song et al., 2009; Fuku-
mizu et al., 2011), belief propagation (Song et al.,
2010; Song et al., 2011), predictive state representa-
tions (Boots et al., 2013), and reinforcement learning
(Grünewälder et al., 2012; Nishiyama et al., 2012).

Let k be a positive definite kernel on a measurable
space X , andH be its reproducing kernel Hilbert space
(RKHS). In this framework, any probability distribu-
tion P on X is represented as the expectation of feature
vector k(·, x) in H

mP := EX∼P [k(·, X)] =

∫
k(·, x)dP (x),

which is called the kernel mean of P . We can realize
statistical inference by directly estimating the kernel
mean mP from data, instead of estimating the target
distribution P itself.

In this paper, we deal with RKHS embeddings from
another direction: given a good estimate m̂P of the
kernel mean mP , recover the information of the un-
derlying distribution P . This is motivated by the ma-
chine learning applications of RKHS embeddings. For
example, in the application to state-space modeling
(Song et al., 2009; Fukumizu et al., 2011), we often
wish to predict future observations. In this case, P
corresponds to the predictive distribution on the ob-
servation space. However, what we obtain from an
algorithm is an estimate of its kernel mean m̂P , which
is an element of an RKHS. Hence, to obtain meaning-
ful information of the future observation, we need to
extract the information of P from m̂P .

There have been some works on methods for recov-
ering specific statistics of distribution P from kernel
mean estimate m̂P . If the goal is to obtain a point
estimate of P , a popular method is to represent m̂P

with the point in the original space called pre-image,
i.e. argminx∈X ∥k(·, x) − m̂P ∥H (Song et al., 2009).
While having used to many applications to provide
point estimation, this method is a heuristic since it
is theoretically unclear what kind of information of

457



Recovering Distributions from Gaussian RKHS Embeddings

P the pre-image represents. On the other hand, a
method for estimating the density of P from m̂P has
been proposed, assuming that P is a Gaussian mix-
ture (Song et al., 2008; McCalman et al., 2013). This
method may cause significant errors, however, if the
assumption dose not hold.

Before going into the contributions of this paper, we
restrict our considerations to RKHS embeddings using
a Gaussian kernel on the Euclidian space Rd. The
main reasons are (1) it defines a injective mapping
from distributions to an RKHS, and therefore can be
used for RKHS embeddings (Fukumizu et al., 2004;
Sriperumbudur et al., 2010), (2) it is ubiquitous in the
applications of RKHS embeddings, and (3) theoretical
properties of a Gaussian RKHS have been extensively
investigated, e.g. (Steinwart and Christmann, 2008).
Note the existing approaches mentioned above also use
Gaussian kernels for computational feasibility.

Contributions. Our contributions are threefold.
First, we analyze the theoretical properties of a con-
sistent estimator of a kernel mean as a basis for the
distribution recovery. In general, a finite sample es-
timate of a kernel mean takes a form of weighted av-
erage m̂P =

∑n
i=1 wik(·, Xi), where X1, . . . , Xn are

samples and w1, . . . , wn ∈ R are (possibly negative)
weights1, which appears in all the machine learning
applications mentioned above (Song et al., 2013). As-
sume that ∥m̂P −mP ∥H → 0 as n → ∞, where ∥ · ∥H
denotes the RKHS norm. Let f be a function in
a Besov space, which consists of functions with cer-
tain degree of smoothness and contains the Gaussian
RKHS. Then we prove that the weighted average of f
given by m̂P =

∑n
i=1 wik(·, Xi) converges to the ex-

pectation of f :

n∑
i=1

wif(Xi) → EX∼P [f(X)].

This result is a generalization of the one known for
functions in an RKHS (Smola et al., 2007).

Second, using the above result, we prove that certain
statistics of P , namely its moments and measures on
intervals, can be recovered from m̂P . Note that these
quantities are defined as the expectations of polyno-
mial functions or index functions, which are included
in Besov spaces under certain assumptions. Hence, we
can use the first result to prove that the expectations
of these functions, and thus their corresponding quan-
tities, can be consistently estimated from m̂P . Note
that this result is not obvious beforehand without the
first result, since polynomial and index functions are
not included in a Gaussian RKHS (Minh, 2010).

1In general, Xi and wi may depend of the sample size
n, but we omit it in this paper for notational brevity.

Third, by employing arguments using a Besov space,
which is similar to the first result, we prove that the
density of P can be estimated from m̂P without any
parametric assumptions on P . We define a nonpara-
metric estimator of the density of P using m̂P , and
prove that it converges to the true density as m̂P con-
verges to mP . This result shows that we can in fact
completely recover the information of P from a con-
sistent kernel mean estimator of the kernel mean mP .

This paper is organized as follows. We briefly review
RKHS embeddings and Besov spaces in Section 2. In
Section 3, a convergence theorem for the expectation
of a function in a Besov space is presented, and as
corollaries we show that moments and measures on in-
tervals can be estimated from a kernel mean estimate.
In Section 4, we define a density estimator using a
kernel mean estimate and show its convergence result.
Proofs are given in Section 5.

2 Preliminaries

2.1 RKHS Embeddings

We first review RKHS embeddings. For details, we
refer to the tutorial papers (Smola et al., 2007; Song
et al., 2013).

Kernel mean. A measurable kernel kX : X ×X → R
on a mesurable space X is called positive definite,
if
∑n

i=1

∑n
j=1 cicjkX (Xi, Xj) ≥ 0 for any n ∈ N,

c1, . . . , cn ∈ R and X1, . . . , Xn ∈ X . We will use the
terminology kernel to refer to a function satisfying the
positive definiteness. A kernel kX uniquely defines a
reproducing kernel Hilbert space (RKHS)HX such that
the reproducing property f(x) = ⟨f, kX (·, x)⟩HX

holds
for all f ∈ HX and x ∈ X , where ⟨·, ·⟩HX

denotes the
inner-product of HX . Let ∥ · ∥HX denote the norm of
HX .

In the RKHS embedding approach, we represent any
probability distribution P on X by the expectation of
feature vector kX (·, x) ∈ HX :

mP := EX∼P [kX (·, X)] =

∫
kX (·, x)dP (x) ∈ HX ,

which is called the kernel mean of P . If the ker-
nel is characteristic, any probability distribution is
uniquely determined by its kernel mean, i.e. mP =
mQ ⇒ P = Q holds for probability distributions
P and Q (Fukumizu et al., 2004; Fukumizu et al.,
2009; Sriperumbudur et al., 2010). A representative
example of characteristic kernels is a Gaussian kernel
kγ(x, x

′) = exp(−∥x − x′∥2/γ2) on X = Rd, where
γ > 0. This paper focuses on RKHS embeddings us-
ing a Gaussian kernel with X = Rd.
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Finite sample estimte. In this framework, we aim
to directly estimate kernel mean mP from samples, in-
stead of distribution P itself. If we have i.i.d. samples
X1, . . . , Xn from P , then mP is estimated by the em-
pirical mean m̂P := 1

n

∑n
i=1 kX (·, Xi) with the rate

∥m̂P − mP ∥HX = Op(n
− 1

2 ) (Smola et al., 2007). In
general, however, the kernel mean of P may be esti-
mated with samples Xi of a distribution different from
P , and therefore it has a form of weighted sum of fea-
ture vectors

m̂P :=

n∑
i=1

wikX (·, Xi) (1)

with weights2 w1, . . . , wn ∈ R (Song et al., 2013).

For instance, suppose that we are given i.i.d. samples
{(Xi, Yi)}ni=1 from a joint distribution PXY on X ×Y,
where Y is a measurable space, and that we wish to
estimate the kernel mean of the conditional distribu-
tion P := PX|y conditioned on y ∈ Y. In this case, a
consistent estimator of the kernel mean is given with
the weights (Song et al., 2009)

wi = ((GX + nεnIn)
−1kY (y))i, (2)

where GX = (kX (Xi, Xj)) ∈ Rn×n is a kernel matrix,
In is the identity, εn > 0 is a regularization constant,
and kY (y) = (kY(y, Y1), . . . , kY(y, Yn))

T ∈ Rn, where
kY is a kernel on Y. Other examples include the RKHS
embedding realization of the sum rule, the chain rule
and Bayes’ rule (Song et al., 2009; Fukumizu et al.,
2011). By combining these estimators, we can realize
various applications of RKHS embeddings mentioned
in Section 1, in which the estimates also take the form
of Eq. (1).

Expectation of RKHS functions. It is known that
the expectation of a function in the RKHS can be es-
timated with a kernel mean estimate (Smola et al.,
2007). Let m̂P =

∑n
i=1 wikX (·, Xi) be a consistent es-

timate of mP such that limn→∞ ∥m̂P − mP ∥HX = 0.
Then we have

lim
n→∞

∣∣∣∣∣
n∑

i=1

wf(Xi)− EX∼P [f(X)]

∣∣∣∣∣ = 0, ∀f ∈ HX .

This is easily shown by |
∑

i wif(Xi)−EX∼P [f(X)]| =
| ⟨f, m̂P −mP ⟩HX

| ≤ ∥f∥HX ∥m̂P − mP ∥HX , since
⟨mP , f⟩HX

= EX∼P [f(X)] and ⟨m̂P , f⟩HX
=∑n

i=1 wif(Xi) hold for any f ∈ HX by the reproducing
property.

2.2 Besov Spaces

Let X ⊂ Rd be a set. Here, we define the Besov space
Bα

2,∞(X ) on X for any constant α > 0. For details of
2Note that these weights may take negative values as

the example of Eq. (2) shows.

Besov spaces, see (Adams and Fournier, 2003, Chapter
7; DeVore and Lorentz, 1993, Chapter 2). Let Lp(X )
be the Lebesgue space of order p ∈ [1,∞] with re-
spect to the Lebesgue measure on X and ∥ · ∥Lp(X )

be its norm. Let r := ⌊α⌋ + 1, where ⌊α⌋ is the
greatest integer smaller or equal to α. First, for any
h ∈ [0,∞)d ⊂ Rd and f ∈ L2(X ), we define a function
∆r

h(f, ·) : X → R by

∆r
h(f, x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ Xr,h

0 if x /∈ Xr,h

where Xr,h := {x ∈ X : x+sh ∈ X , ∀s ∈ [0, r]}. Then,
we define a function ωr,L2(X )(f, ·) : [0,∞) → [0,∞) by
ωr,L2(X )(f, t) := sup

∥h∥≤t

∥∆r
h(f, ·)∥L2(X ), ∀t ≥ 0.

The Besov space Bα
2,∞(X ) is then defined by

Bα
2,∞(X ) := {f ∈ L2(X ) : |f |Bα

2,∞(X ) < ∞}, (3)

where |f |Bα
2,∞(X ) := supt>0(t

−αωr,L2(X )(f, t)) is the

seminorm of Bα
2,∞(X ). The norm of Bα

2,∞(X ) is de-
fined by ∥f∥Bα

2,∞(X ) := ∥f∥L2(X ) + |f |Bα
2,∞(X ), ∀f ∈

Bα
2,∞(X ).

Let Wm
2 (Rd) be the Sobolev space with order m ∈

N, which consists of functions whose (weak) deriva-
tives up to order m exist and are included in L2(Rd)
(Adams and Fournier, 2003). Importantly, Bα

2,∞(Rd)

contains Wm
2 (Rd) if m ≥ α (Edmunds and Triebel,

1996, pp.26-27 and p.44). Thus, the larger α is, the
smoother the functions in Bα

2,∞(Rd) are. Relation

Wm
2 (Rd) ⊂ Bα

2,∞(Rd) easily shows that Bα
2,∞(Rd) in-

cludes functions such as (i) m-times continuously dif-
ferentiable functions with compact supports and (ii)
Gaussian functions f(x) = A exp(−B∥x−µ∥2) for any
A,B > 0 and µ ∈ Rd. Moreover, the relation implies
that Bα

2,∞(Rd) contains the Gaussian RKHS on Rd

(Steinwart and Christmann, 2008, Theorem 4.48).

3 Main Theorem

Let kγ(x, x
′) := exp(−∥x − x′∥2/γ2) be the Gaus-

sian kernel on Rd with bandwidth γ > 0, Hγ be the
RKHS of kγ , and ⟨·, ·⟩Hγ

and ∥ · ∥Hγ be its inner-
product and norm, respectively. Let P be a proba-
bility distribution on Rd, mP = EX∼P [kγ(·, X)] be
the kernel mean of P , and m̂P =

∑n
i=1 wikγ(·, Xi)

be its consistent estimate. In Section 2.1, we saw
that the expectation EX∼P [f(X)] can be estimated
by
∑n

i=1 wif(Xi) = ⟨m̂P , f⟩Hγ
if f belongs to Hγ .

In this section, we generalize this to functions in the
Besov space Bα

2,∞(Rd), which contains Hγ . Namely,
we show in Theorem 1 below that

∑n
i=1 wif(Xi) also

converges to EX∼P [f(X)] for any f ∈ Bα
2,∞(Rd).
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Note that this is not obvious a priori, since we can-
not write the estimate in the form of inner-product∑

i wif(Xi) = ⟨m̂P , f⟩Hγ
if f dose not belong to Hγ .

Theorem 1. Let P and Q be probability distributions
on Rd. Assume that P and Q have densities that
belong to L∞(Rd). Let m̂P :=

∑n
i=1 wikγ(·, Xi) be

a consistent estimate of mP =
∫
kγ(·, x)dP (x) such

that E[∥m̂P − mP ∥Hγ ] = O(n−b) and E[
∑n

i=1 w
2
i ] =

O(n−2c) for some 0 < b, c ≤ 1/2 as n → ∞, where
X1, . . . , Xn are i.i.d. samples from Q. Let f : Rd → R
be a function satisfying f ∈ Bα

2,∞(Rd) ∩ L∞(Rd) for
some α > 0. Assume that αb − d(1/2 − c) > 0. Then
we have

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EX∼P [f(X)]

∣∣∣∣∣
]

= O
(
n−αb−d(1/2−c)

α+d

)
(n → ∞). (4)

The assumption αb− d(1/2− c) > 0 can be satisfied if
α is large enough. For example, m-times continuously
differentiable functions with compact supports satisfy
the assumption if m is large enough. Note that if f
belongs to Bα

2,∞(Rd) for arbitrarily large α > 0, the

rate (4) becomes O(n−b+ξ) for arbitrarily small ξ > 0.
This shows that the rate can be arbitrarily close to the
convergence rate of m̂P if f is very smooth. Examples
of such a case include infinitely continuously differen-
tiable functions with compact supports and Gaussian
functions.

Note that the assumption that X1, . . . , Xn are i.i.d.
samples from some Q is natural. For example, sup-
pose that m̂P is given by the conditional embedding
estimator Eq. (2) (Song et al., 2009). In this case, Q
corresponds to the marginal distribution on X of the
joint distribution PXY that generates training samples
{(Xi, Yi)}ni=1. Other kernel mean estimators also sat-
isfy the assumption (Song et al., 2013).

The conditions E[∥m̂P − mP ∥Hγ ] = O(n−b) and
E[
∑n

i=1 w
2
i ] = O(n−2c) depend on the distributions

P and Q and the way the estimator m̂P is defined.
For example, if P = Q and the weights are uniform
wi = 1/n, then we have b = c = 1/2. We can also show
that if the estimator is the conditional embedding Eq.
(2), then b = 1/8, c = 1/4 (see the supplementary ma-
terials).

3.1 Polynomial Functions - Estimation of
Moments

As a corollary of Theorem 1, we show that the ex-
pectation of a polynomial function, and thus the mo-
ments of P , can be estimated from m̂P , under the
assumption that the supports of P and Q are bounded.

Note, however, that we cannot directly apply Theo-
rem 1 to polynomial functions since they do not satisfy
f ∈ Bα

2,∞(Rd) ∩ L∞(Rd). Here, we first show that the
condition can be weakened to

f ∈ Bα
2,∞(BR) ∩ L∞(BR), (5)

where BR = {x ∈ Rd : ∥x∥ < R} is an open ball with
radius R > 0 that contains the supports of P and Q.

To this end, we use Stein’s extension theorem (Stein,
1970, pp.180-192; Adams and Fournier, 2003, p.154
and p.230). Let X ⊂ Rd be a set with minimally
smooth boundary (Stein, 1970, p.189). Stein’s exten-
sion theorem guarantees that for any f ∈ Bα

2,∞(X ),

there exists E(f) ∈ Bα
2,∞(Rd) satisfying E(f)(x) =

f(x) for all x ∈ X . Likewise, the theorem guarantees
that for any f ∈ L∞(X ), there exists E(f) ∈ L∞(Rd)
satisfying the same property. Extended function E(f)
is defined in a way independent of the function space
on X to which f belongs (Stein, 1970, p.191).

Since BR has minimally smooth boundary (Stein,
1970, p.189), Stein’s extension theorem guarantees
that for f satisfying Eq. (5), there exists E(f) : Rd →
R such that E(f) ∈ L∞(Rd)∩Bα

2,∞(Rd) and E(f)(x) =
f(x), ∀x ∈ BR. Then, applying Theorem 1 to
E(f), we obtain the rate (4) for E[|

∑n
i=1 wiE(f)(Xi)−

EP [E(f)(X)]|]. Since BR contains the supports
of P and Q, we have E[|

∑n
i=1 wiE(f)(Xi) −

EP [E(f)(X)]|] = E[|
∑n

i=1 wif(Xi) − EP [f(X)]|].
Thus, it turns out that the obtained rate is for
E[|
∑n

i=1 wif(Xi)− EP [f(X)]|].

Note that if f is polynomial, f satisfies Eq. (5) for ar-
bitrarily large α > 0. Thus, Theorem 1 combined with
the above arguments yields the following corollary.

Corollary 1. Assume the same conditions for P , Q,
and m̂P as in Theorem 1. Assume also that the sup-
ports of P and Q are bounded. Let f : Rd → R be a
polynomial function. Then for arbitrary small ξ > 0,
we have

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EP [f(X)]

∣∣∣∣∣
]
= O

(
n−b+ξ

)
(n → ∞).

Note that the rate of Corollary 1 does not depend on
the order of polynomial: this is mainly because of the
assumption that the supports of P and Q are bounded,
under which the corollary is derived.

We can use Corollary 1 to show that the moments
about the mean of P can be estimated from m̂P .
Let d = 1. Corollary 1 indicates the conver-
gence in expectation of

∑n
i=1 wiX

k
i to the raw mo-

ment EX∼P [X
k], where k ∈ N. Then, an esti-

mate of the moment about the mean of order ℓ ∈
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N can be defined by
∑n

i=1 wi(Xi −
∑n

j=1 wjXj)
ℓ =∑ℓ

k=0

(
ℓ
k

)
(
∑n

i=1 wiX
ℓ−k
i )(

∑n
j=1 wjXj)

k, and its con-
sistency in probability follows.

3.2 Index Functions - Estimation of
Measures on Rectangles

Next, we show that the probability measure P (Ω) on
any interval Ω ⊂ Rd may be estimated from m̂P as
a corollary of Theorem 1. Here, we define an interval
in Rd as Ω := [a1, b1] × · · · [ad, bd], where −∞ < ai <
bi < +∞, i = 1, . . . , d. Note that we may use the
estimated P (Ω) for making credible intervals from m̂P

in Bayesian inference applications (Fukumizu et al.,
2011).

Let χΩ be the index function of Ω defined by

χΩ(x) =

{
1 (x ∈ Ω)

0 (x /∈ Ω)
. (6)

Note that have EX∼P [χΩ(X)] = P (Ω). Observing
that

∑n
i=1 wiχΩ(Xi) =

∑
Xi∈Ω wi, we define an es-

timator of P (Ω) by the sum of weights of points in
Ω, i.e.

∑
Xi∈Ω wi. We can show that χΩ is included

in Bα
2,∞(Rd) for any α with 0 < α < 1/2. Thus, we

can apply Theorem 1 to χΩ and derive the following
corollary.

Corollary 2. Assume the same conditions for P , Q,
and m̂P as in Theorem 1. Let Ω := [a1, b1]×· · · [ad, bd].
Assume that b−d(1−2c) > 0. Then for arbitrary small
ξ > 0, we have

E

[∣∣∣∣∣ ∑
Xi∈Ω

wi − P (Ω)

∣∣∣∣∣
]
= O

(
n− b−d(1−2c)

1+2d +ξ
)
.

We need the assumption b−d(1−2c) > 0 in Corollary
2 to guarantee the consistency of the estimator. For
example, if P = Q and wi = 1/n we have b = c = 1/2,
and thus the assumption is satisfied. Note, however,
that the assumption is strong: for example, if m̂P is
given by the estimator for conditional distributions Eq.
2, we have b = 1/8 and c = 1/4 and therefore the
assumption is not satisfied.

Note that the only assumption of Corollary 2 for P
is that its density is bounded. Thus, the density
can be arbitrarily complicated and even discontinu-
ous, and we therefore need such a strong condition on
m̂P for consistency. In other words, we may obtain
better bounds by assuming additional conditions on
P , e.g. smoothness of the density. In fact, numerical
experiments (reported in the supplements) show that∑

Xi∈Ω wi converges to P (Ω) for the estimator for con-
ditional distributions Eq. (2). Investigation for better
bounds remains as a topic for a future research.

4 Recovery of the Density

Assume that P has a density function p. In this
section, we show that we can estimate the density
p(x0) at any fixed point x0 ∈ Rd from m̂P , by defin-
ing its nonparametric estimator using m̂P . Let δx0

be the Dirac delta function at x0. Then we have
p(x0) =

∫
δx0(x)p(x)dx = EX∼P [δx0(X)]. Thus, in-

tuitively, if we can define an estimator for the expec-
tation of δx0 using m̂P , this would be an estimator of
p(x0). Theorem 1 cannot be used in this case, however,
since the delta function is included neither in Gaussian
RKHS Hγ nor in Besov space Bα

2,∞(Rd).

Here, we introduce a new (smoothing) kernel for ap-
proximating the delta function, as for usual kernel den-
sity estimation. For brevity, we also use a Gaussian
kernel as a smoothing kernel3

Jh(x− x0) :=
1

πd/2hd
exp(−∥x− x0∥2/h2),

where h > 0. Let Jx0,h := Jh(· − x0). Then Jx0,h is
included in Bα

2,∞(Rd) for arbitrarily large α > 0, as
shown in Section 2.2.

Thus, we can apply Theorem 1 to Jh for fixed h. A
consistent estimator of EX∼P [Jx0,h](X) is thus given
by

n∑
i=1

wiJx0,h(Xi). (7)

Note that this is not obvious without Theorem 1, since
Jx0,h is not included in Gaussian RKHS Hγ if h < γ.
On the other hand, we have

lim
h→0

EX∼P [Jx0,h(X)] = p(x0).

By this argument, we expect that Eq. (7) converges to
p(x0) if we take h := hn → 0 as n → ∞. Theorem 2
below shows that Eq. (7) is in fact a consistent density
estimator.

Theorem 2. Assume the same conditions for P , Q,
and m̂P as in Theorem 1. Assume also that density

p of P is Lipschitz. Then with hn = n− 2b
3d+2+ξ for an

arbitrarily small ξ > 0, we have for all x0 ∈ Rd

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− p(x0)

∣∣∣∣∣
]

= O
(
n− 2b

3d+2+ξ
)

(n → ∞). (8)

Note that the reason why α does not appear in the
resulting rate (8) is that we take α → ∞ in the proof:

3We can also use any kernel that belongs to Bα
2,∞(Rd)

for arbitrarily large α > 0, as the proof of Theorem 2 only
depends on this property in regard to the smoothing kernel.
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recall that we have Jh ∈ Bα
2,∞(Rd) for arbitrarily large

α > 0.

Theorem 2 shows that we can in fact completely re-
cover the information of distribution P from an esti-
mate of the corresponding kernel mean mP . The as-
sumptions Theorem 2 imposes on density p is bounded-
ness and Lipschitz continuity. Comparing with (Song
et al., 2008; McCalman et al., 2013), in which they
assume that p is a Gaussian mixture, consistency of
the estimator (7) can be guaranteed for a wider class
of probability distributions.

For instance, if the kernel mean estimators for condi-
tional distributions Eq. (2) or Bayes’ rule (Fukumizu
et al., 2011) are used, then their respective densities
can be estimated with Eq. (7). Note that if P = Q
and wi = 1/n, Eq. (7) exactly corresponds to the
usual kernel density estimator. In this case, we have

b = c = 1/2, and thus the rate becomes O(n− 1
2+3d ).

On the other hand, the minimax optimal rate for this

setting is O(n− 1
2+d ) (Stone, 1980), so the rates of The-

orem 2 may be improved.

Eq. (7) may also be useful in practice. For example, in
the application to state-space modeling (Song et al.,
2009; Fukumizu et al., 2011), the kernel means of pos-
terior distributions on hidden state are estimated, and
their densities can be estimated by Eq. (7). If the
posterior distributions are highly multimodal, we can
use the estimated densities for MAP estimation of the
hidden state, as in (McCalman et al., 2013).

5 Proofs

In the following, Lp(ν) for arbitrary measure ν and
p ∈ (0,∞] denotes the Banach space consisting of p-
integrable functions with respect to ν. We will use
the following inequity in our proofs, which holds for
arbitrary f ∈ Bα

2,∞(X ):

ωr,L2(X )(f, t) ≤ |f |Bα
2,∞(X )t

α, t > 0 , (9)

where r = ⌊α⌋+ 1.

5.1 Proof of Theorem 1

Our strategy in the proof of Theorem 1 is to approxi-
mate the function in the Besov space by a sequence of
functions in the RKHS. A recent study on learning the-
ory has yielded bounds for errors when approximating
a Besov function with certain RKHS functions and for
their associated RKHS norms (Eberts and Steinwart,
2013, Theorem 2.2., Theorem 2.3). Some of the in-
equalities derived in our proof use these results. They
are reviewed in the supplementary materials.

Proof. Let γn = n−βγ for some constant β > 0 (a
concrete value of β is determined in the end of the
proof). Let Hγn denote the RKHS of the Gaussian
kernel kγn . At first, we show the inequalities which
will be used in the proof. Note that assumption f ∈
Bα

2,∞(Rd) implies f ∈ L2(Rd).

By γn ≤ γ, we have the following inequality (Steinwart
and Christmann, 2008, Proposition 4.46):

∥m̂P −mP ∥Hγn
≤
(

γ

γn

)d/2

∥m̂P −mP ∥Hγ (10)

We define kγ : Rd → R by kγ(x) = exp(−∥x∥2/γ2) for
γ > 0. Let r = ⌊α⌋+ 1 and define Kγ : Rd → R by

Kγ(x) :=

r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ2π

) d
2

kjγ/
√
2(x).

(11)
Let fn : Rd → R be the convolution of Kγn and f

fn(x) := (Kγn∗f)(x) :=
∫
Rd

Kγn(x−t)f(t)dt , x ∈ Rd.

Then by f ∈ L2(Rd) ∩ L∞(Rd), the following inequal-
ities hold by (Eberts and Steinwart, 2013, Theorem
2.2.) and Eq. (9):

∥fn − f∥L2(P )

≤
(
Cr,1∥g1∥L∞(Rd)

)1/2
ωr,L2(Rd)(f, γn/2)

≤ Aγα
n , (12)

∥fn − f∥L2(Q)

≤
(
Cr,2∥g2∥L∞(Rd)

)1/2
ωr,L2(Rd)(f, γn/2)

≤ Bγα
n , (13)

where g1 and g2 denotes the Lebesgue densities of P
and Q, respectively, Cr,1 and Cr,2 are constants only
depending on r, and A and B are constants indepen-
dent of γn.

By f ∈ L2(Rd), (Eberts and Steinwart, 2013, Theorem
2.3.) yields fn ∈ Hγn and

∥fn∥Hγn
≤ Cγ−d/2

n , (14)

where C is a constant independent of γn.

We are now ready to prove the assertion. The triangle
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inequality yields the following inequality:

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EX∼P [f(X)]

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
n∑

i=1

wif(Xi)−
n∑

i=1

wifn(Xi)

∣∣∣∣∣
]

(15)

+ E

[∣∣∣∣∣
n∑

i=1

wifn(Xi)− EX∼P [fn(X)]

∣∣∣∣∣
]

(16)

+ |EX∼P [fn(X)]− EX∼P [f(X)]| . (17)

We first derive a rate of convergence for the first term
Eq. (15):

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)−
n∑

i=1

wifn(Xi)

∣∣∣∣∣
]

= E

[∣∣∣∣∣
n∑

i=1

wi(f(Xi)− fn(Xi))

∣∣∣∣∣
]

≤ E

( n∑
i=1

w2
i

)1/2( n∑
i=1

(f(Xi)− fn(Xi))
2

)1/2


≤

(
E

[
n∑

i=1

w2
i

])1/2

(
E

[
n

(
1

n

n∑
i=1

(f(Xi)− fn(Xi))
2

)])1/2

=

(
E

[
n∑

i=1

(wi)
2

])1/2

n1/2∥f − fn∥L2(Q),

where we used the Cauchy-Schwartz inequality
in the first two inequalities. Note that since
the weights w1, . . . , wn depend on the random

variables X1, . . . , Xn, the term
(∑n

i=1 w
2
i

)1/2
in

the third line is not independent of the term(∑n
i=1(f(Xi)− fn(Xi))

2
)1/2

. By the assumption

E
[∑n

i=1(wi)
2
]
= O(n−2c), Eq. (13), and γn = n−βγ,

the rate of the first term is O
(
n−c+1/2−αβ

)
.

We next show a convergence rate for the second term
Eq. (16):

E

[∣∣∣∣∣
n∑

i=1

wifn(Xi)− EX∼P [fn(X)]

∣∣∣∣∣
]

= E
[
⟨m̂P −mP , fn⟩Hγn

]
≤ E

[
∥m̂P −mP ∥Hγn

]
∥fn∥Hγn

≤
(

γ

γn

) d
2

E
[
∥m̂P −mP ∥Hγ

]
∥fn∥Hγn

,

where the equality follows from fn ∈ Hγn
, and the sec-

ond inequality follows from Eq. (10). By the assump-

tion E
[
∥m̂P −mP ∥Hγ

]
= O(n−b), γn = n−βγ, and

Eq. (14), the rate of the second term is O(n−b+βd).

The third term Eq. (16) is bounded as

|EX∼P [fn(X)]− EX∼P [f(X)]| ≤ ∥fn − f∥L1(P )

≤ ∥fn − f∥L2(P ) .

By Eq. (12) and γn = n−βγ, the rate of the third term
is O

(
n−αβ

)
, which is faster than that of the first term.

Balancing the first and second term yields β =
b−c+1/2

α+d . The assertion is obtained by substituting this
into the above terms.

5.2 Proof of Corollary 2

Proof. Let F(χΩ) denote the Fourier transform of χΩ.
It can be easily shown that the function (1 + ∥ ·
∥2)α/2F(χΩ)(·) belongs to L2(Rd) for any α satisfy-
ing 0 < α < 1/2. Therefore χΩ is included in the
fractional order Sobolev space Wα

2 (Rd) (Adams and
Fournier, 2003, p.252). Since Wα

2 (Rd) ⊂ Bα
2,∞(Rd)

holds (Edmunds and Triebel, 1996, pp.26-27, p.44),
we have χΩ ⊂ Bα

2,∞(Rd).

For arbitrary constant α satisfying 0 < α < 1/2 and
αb − d(1/2 − c) > 0, Theorem 1 then yields the rate

of O
(
n−αb−d(1/2−c)

α+d

)
for the lhs of the assertion. Let

α = 1/2− ζ, where 0 < ζ < 1/2. Then by the assump-
tion b − d(1 − 2c) > 0 we have αb − d(1/2 − c) > 0
for sufficiently small ζ. It is not hard to check that
α−d(1/2−c)

α+d is monotonically decreasing as a function
of ζ. Therefore in the limit of ζ → 0 we have the

supremum value b−d(1−2c)
1+2d over ζ ∈ (0, 1/2). Since we

can take an arbitrarily small value for ζ, the assertion
of the corollary follows.

5.3 Proof of Theorem 2

First, we need the following lemmas (their proofs can
be found in the supplementary materials).

Lemma 1. Let f : Rd → R be a Lipschitz function.
Then there exists a constant M > 0 such that for all
x0 ∈ Rd and h > 0 we have∣∣∣∣∫ Jh(x− x0)f(x)dx− f(x0)

∣∣∣∣ ≤ Mh . (18)

Lemma 2. Let f : Rd → R be a function satisfying
f ∈ Bα

2,∞(Rd) for some α > 0. Then for any h > 0,
we have

|f(·/h)|Bα
2,∞(Rd) = h−α+d/2|f |Bα

2,∞(Rd) . (19)

We are now ready to prove Theorem 2.
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Proof. Let γn = n−βγ and hn = n−τ for some con-
stants β, τ > 0 (concrete values for β and τ will be
determined later).

Let α > 0 be an arbitrary positive constant. We de-
fine Jhn,x0 := h−d

n J1,x0(·/hn). Since J1,x0 ∈ Bα
2,∞(Rd)

holds, we then have by Lemma 2

|Jhn,x0 |Bα
2,∞(Rd) = h−α−d/2

n |J1,x0 |Bα
2,∞(Rd). (20)

Let r := ⌊α⌋+ 1 and define the function Kγ : Rd → R
by Eq. (11). Then by (Eberts and Steinwart, 2013,
Theorem 2.2.) and Eqs. (9)(20) we have

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(P )

≤ C1ωr,L2(Rd)(Jhn,x0 , γn/2)

≤ C ′
1|Jhn,x0 |Bα

2,∞(Rd)γ
α
n

≤ C ′
1|J1,x0 |Bα

2,∞(Rd)h
−α−d/2
n γα

n , (21)

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(Q)

≤ C2ωr,L2(Rd)(Jhn,x0 , γn/2)

≤ C ′
2|Jhn,x0 |Bα

2,∞(Rd)γ
α
n

≤ C ′
2|J1,x0 |Bα

2,∞(Rd)h
−α−d/2
n γα

n , (22)

where C1, C
′
1, C2, and C ′

2 are constants independent
of hn and γn.

By (Eberts and Steinwart, 2013, Theorem 2.3.) and
Eq. (20), we have Kγn,r ∗ Jhn,x0 ∈ Hγn and

∥Kγn ∗ Jhn,x0∥Hγn

≤ C3∥Jhn,x0∥L2(Rd)γ
−d/2
n

= C3∥J1,x0∥L2(Rd)h
−d/2
n γ−d/2

n , (23)

where C3 is a constant independent of hn and γn.

Similar arguments with the proof of Theorem 1 yields
the following inequality:

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− EX∼P [Jhn(X − x0)]

∣∣∣∣∣
]

≤

(
E

[
n∑

i=1

w2
i

])1/2

n1/2

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(Q)

+

(
γ

γn

) d
2

E
[
∥m̂P −mP ∥Hγ

]
∥Kγn ∗ Jhn,x0∥Hγn

+ ∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(P ) .

By Eq. (22) and the assumption E
[∑n

i=1 w
2
i

]
=

O(n−c), the rate of the first term is
O(n−c+1/2−αβ+α(τ+d/2)). For the second term, Eq.

(23) and the assumption E
[
∥m̂P −mP ∥Hγ

]
= O(n−b)

yields the rate of O(n−b+βd+dτ/2). By Eq. (21), the
rate of the third term is O(n−αβ+α(τ+d/2)), which
is faster than that of the first term. Balancing the

first and second terms yields β = −c+1/2+ατ+b
α+d .

Substituting this into the above terms, the overall
rate is then given by

O

(
n−α(b−3τd/2)−d(1/2−c)−d2τ/2

α+d

)
. (24)

Note that we can take an arbitrarily large constant for
α . We therefore have for arbitrarily small ζ > 0

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− EX∼P [Jhn(X − x0)]

∣∣∣∣∣
]

= O
(
n−b+3τd/2+ζ

)
. (25)

On the other hand, since

EX∼P [Jhn
(X − x0)] =

∫
Jhn

(x− x0)p(x)dx

holds, Lemma 1 and the Lipschitz continuity of p yield

|EX∼P [Jhn(X − x0)]− p(x0)| ≤ Mhn . (26)

By balancing Eqs. (25) and (26) we
have τ = 2b

3d+2 − 2ζ
3d+2 . We therefore

have E [|
∑n

i=1 wiJhn(Xi − x0)− p(x0)|] =

O
(
n− 2b

3d+2+
2ζ

3d+2

)
, and letting ξ := 2ζ

3d+2 yields

the assertion of the theorem.

6 Conclusions

In this paper, we discussed methodology for recovering
the information of distributions from estimates of their
corresponding kernel means. To this end, we theoreti-
cally analyzed the properties of a consistent estimator
of a kernel mean in a Gaussian RKHS, and proved that
the expectations of functions in a Besov space can be
consistently estimated with the kernel mean estima-
tor. Using this result and an argument similar to its
proof, we show that moments, probability measures
on intervals, and the density can be recovered from an
estimate of a kernel mean. This work will serve as a
theoretical basis for developing practical applications
of RKHS embeddings.
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