
Scalable Collaborative Bayesian Preference Learning

Mohammad Emtiyaz Khan Young Jun Ko Matthias Seeger

École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Learning about users’ utilities from prefer-
ence, discrete choice or implicit feedback
data is of integral importance in e-commerce,
targeted advertising and web search. Due
to the sparsity and diffuse nature of data,
Bayesian approaches hold much promise, yet
most prior work does not scale up to real-
istic data sizes. We shed light on why in-
ference for such settings is computationally
difficult for standard machine learning meth-
ods, most of which focus on predicting ex-
plicit ratings only. To simplify the difficulty,
we present a novel expectation maximization
algorithm, driven by expectation propagation
approximate inference, which scales to very
large datasets without requiring strong fac-
torization assumptions. Our utility model
uses both latent bilinear collaborative fil-
tering and non-parametric Gaussian process
(GP) regression. In experiments on large
real-world datasets, our method gives sub-
stantially better results than either matrix
factorization or GPs in isolation, and con-
verges significantly faster.

1 Introduction

We are interested in modelling datasets of N users ex-
pressing preferences or making discrete choices among
M items, with the goal to predict utility rankings
and to make informed recommendations. Scenarios of
this kind are manifold in targeted advertising, social
networks, and e-commerce (where items are movies
in a video streaming portal or books, video games
and other merchandise sold online). They come with
a range of challenges. Preference statements, par-
tial rankings or other implicit feedback (e.g., number

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

of clicks or view durations) are diffuse, uncalibrated
sources of information, relative at best, while tradi-
tional machine learning frameworks are focused on
predicting explicit targets with controlled range and
noise levels. However, while users are unwilling to pro-
vide much explicit feedback, preference statements are
linked to user behavior which can easily be recorded
on the fly. Due to the very large scale of many appli-
cations (with N and M in the millions), any conceiv-
able dataset is extremely sparse: the vast majority of
user-item pairs receives no coverage at all. Any com-
petitive approach has to capture dependencies in this
highly incomplete matrix.

Indirect observations from diverse sources, data spar-
sity and richness in latent structure strongly motivate
approaches grounded in Bayesian statistics. Latent bi-
linear factors combined with nonparametric regression
from meta-data provide flexible utility models, which
can be linked to observations through a wide range of
likelihood functions. However, Bayesian inference is
analytically intractable, and most current approxima-
tions do not scale up to applications of interest. In this
paper, we clarify sources of computational difficulties
when applying standard Bayesian inference to prefer-
ence or discrete choice modelling. Our arguments shed
light on why the “proxy problem” of predicting explicit
ratings receives so much more attention.

Drawing on ideas from [24], we show how these diffi-
culties can be circumvented by a non-standard expec-
tation maximization (EM) approach. Our algorithm
applies to models which combine bilinear latent factors
and Gaussian processes, yet remains operational in a
regime far beyond standard variational EM methodol-
ogy. Driven by expectation propagation (EP) or other
local variational approximations, it can be used with a
wide range of likelihood functions. It comes with sim-
ple closed-form updates, is easily implemented, and
its dominating computations are embarrassingly par-
allelizable. We compare our method to prior work on
a number of real-world datasets, ranging from a few
thousand to about 3 million observations, and obtain
significant improvements in substantially less time.

475

Scalable Collaborative Bayesian Preference Learning

2 Bayesian Models for Preferences

We index the N users by n and the M items by i. Each
user is associated with a latent utility function zn over
items. A large value of zin indicates a high interest in
item i. A discrete choice model consists of a specifi-
cation of zn, possibly dependent on covariates, and a
likelihood function linking utilities to observations.

For the sake of simplicity, we focus only on pairwise
preferences, yet the methods discussed here apply to
other data types as well (including implicit feedback
and discrete choice data). We observe Pn preference
pairs On = {(i, j) : i � j} for user n, where i � j states
that item i is preferred over j. A common model for
such observations is the probit likelihood [3, 8] defined
as p(i � j|zn) = Φ(zin−zjn), where Φ is the standard
Gaussian cumulative distribution function. Another
popular option is the logit likelihood p(i � j|zn) = (1+
e−(zin−zjn))−1 [11]. We also observe an item feature-
vector xi per item i.

Utilities can conveniently be modelled via Gaussian
processes (GP) [2, 3, 8], zin = zn(xi), where zn(·) ∼
GP(0,K) and K(x,x′) a covariance function between
items. Some of the early work was focused on a single
user, e.g. [5, 4]. Multi-user preference learning based
on a hierarchical model with dependent GP priors is
proposed in [2]. Given item and user features, the util-
ity function can also be modelled by a joint GP prior of
tensor product structure [3]. A recent approach by [8]
models utility differences zin−zjn directly using linear
combination of GPs. Unfortunately, these methods do
not scale to datasets with more than a few hundred
items, e.g., the method in [3] scales cubically in the
number of observed pairs, that of [8] scales cubically
in the number of distinct pairs. For modern datasets
containing millions of pairs, this is not acceptable.

Another popular approach is to use matrix factor-
ization [18], with utilities zin = vTi un + µi, where
vi,un are length D latent factors and µi is a bias
parameter for item i. Denote U = [un]T ∈ RN×D,
V = [vi]

T ∈ RM×D. Item features can be incor-
porated by adding regression factors [20, 1], e.g., by
defining zin = vTi un + µi + xTi wn, where wn are re-
gression weights. Matrix factorization models work
particularly well for users or items which are well sup-
ported by data, but can fail to generalize well to those
with very few observations (the “cold-start problem”),
and appending a regression term to the utility function
can be particularly beneficial in these cases.

Although this bilinear modelling approach comes with
highly scalable algorithms for explicit ratings data,
these do not apply to preference observations. For
one, sensible preference likelihoods are non-Gaussian,

and approximate inference techniques have to be used.
However, the main computational burden is present
even if Gaussian likelihoods are used, and arises from
the asymmetry between items and users: observations
couple zin, zjn for different items i and j, which makes
estimating V difficult. As shown in the Appendix, in
an EM algorithm that integrates over U and estimates
V , the M-step involves minimizing a quadratic func-
tion vTAv + aTv , where v = vec(V) ∈ RMD and A
is an unstructured matrix of size MD × MD. This
problem is highlighted in [21] for the case of Gaussian
likelihoods.

Common solutions to circumvent these problems in-
clude factorizing the posterior [18] or using variational
inference based on crude local variational bounds [11].
In particular in data-scarce situations, the implied loss
of accuracy is considerable. Moreover, factorization
assumptions do not work well for GP models. For
methods based on EP, factorization assumptions also
compromise algorithmic convergence.

In this paper, we show that neither factorization as-
sumptions nor sub-standard inference approximations
are really required for scalable Bayesian multi-user
preference learning. We make use of a utility model
featuring both matrix factorization and GP terms,
which allows for significantly better results than either
in isolation. Building on ideas from [24], we devise an
efficient EM algorithm. Our method comes with a
closed-form M step update of V , based on statistics of
size M2 only (compared to M2D2 in the standard EM
algorithm). Our algorithm generalizes to many likeli-
hoods, allowing us to model different types of data.

3 A New Utility Model

We propose a new utility model, containing both ma-
trix factorization and GP parts, as shown below. Here,
µi is an item-specific bias, and sn(·) is drawn from
a GP with covariance function K(xi,xj), and un is
drawn from a standard Gaussian distribution.

zin = vTi un + µi + sn(xi), sn ∼ GP(0, σ2
sK) (1)

un ∼ N (0, I), p(On|zn) =
∏

(i,j)∈On

Φ(zin − zjn)

The observation set On of Pn preference pairs from
the n-th user is modeled using the likelihood function
shown above. These observations strongly couple ele-
ments of zn since each likelihood depends on zin and
zjn. We denote these couplings by a sparse matrix Bn

of size Pn ×M . A row of this matrix pair correspond
to an observed pair i � j, and has all zero except for
+1 at i and -1 at j. The likelihood of On is then
completely specified by a vector z̃n = Bnzn.

476

Mohammad Emtiyaz Khan, Young Jun Ko, Matthias Seeger

Algorithm 1 EM for collaborative preference learning

Initialize V ,µ, σ2
s .

Compute the Kernel matrix K and its Cholesky L.
Initialize Σ ← V V T + σ2

sK and W ← L−1V
while not converged do

% E-step in parallel
Initialize global statistics s and S .
for all users n = 1, . . . , N , in parallel do

Run EP to compute βn, πn as in (4).
Compute En and en using (7) and (10).
Add these to s and S as in (13) and (15).

end for
% M-step
[W , σ2

s]← fastEigs(W , σ2
s ,L,S). See Sec. 4.

Update V ← LW and µ ← µ + Σs.
Update Σ ← V V T + σ2

sK
end while

4 Scalable Variational EM Algorithm

We will now derive a scalable variational EM algorithm
for our model. We will integrate out the un and sn,
and estimate the parameters θ = {V ,µ, σ2

s}. Esti-
mating V (rather than integrating it out) leads to a
computationally efficient algorithm, a choice which is
justified if N is reasonably larger than M . For simplic-
ity, we do not learn the Kernel hyperparameters within
our framework, but note that the prior variance σ2

s is
learned at no additional computational cost.

We seek θ that maximizes the marginal likelihood:

p(D|θ) =
N∏
n=1

∫
p(On|z̃n)p(un)p(sn) dundsn

The key idea towards an efficient algorithm is to work
with zn and z̃n, instead of (un, sn):

p(zn|θ) = N (zn|µ,Σ), Σ := σ2
sK + V V T (2)

p(z̃n|θ) = N (z̃n|Bnµ,BnΣBT
n) (3)

Importantly, all parameters θ reside in the prior p(zn),
while the likelihoods p(On|z̃n) are parameter-free. In
an EM algorithm, this leads to an efficient M-step.
Each E-step is also simplified by working with z̃n
which are of much shorter length compared to zn
(since Pn � M). The EM algorithm is outlined in
Algorithm 1. We give details for each of its steps now.

Expectation Propagation. The first obvious dif-
ficulty is the intractable integral due to the non-
Gaussian likelihoods. We address this issue by EP
[13]. In a nutshell, likelihoods p(On|z̃n) are replaced
by Gaussian functions giving rise to a Gaussian ap-
proximation, as shown below.

q(zn) ∝ eβ
T
n z̃n− 1

2 z̃
T
n diag(πn)z̃nN (zn|µ,Σ). (4)

The EP parameters βn, πn are adjusted by a simple
iterative algorithm (see [6] for a detailed algorithm).

In our framework, EP runs efficiently since only
marginals of q(z̃n) are required which are of much
smaller size than those of q(zn) (see Eq. (3)). We
use parallel updating1 EP [6], iterating between re-
computing marginals and doing all local EP updates
in parallel. The former scales as O(P 3

n), while the lat-
ter is a simple operation for the probit link [13]. In
our experiments, EP converged after few (5-7) parallel
rounds in nearly all instances. This fast and robust
convergence is presumably due to no factorization as-
sumptions on the posterior. In contrast, the method of
[18] requires sequential updating, damping and careful
message scheduling to ensure EP convergence.

Note that both the probit and logit likelihoods are
log-concave, and EP updates are guaranteed to be
well-defined in exact arithmetic and result in positive
entries in πn [19]. On the other hand, EP can be
problematic for numerical reasons, in particular in the
faster parallel updating variant. In our experiments,
we also consider a simpler local variational inference
approximation due to Jaakkola [9], which applies to
the logit likelihood (replace probit in Eq. (1) by logit).
This approximation is numerically stable, but can per-
form worse than EP [16]. In our context here, it can
be seen as a different way of choosing πn, βn, so all
other computations remain unchanged.

Computation of Sufficient Statistics. The EM
criterion depends on statistics of q(zn), but fortu-
nately, these can be expressed in terms of much smaller
statistics of q(z̃n). Since EP approximates the non-
Gaussian likelihoods by a Gaussian, the resulting
statistics are similar to Gaussian PPCA [22] and are
shown here in Eq. (5) and (8). In Eq. (6) and (9),
we use the Woodbury formula to express the statistics
in terms of a Pn length vector en and a square matrix
En of size Pn × Pn. These are defined in terms of πn
and βn in Eq. (7) and (10).

Cov(zn) = [Σ−1 +Bn diag(πn)BT
n]−1 (5)

= Σ −ΣBT
nEnBnΣ (6)

where E−1n = diag(πn)−1 +BnΣBT
n (7)

E(zn) = Cov(zn)[BT
nβn + Σ−1µ] (8)

= µ + ΣBT
nen (9)

where en = En[diag(πn)−1βn −Bnµ] (10)

Computing En and en requires O(P 3
n) computations

only. We give expressions for numerically safe compu-
tation of these updates in the supplementary material.

1 In contrast, sequential updating EP as in [13] would
run much slower in our context.

477

Scalable Collaborative Bayesian Preference Learning

Fortunately, we never have to compute Cov(zn) and
E(zn) explicitly, as we show next.

M-step criterion. The criterion to be minimized de-
pends on moments of q(zn), as shown below.

min
θ

N∑
n=1

Eq(zn)[− log p(zn|θ)] (11)

=
N

2

[
log |2πΣ|+ tr(Σ−1C)

]
(12)

C :=
1

N

N∑
n=1

Cov(zn) + [µ − E(zn)][µ − E(zn)]T

However, the updates can be expressed in terms of
moments of q(z̃n), avoiding explicit computation of
q(zn). We show this first for µ. Setting the derivative
with respect to µ to zero, gives us the update shown
below. We use Eq. (9) to get the second equality.

µ̂ =
N∑
n=1

E(zn)

N
= µ + Σs,with s :=

N∑
n=1

Bnen
N

(13)

To update V and σ2
s , we first plug the µ̂ in the objec-

tive (12), to get the following new value of C which
depends only on en and En through S , defined in Eq.
(15) (see detailed derivation in the Appendix).

C := Σ −ΣSΣ (14)

S :=
1

N

∑
n

BT
n (En − eneTn)Bn + ssT (15)

All we need from the E-step computation for user n
are statistics en and En of size O(P 2

n). The global
statistics s, S are easily accumulated alongside the E-
step computations. We will now derive updates of V
and σ2

s , without explicitly forming C .

Update for V and σ2
s . The objective of Eq. 12 can

be minimized in closed form for these parameters as
well. Let L be the Cholesky of K + εI. Note that we
add a jitter2term ε > 0 in order to improve the condi-
tion number of the matrix [15]. Defining W := L−1V
and C̃ := L−1CL−T , we can rewrite the objective:

min
θ

log |Σ̃|+ tr(Σ̃
−1
C̃), Σ̃ := σ2

sI +WW T (16)

This is the negative log likelihood for a probabilistic
PCA model, which can be solved analytically [22]. Let
Λ be the diagonal matrix of the D largest eigenvalues
of C̃ , and R be the matrix of corresponding orthonor-
mal eigenvectors. A global minimizer of (16) is

Ŵ = R(Λ − σ̂2
sI)1/2, σ̂2

s =
tr(C̃)− tr(Λ)

M −D
. (17)

2 This term is added to the covariance everywhere.

Algorithm 2 Fast matrix-vector multiplications

Require: Input vector a and W , σ2
s ,L,S

Ensure: Fast MVMs a ← C̃a
ã ← σ2

sa +W (W Ta)
b ← L(S(LT ã))
b̃ ← σ2

sb +W (W T b)
a ← ã + b̃

A naive computation of Ŵ , σ̂2
s would require the ex-

plicit computation of C , C̃ , and the eigendecomposi-
tion of the latter, which is O(M3) with a large con-
stant. A better way is to use an iterative scheme
to find the D � M leading eigenvectors requiring a
single matrix-vector multiplication(MVM) with C̃ per
round. Eq. (18-20) and Algorithm 2 show how a lin-
ear operator a 7→ C̃a can be implemented given only
S ,L and the old values of W and σ2

s , thus avoiding
O(M3) cost for forming C̃ explicitly.

C̃a = L−1CL−Ta = L−1(Σ −ΣSΣ)L−Ta (18)

= Σ̃a − Σ̃LSLT Σ̃a (19)

Σ̃a = σ2
sa +W (W Ta) (20)

In total, we require O(D) MVMs giving us a cost
of O(M2D). Computation of Eq. (17) using fast
MVMs of Algorithm 2 is referred to as fastEigs in
Algorithm 1. Similarly, tr(C̃) can be computed in
O(M2D), as well.

Computational Complexity. To summarize, the E-
step of our EM algorithm has running costsO(

∑
n P

3
n),

but is embarrassingly parallelizable with respect to
users. Given the Cholesky factor L, an M-step costs
O(M2D). Overall, we require storing only two M×M
matrices. The only O(M3) computation in our al-
gorithm is the Cholesky decomposition of K + εI,
which has to be done only once up front. These
figures compare favorably to the standard EM algo-
rithm for matrix factorization, where an E-step costs
O(ND3 +

∑
nD

2Pn) (which can be slightly cheaper),
but each M-step requires O(M2D2) memory as well as
solving a dense system of size (MD) × (MD). Such
computations are not tractable at large scales.

Nonparametric PCA. Finally, how does our method
relate to the nonparametric PCA algorithm (NPCA)
of [24]? First, they neither address models with non-
Gaussian likelihoods nor with couplings Bn, but are
concerned with explicit ratings and Gaussian noise
only. Their method can be lifted to our setting, which
we did for experimental comparisons. Second, they do
not make use of item features xi. Third, they can-
not impose low rank constraints in the form of a V
factor, with D � M . This point is worth elaborat-
ing on. NPCA corresponds to updating the full-rank

478

Mohammad Emtiyaz Khan, Young Jun Ko, Matthias Seeger

Sushi MovieLens

A B 100K 1M 10M
#Items 10 100 1.5k 3.5k 9.5k
#Users 5k 5k 715 4.6k 45.6k
#Pairs 45 45 187k 3.5M 18.5M
#TestPairs 5k 5k 1.3k 9.9k 77k

Table 1: List of datasets. For MovieLens, we choose
the items with ratings 5 and 1, and create all possible
pairs. We remove the users and movies with no ratings,
and keep 4 pairs per user for testing. The number
obtained after this processing are shown in the Table.

covariance Σ directly. The M-step update is simply
Σ ← Σ − ΣSΣ. It costs two O(M3) matrix mul-
tiplications, but avoids more complex algorithms like
eigs. The E-step is identical to ours. We compare
our algorithm to NPCA in Section 5, where we find
that NPCA exhibits overfitting for smaller datasets,
while requiring a very large number of iterations for
convergence on the largest problems.

Speeding up E-Step Computations. E-step com-
putations in our method scale as O(P 3

n) per user n,
which can be a bottleneck. In particular, a small
number of users with many pairs can dominate the
computational load even with parallel processing. One
way to get around this issue is to employ sparse GP
approximations [23]. Namely, with W � M induc-
ing variables, E-step computations can be done in
O(Pn(W + D)2) if Pn > W + D. In our experiments
in Section 5, we circumvent the problem by randomly
subsampling the observations for users above a thresh-
old. While this introduces stochasticity into the EM
optimization, our results indicate that similar optima
are reached for different runs and even different num-
bers of likelihoods sampled for each user. A more ad-
vanced idea would be to select likelihoods from a larger
pool via greedy optimization of information-theoretic
criteria [12].

5 Results

We present experimental results on real-world datasets
listed in Table 1. Methods are evaluated on a test
set of randomly drawn pairs. Similar to [14], our
evaluation metric is the log-loss which is defined as
− log2 q(i � j|D), averaged over test pairs (i � j).
Here, q(i � j|D) is the posterior predictive probabil-
ity. See Appendix for details on an exact expression
to compute the probability. This loss is close to 0
for correct predictions with high confidence, and 1 for
random coin flips. It depends on predictive uncertain-
ties, not just on predictive means. Code is available at
https://github.com/yjk21/sbcpl.

Methods Error logψ, log σ2
s

GPfull-Laplace 0.897 (2 , -2, -2, 2)
GPitem-Laplace 0.910 (-2, 0)
GPitem-EP 0.875 (-2, 1)

GPVU-EP 0.798 (0, -0.96)

GPVU-Jaakkola 0.854 (0, -1.55)
VU-Jaakkola 0.856

Table 2: Comparison of preference learning methods
on Sushi-A dataset (N = 200 users, M = 10 items).
GP denotes Gaussian process, VU matrix factoriza-
tion, GPVU a combined model. Laplace, EP, Jaakkola
denote different inference approximations (see text for
details). The error is average test log-loss, the θ col-
umn provides hyperparameter values (logψ, log σ2

s).
For GPfull, these parameterize the item, then the user
covariance function.

5.1 Comparison with Prior Work

We present a comparison of our method, combining
matrix factorization with Gaussian processes, with
methods that use one or the other. Since most prior
work on GP preference learning is not scalable, we re-
strict ourselves to small datasets.

The Sushi datasets contain preferences of 5000
Japanese customers for different types of sushi [10]
(sizes given in Table 1). Sushi-A has 10 sushi types
while Sushi-B has 100. Each user was asked to rank
10 sushi each. For Sushi-A these were all the sushis,
while for Sushi-B 10 items were randomly drawn from
the complete set (different draw for each user). Rank-
ing over 10 sushis gives us 45 preference statements
per user. Moreover, each Sushi type comes with a 18-
dimensional feature vector xi (2 binary, 4 numerical
and a 12-state categorical feature). User features are
provided as well (9 dimensions).

We randomly drew training and test sets as follows.
For Sushi-A, we subsampled N = 200 users, then ex-
tracted 3 training and 1 test pair per user. This very
small dataset size allowed us to compare against meth-
ods which scale cubically in the total number of train-
ing pairs. For Sushi-B, we used all N = 5000 users,
and extracted 10 training and 1 test pair per user.

Methods we compare differ in two aspects – the model
and the inference method. We denote different meth-
ods as ‘model’-‘method’. The method can be EP, the
local bound of [9] (Jaakkola), or the Laplace approx-
imation [3]. Model can be either GP based, matrix
factorization based or a combination of the two. We
refer to these as GP, VU and GPVU, respectively. We
now give a brief description of all these methods. The
first method, which we refer to as GPfull-Laplace, is

479

Scalable Collaborative Bayesian Preference Learning

Methods D=10 D=20 D=30

VU-Jaakkola 0.730 0.715 0.720
GPVU-Jaakkola 0.690 0.700 0.710

Table 3: Comparison of preference learning methods
on Sushi-B dataset (N = 5000 users, M = 100 items).
VU is a matrix factorization model, GPVU adds a GP
part dependent on item features.

proposed in [3]. They use a joint Gaussian process
over item and user features, zin = s(xi,yn), with a
tensor product covariance matrix K ⊗Ku, where K
is the item covariance, Ku the user covariance. We
use Matlab code provided by the authors. GPitem-
Laplace and GPitem-EP use a Gaussian process over
items only, zin = sn(xi), with a single shared co-
variance matrix K . For all the GP based models,
we use the squared-exponential covariance function
K(xi,xj) = exp(−‖xi − xj‖2/ψ), where ψ > 0 is a
hyperparameter. The hyperparameters (ψ, σ2

s) were
selected on a grid to minimize test log-loss. Note that
GPfull-Laplace has separate parameters for the item
and user covariance function. For all the GP based
methods, we add a jitter term with ε = 0.1 to make
sure that the Kernel matrix is well-conditioned.

VU-Jaakkola employs a matrix factorization model
only, zin = vTi un. Note that there are no item bi-
ases µi. This model is fitted by the standard EM al-
gorithm described in the Appendix. Finally, GPVU
is our proposed approach, which we ran with EP and
Jaakkola approximate inference, but without item bi-
ases µi. Note that in our method, σ2

s is learned as
part of the algorithm, and only ψ has to be selected.
In terms of scalability, GPfull-Laplace is the most ex-
pensive method by far, followed by VU-Jaakkola. The
GPitem-Laplace can be implemented to run very effi-
ciently, but we simply used the code provided by [3].

The results of our comparison on Sushi-A are shown
in Table 2. Comparing GPfull-Laplace to GPitem-
Laplace, we see that the inclusion of user features
provide little improvements of about 1% only, in line
with findings reported in [8]. EP does significantly
better than the Laplace approximation: 4% improve-
ment for GPitem. The posterior with threshold like-
lihoods is highly skewed, and the Laplace approxima-
tion can perform poorly. However, the most signifi-
cant improvements are obtained by adding a matrix
factorization term (7% from GPitem-EP to GPVU-
EP). Our proposed approach GPVU-EP improves on
all others significantly. Finally, VU-Jaakkola gives al-
most the same performance as GPVU-Jaakkola. Due
to the small number of items, a purely collaborative
approach cannot be improved much by adding a GP,
but this does help for cold-start.

0 40 80 120

0.7

0.8

0.9

Time in seconds

E
rr

o
r

VU

GPVU

(a)

−2 −1 0 1 2
0.68

0.7

0.72

0.74

log(ψ)

E
rr

o
r

GPVU
VU

(b)

Figure 1: Further comparative results on Sushi-B. (a):
GPVU-Jaakkola and VU-Jaakkola (with D = 10) con-
verge in about the same number of iterations, GPVU
outperforms VU. (b): Solid line shows test error for
GPVU with different values of logψ (kernel hyperpa-
rameter), dashed line shows test error for VU.

We also compared VU-Jaakkola (matrix factorization
only) with GPVU-Jaakkola (our combined model) on
the larger Sushi-B dataset with M = 100 items, results
are shown in Table 3. Here, adding the GP part leads
to modest improvements. We also see that prediction
errors increase for larger latent dimension D, indicat-
ing the onset of overfitting. A sample run for D = 10
is shown in Figure 1(a). For this small dataset, there
is no big difference in convergence time, but GPVU
attains better performance. Figure 1(b) demonstrates
the sensitivity of GPVU results w.r.t. the kernel hy-
perparameter logψ.

Overall, there is a clear advantage of our GPVU
method over GP-only methods. Our EP inference out-
performs other options (Laplace, Jaakkola). Our edge
over VU (matrix factorization only) is less pronounced
for these small datasets with few items, but becomes
significant on large and sparse dataset.

5.2 Results on MovieLens Dataset

We now address larger problems, based on the three
MovieLens3 datasets, consisting of 100K, 1M and 10M
explicit ratings (integers 1–5) for movies, along with
a range of user and item features (we make use of the
latter only). We create three preference learning prob-
lems, similar to what is done in [14]. We only use
ratings 5 and 1, removing users with no such ratings.
We create a pool of training pairs i � j for every i, j
s.t. i is rated 5, j is rated 1. The number of users,
movies and training pairs are shown in Table 1. We
sample four pairs per user for testing, removing them
from the training pool. Just as above, we use aver-
age test log-loss as performance metric. For GP, we
add a jitter term of ε = 1 to make the Kernel matrix
well-conditioned.

3 www.grouplens.org/datasets/movielens/

480

Mohammad Emtiyaz Khan, Young Jun Ko, Matthias Seeger

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Passes over the data

E
rr

o
r

7.6K (upper limit 25)

17K (upper limit 100)

33K (upper limit 400)

43K (upper limit 900)

Figure 2: Experiment running GPVU-EP on
MovieLens-100K, with D = 30 latent dimensions and
ψ = 1. Legend shows different upper limits on Pn,
along with the sum of subsampled pairs over the user.
The horizontal axis unit is the number of pairs up-
dated on, in terms of passes over the total training
pool. Markers are set after every 20 EM iterations. A
method with fewer training pairs (e.g., 7.6k) runs more
EM iterations in a given time, but converges slower
than a method with many training pairs (e.g., 43k).
Importantly, all methods eventually reach the same
test error plateau.

We compare our method GPVU-EP with NPCA-EP,
where nonparametric PCA [24] is discussed at the end
of Section 4. NPCA does not use item features. It dif-
fers from VU above (which cannot be run at this scale)
in that the covariance Σ is not low-rank constrained.
In both cases, we speed up the E-step by subsampling
pairs from the pool for each user, a strategy which is
similar to Bayesian personalized ranking (BPR) [17].
We do this by setting an upper limit on Pn (number of
pairs per user), then subsampling for users whose pool
size is larger. Sampling is repeated independently in
each iteration.

In our first experiment, we run GPVU-EP with differ-
ent upper limits on Pn, giving rise to different number
of training pairs seen by each EM iteration. Results
on MovieLens-100K are shown in Figure 2. While the
runs converge at different speeds, they all eventually
reach the same test set performance, which demon-
strates that our subsampling strategy does not bias
final results on this dataset. In the context of these
experiments, the upper limit on Pn can therefore be
treated as a tuning parameter which determines the
speed of convergence. In all further experiments, we
fix the cap on Pn to 400 pairs, which corresponds to a
total of 33K pairs in Figure 2.

In Table 4, we show the effect of latent dimension-

D Error

5 0.589
10 0.526
20 0.504
30 0.485
50 0.490

log(ψ) Error log(σ2
s)

-2 0.533 -0.17
-1 0.532 -0.17
0 0.493 -0.13
1 0.483 -0.07
2 0.495 -0.05

Table 4: Experiments running GPVU-EP on
MovieLens-100K. Left: Different latent dimensional-
ities D for ψ = 1. Right: Different values for logψ for
D = 30. We also show log σ2

s , as learned by the EM
algorithm.

Method 100k 1M 10M
NPCA-EP 0.525 0.375 0.576
GPVU-EP 0.483 0.368 0.390

Table 5: Average test log-loss for NPCA-EP and
GPVU-EP on MovieLens (100K, 1M, 10M). Scores are
averaged over 5 repetitions each (different seeds), as
well as over the last few EM iterations of each run.
GPVU outperforms NPCA in all cases, the differences
being statistically significant for 100K and 10M.

ality D and hyperparameter ψ for GPVU-EP run on
MovieLens-100K. We observe overfitting for D larger
than 30. For the larger MovieLens datasets, overfitting
does not occur, but the test error does not improve sig-
nificantly for D > 30. For the kernel hyperparameter,
a value of logψ = 1 works best. In all further exper-
iments, we fix D = 30 and logψ = 1. We use EP
as our inference algorithm since it gives better results
than Jaakkola (see Figure in the Appendix).

Table 5 provides results for NPCA-EP vs. our GPVU-
EP across the 3 MovieLens datasets (also see Figure
in the Appendix). NPCA exhibits overfitting on the
smaller 100K dataset, while the low rank assumption
(D = 30) leads to valid generalization for GPVU.
MovieLens-1M is a fairly densely observed dataset
(more so than 10M, see Table 1): NPCA and GPVU
show similar performance. Our method exhibits much
better convergence on the largest dataset MovieLens-
10M, while NPCA does not properly converge after a
reasonable runtime. GPVU significantly outperforms
NPCA for 100K and 10M. For the largest 10M dataset,
both methods were stopped after 100 passes over the
training pool. NPCA did not seem to have converged
even after this large number of iterations.

We also implemented a map-reduce version of our code
that runs E-step in parallel, using multi-threading in
C++ with Boost. In our implementation, each thread
manages a local copy of the sufficient statistic matrix
which are then added in the end in parallel, requiring
only logarithmic number of operations in the number

481

Scalable Collaborative Bayesian Preference Learning

Pairs 100K Pairs 1M Pairs 10M
7.6k .7s, 1s 56k 7s, 3s - -
17k 1s, 1s 147k 9s, 3s 1M 1m, 20s
33k 7s, 1s 349k 1m, 3s 2M 7m, 20s
43k 27s, 1s 534k 15m, 3s 3M 58m, 20s

Table 6: Running times of GPVU-EP on MovieLens
datasets (100K, 1M, 10M), for different total numbers
of training pairs. For each dataset, the first column
shows the total number of training pairs obtained after
subsampling, the second quotes average time for an E-
step and M-step (in s(econds) or m(inutes)). M-step
times are independent of the number of training pairs.

O
fs

s
e

t +
 F

iv
e

 fa
c

to
rs

Movies

C
o

m
ed

y

A
ctio

n

D
ram

a

D
o

cu
m

en
tary

H
o

rro
r

1
2

3
4

5
6

1

2023

2705

3386

3775

4307
−

6

−
5

−
4

−
3

−
2

−
1

0 1 2 3

Figure 3: Visualization of latent factors for Movielens-
10M. First rows shows µ. Rest 5 show top 5 columns of
V . Movies are grouped under 5 genres, clearly show-
ing the expected clustering of factors.

of threads. The parallel reduction was done using In-
tel’s Threading Building Blocks. We opted for a shared
memory environment for ease of implementation, al-
though a distributed implementation might be more
appropriate. In Table 6, we provide running times of
our GPVU-EP on MovieLens datasets different sizes
and number of subsampled training pairs, as obtained
on a workstation with Intel 2.8GHz i7-2600S processor
and 4 cores. Our method scale well to large datasets.
We see that on 4 cores, we can run up to 3M pairs
within an hour. On 32 cores, we get further reduction
enabling us to process 3M pairs within 10 minutes.

Figure 3 shows a visualization of learned parameters
for Movielens-10M. An advantage of the Bayesian ap-
proach is the quantification of uncertainty. To demon-
strate this, we picked all comedy, action, and drama
movies from Movielens-10M, and simulated users with
specific movie-tastes by generating training-pairs in a
controlled way. For example, a comedy-preferring user
is represented using observation-pairs where comedy
movies are preferred over other genres. We held out
100 test-pairs for each kind of movie, and computed
predictions using θ previously learned on Movielens-
10M. Figure 4 shows these predictions as a function
of number of training examples for a user who prefers
comedy and another user who prefers action. We see,

0 10 20 30

0.3

0.5

0.7

0.9

I like Comedy

Training preferences

Te
st

 p
re

fe
re

n
c

e
 p

ro
b

a
b

ili
ty

Comedy > Others

Drama > Action

0 10 20 30

0.3

0.5

0.7

0.9

I like Action

Training preferences

Te
st

 p
re

fe
re

n
c

e
 p

ro
b

a
b

ili
ty

Action > Others

Drama > Comedy

Figure 4: Demonstration of uncertainty-quantification
with our Bayesian approach. See text for details.

e.g. for comedy-preferring user, that prediction prob-
abilities for test-pairs where comedy is preferred, ap-
proach 1 as the number of training pairs is increased.
Interestingly, the predictions for pairs where drama
is preferred over action stays neutral (around 0.5)
throughout. The same is true for an action-preferring
user. Our Bayesian framework quantifies uncertainties
reliably, making many confident predictions close to 1
while also keeping uncertain predictions close to 0.5.

6 Conclusions

We presented a novel approach for Bayesian multi-user
preference learning, modelling a user’s utility by the
sum of a latent bilinear collaborate filtering term and
a Gaussian process indexed by item features. This
combination yields substantially improved results over
using one or the other on its own. The bilinear part is
particularly effective for users with much data, while
the GP part is valuable in cold start situations. We
have clarified why learning from pair preferences is
computationally more difficult than from explicit rat-
ings. By modifying the standard EM approach to this
setting, we obtain a new algorithm with simple closed-
form updates, which scales to very large datasets with-
out imposing factorization assumptions or restricting
the way in which likelihoods are approximated.

In future work, we will explore ways to speed up the E-
step, as noted at the end of Section 4. We will extend
our method to discrete choice (or partial ranking) data
by way of the multivariate probit likelihood. Finally,
we will explore stochastic versions of our algorithm [7].

Acknowledgements: This work was funded by an
ERC starting grant (277815-SCALABIM).

482

Mohammad Emtiyaz Khan, Young Jun Ko, Matthias Seeger

References

[1] D. Agarwal and B. Chen. Regression-based la-
tent factor models. In ACM SIGKDD 15th
Int. Conf. Knowledge Discovery and Data Min-
ing, pages 19–28, 2009.

[2] A. Birlutiu, P. Groot, and T. Heskes. Multi-
task preference learning with an application to
hearing aid personalization. Neurocomputing,
73(79):1177–1185, 2010.

[3] E. Bonilla, S. Guo, and S. Sanner. Gaussian pro-
cess preference elicitation. In NIPS 23, pages 262–
270, 2010.

[4] E. Brochu, N. De Freitas, and A. Ghosh. Active
preference learning with discrete choice data. In
NIPS 20, pages 409–416. 2008.

[5] W. Chu and Z. Ghahramani. Preference learning
with Gaussian processes. In ICML 22, pages 137–
144, 2005.

[6] M. van Gerven, B. Cseke, F. de Lange, and
T. Heskes. Efficient Bayesian multivariate fMRI
analysis using a sparsifying spatio-temporal prior.
Neuroimage, 50:150–161, 2010.

[7] M. Hoffman, D. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. JMLR, 14:1303–
1347, 2013.

[8] N. Houlsby, J. Hernandez-Lobato, F. Huszar, and
Z. Ghahramani. Collaborative Gaussian processes
for preference learning. In NIPS 25, pages 2105–
2113, 2012.

[9] T. Jaakkola. Variational Methods for Inference
and Estimation in Graphical Models. PhD thesis,
MIT, 1997.

[10] T. Kamishima. Nantonac collaborative filtering:
Recommendation based on order responses. In
ACM SIGKDD 9th Int. Conf. Knowledge Discov-
ery and Data Mining, 2003.

[11] N. Koenigstein and U. Paquet. Xbox movies rec-
ommendations: Variational Bayes matrix factor-
ization with embedded feature selection. In Pro-
ceedings of the 7th ACM Conference on Recom-
mender Systems, 2013.

[12] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast
sparse Gaussian process methods: The informa-
tive vector machine. In NIPS 15, pages 609–616,
2003.

[13] T. Minka. Expectation propagation for approx-
imate Bayesian inference. In Uncertainty in AI
17, 2001.

[14] A. Mnih and Y. W. Teh. Learning label trees for
probabilistic modelling of implicit feedback. In
NIPS 25, pages 2825–2833, 2012.

[15] Radford M. Neal. Monte Carlo implementation
of Gaussian process models for Bayesian classi-
fication and regression. Technical Report 9702,
Department of Statistics, University of Toronto,
January 1997.

[16] H. Nickisch and C. Rasmussen. Approximations
for binary Gaussian process classification. JMLR,
9:2035–2078, 2008.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Uncertainty in
AI 25, pages 452–461, 2009.

[18] T. Salimans, U. Paquet, and T. Graepel. Collabo-
rative learning of preference relations. In Proceed-
ings of the 6th ACM Conference on Recommender
Systems, 2012.

[19] M. Seeger. Bayesian inference and optimal design
for the sparse linear model. JMLR, 9:759–813,
2008.

[20] D. Stern, R. Herbrich, and T. Graepel. Matchbox:
Large scale online Bayesian recommendations. In
Proceedings of the 18th International Conference
on World Wide Web, pages 111–120, 2009.

[21] G. Takács and D. Tikk. Alternating least squares
for personalized ranking. In Proceedings of the
6th ACM Conference on Recommender Systems,
pages 83–90, 2012.

[22] M. Tipping and C. Bishop. Probabilistic prin-
cipal component analysis. J. Roy. Stat. Soc. B,
61(3):611–622, 1999.

[23] M. Titsias. Variational learning of inducing vari-
ables in sparse Gaussian processes. In AISTATS
12, pages 567–574, 2009.

[24] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast
nonparametric matrix factorization for large-scale
collaborative filtering. In Proceedings of ACM SI-
GIR, pages 211–218, 2009.

483

