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S1 Posterior means of latent variables

For the EM algorithm of our models, it is necessary to
compute the posterior means of their Gaussian latent vari-
ables. This calculation is most involved for the model in
section 3.2, where we impose both large-margin constraints
and a class-balancing constraint on the unlabeled examples.
In this section we briefly justify the result in eq. (25) for
computing the posterior means under these constraints.

As usual, we compute the model’s likelihood by integrating
over the Gaussian latent variables zi and z̃j of the labeled
and unlabeled examples. We denote the region of integra-
tion by:

Ω =

{
(z1, z2, . . . , zn, z̃1, z̃2, . . . , z̃m)

∣∣∣∣ (S1)

yizi ≥ 1 for i=1, . . . , n,

|z̃j | ≥ 1 for j=1, . . . ,m,

1

m

m∑
j=1

sign(z̃j) ∈ [µ̃min, µ̃max]

}
,

where the last three lines express the model’s large-margin
and class-balancing constraints. The (unregularized) likeli-
hood of the model is given by the integral:

PΩ(Θ) =

∫
Ω

n∏
i=1

P (zi|xi,Θ) dzi

m∏
j=1

P (z̃j |x̃j ,Θ) dz̃j

(S2)
More concretely, substituting the Gaussian priors for the
latent variables into this expression, we obtain:

PΩ(Θ) =

∫
Ω

n∏
i=1

e−
1
2 (zi−ξi)2

√
2π

dzi

m∏
j=1

e−
1
2 (z̃j−ξ̃j)2

√
2π

dz̃j ,

(S3)
where ξi = w · xi + b and ξ̃j = w · x̃j + b denote, re-
spectively, the linear scores of the labeled and unlabeled
examples.

The regularized log-likelihood of the model, with both
large-margin and class-balancing constraints, is given by:

Lbal
ss (Θ) = logPΩ(Θ)− λ

2
‖w‖2. (S4)

We use ẑj = E[z̃j |{x̃k, ỹk 6= 0}mk=1, µ̃ ∈ [µ̃min, µ̃max],Θ]
to denote the posterior means of the latent variables for the
model’s unlabeled examples. From eq. (S3), we see that
we can obtain these means by the method of differentiating
under the integral sign:

ẑj =
∂

∂ξ̃j

[
Lbal

ss (Θ)
]

+ ξ̃j . (S5)

The particular formulation of this result in eq. (25) follows
from the decomposition of the model’s log-likelihood in
eq. (18).

S2 Proof of the Lyapunov condition

In Section 3 of the main paper, we use a Lyapunov cen-
tral limit theorem (Billingsley, 1995) to approximate the
intractable posterior distribution in eq. (19). The theorem
requires the Lyapunov condition, and here we provide a
proof of the condition in our setting.

To begin, consider a sequence of independent (but non-
identical) random variables {Y1, Y2, . . . }, each with finite
mean µi and variance σ2

i . The Lyapunov condition requires
that certain higher moments of these variables exist; it also
bounds their rate of growth. In particular, for some δ > 0,
the condition requires that:

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Yi − µi|2+δ

]
= 0, (S6)

where sn=
(∑n

i=1 σ
2
i

)1/2
. The Lyapunov condition is suf-

ficient to prove a central limit theorem for independent but
non-identical random variables. In particular, if the condi-
tion is met, it follows that:

1

sn

n∑
i=1

(Yi−µi)
d−→ N (0, 1);

this is a generalization of the standard central limit theorem
for sums of i.i.d. random variables.
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Figure S1: Histogram of the mean of the sampled labels.
See text for details.

Next we verify the Lyapunov condition for the simple case
of binary random variables Yi ∈ {+1,−1} with means µi
and variances σ2

i = 1−µ2
i . In this case it is straightforward

to show that:

E
[
|Yi−µi|4

]
= σ2

i (4− 3σ2
i ) ≤ 4σ2

i . (S7)

Now consider the ratio in eq. (S6) for the choice δ = 2.
From the upper bound in eq. (S7), it follows at once that:

0 ≤ 1

s4
n

n∑
i=1

E[|Yi − µi|4] ≤ 4∑n
i=1 σ

2
i

. (S8)

Note that as n→∞, the denominator on the right hand side

increases without bound as long as some finite fraction of
the variables Yi have non-zero variance. Under this very
weak condition, it follows at once that the ratio in eq. (S6)
vanishes in the limit n→∞.

In Section 3 of the main paper, we apply the Lyapunov cen-
tral limit theorem to the independent binary random vari-
ables ỹj ∈ {−1,+1}. These variables store the missing la-
bels of unlabeled examples; their posterior means and vari-
ances are given by eqs. (20–21). Note that all the variances
are strictly greater than zero. Thus the Lyapunov condition
also holds in this case.

S3 Empirical validation of the Lyapunov
central limit theorem

Our experiments on EMBLEMbal
ss rely on a Gaussian ap-

proximation from the Lyapunov central limit theorem.
How accurate is this approximation? To investigate this
question, we drew samples of the missing labels {ỹj}mj=1

from the posterior distributions p(ỹj |xj , ỹj 6= 0,Θ) on the
ccat data set. Fig. S1 shows a histogram of the means
1
m

∑m
j=1 ỹj from 10000 repeated trials of this stochastic

simulation; in the same plot, the dashed line shows the
Gaussian approximation from the central limit theorem.
The overall match is excellent.
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