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Abstract

Bayesian matrix factorization (BMF) is a popu-
lar method for collaborative prediction, because
of its robustness to overfitting as well as of be-
ing free from cross-validation for fine tuning of
regularization parameters. In practice, however,
due to its cubic time complexity with respect
to the rank of factor matrices, existing varia-
tional inference algorithms for BMF are not well
suited to web-scale datasets where billions of
ratings provided by millions of users are avail-
able. The time complexity even increases when
the side information, such as user binary im-
plicit feedback or item content information, is in-
corporated into variational Bayesian matrix fac-
torization (VBMF). For instance, a state of the
arts in VBMF with side information, is to place
Gaussian priors on user and item factor matri-
ces, where mean of each prior is regressed on
the corresponding side information. Since this
approach introduces additional cubic time com-
plexity with respect to the size of feature vectors,
the use of rich side information in a form of high-
dimensional feature vector is prohibited. In this
paper, we present a scalable inference for VBMF
with side information, the complexity of which
is linear in the rank K of factor matrices. More-
over, the algorithm can be easily parallelized on
multi-core systems. Experiments on large-scale
datasets demonstrate the useful behavior of our
algorithm such as scalability, fast learning, and
prediction accuracy.
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1 INTRODUCTION

Matrix factorization refers to a method for uncovering a
low-rank latent structure of data, approximating the data
matrix as a product of two factor matrices. Matrix factor-
ization is popular for collaborative prediction, where un-
known ratings are predicted by user and item factor ma-
trices which are determined to approximate a user-item
matrix as their product [1, 2, 3, 4, 5, 6]. Suppose that
X € R/ is a user-item rating matrix, the (4, j)-entry
of which, Xj;, represents the rating of user ¢ on item
j. Matrix factorization determines factor matrices U =
[wi,...,ur] € REXI and V' = [vy,...,v;5] € REXJ
(where K is the rank of factor matrices), to approximate

the rating matrix X by U ' V:
X~U'V. M

A popular approach is to minimize the regularized squared
error loss defined as

> (X =l v)? + Al + lvs]1%)]
(1,7)€Q

@

where €2 is a set of indices of observed entries in X, and
A is the regularization parameter. The problem (2) can be
efficiently solved by alternating least sqaures or stochas-
tic gradient descent methods [6, 7, 8], and parallelization
of these methods are recently developed [9, 10, 11, 12].
However these approaches are prone to overfitting on the
training data, hence require careful tuning of meta parame-
ter such as regularization parameter, learning rate, and the
number of iteration.

Bayesian treatment of matrix factorization successfully al-
leviates the overfitting problem by integrating out all model
parameter, thus allowing for complex models to be learned
without requiring much parameter tuning [2, 13, 3, 14, 15,
16]. In addition, Bayesian matrix factorization (BMF) eas-
ily incorporates side information such as user binary im-
plicit feedback and item content information by placing
Gaussian priors on user and item factor matrices, where
mean of each prior is regressed on corresponding side in-
formation [17, 18].
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The time and space complexity of VBMF depends on the
mean-field assumption for variational distributions. When
variational distributions are assumed to be matrix-wise in-
dependent, VBMF requires cubic time and quadratic space
complexity with respect to K, existing variational infer-
ence algorithms for BMF are not well suited to web-scale
datasets where billions of ratings provided by millions of
users are available. When side information is incorporated
into VBMEF, it requires additional cubic time and quadratic
space complexity with respect to the size of feature vec-
tors formed by side information [18]. Thus, the use of rich
side information in the form of high dimensional feature
vector is prohibited. Assuming that variational distribu-
tions fully factorize to satisfy element-wise independence,
a naive implementation of coordinate ascent algorithm re-
quires quadratic time complexity with respect to K to up-
date variational posterior means in element-wise fashion.

In this paper, we also assume that variational distributions
fully factorize, but present a scalable algorithm for VBMF
with side information, the time complexity of which is lin-
ear in K to update variational posterior means in element-
wise fashion. Regression on side information also requires
only linear time complexity with respect to the number of
nonzero elements in feature vectors provided by side in-
formation. In addition, the proposed algorithm is easily
parallelized on multi-core systems. Experiments on large-
scale datasets (MovieLens10M, Douban, Netflix, and Ya-
hoo! Music) with various side information (binary implicit
feedback, neighborhood, social network, movie contents,
music taxonomy) demonstrate the useful behavior of our
algorithm such as scalability, fast learning, and prediction
accuracy.

2 METHOD

In this section, we present our main contribution, a scalable
algorithm for VBMF with side information, whose graphi-
cal representation is shown in Fig. 1.

2.1 Model

VBMF with side information assumes that the observed
data X;; is generated by
Xij = 'LLZT’UJ' + €ij, (3)

for (i,7) € €, where €2 is a set of indices of observe
entries in X. The uncertainty in the model is absorbed
by the noise e;; which is assumed to be Gaussian, i.e.,
eij ~ N(ei; |0,771) where 7 is the precision (the inverse
of variance). Thus, the likelihood is given by

p(X|U,V, 1) = H N (X |uf v, 77h). 4)
(4,4)€Q
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Figure 1: A graphical model for VBMF with side informa-
tion.

Suppose that side information is given in the form of fea-
ture matrices F = [fy,....f;] € RM™* and G
[91,--,9;] € RNV*/ where f, and g are feature vectors
related with user ¢ and item j respectively. VBMF with
side information assumes that factor matrices U and V' are
generated from the side information via the linear regres-
sion,

U = A'F+EY, 5)
V = B'G+E", ©)
where A = J[ai,...,ax] € RM*K and B =
[b1,...,br] € RVN*K are regression coefficient matrices.

More precisely, Gaussian priors are placed on user and item
factor matrices, where mean of each prior is regressed on
corresponding side information:

p(UJA, F,a) N(ugi |ag fiy00t), (7)
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Finally Gaussian priors are placed on regression coefficient
matrices A and B:

p(Al®) ©)
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with hyperparameters ¢, .

2.2 Variational Inference

We approximately computes posterior distributions over
factor matrices U,V and regression coefficient matrices
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Table 1: Variational distributions and corresponding updating rules are summarized when matrix-wise independence (13)
is assumed. In addition, the space and time complexity for updating rules are also summarized. §2; is a set of indices j for
which X;; is observed, diag(c) is a diagonal matrix with diagonal entries {cy }, I s is the identity matrix with dimension
M, and Uy, € R is the k" row vector of U.

Variational distributions | Updating rules Space complexity | Time complexity
o(U) A = (diag(a) + 750, (025 +AY)) o ik + k) QIK? + [K
=TI N(wifw, AY) | @ = AL (dag(a) AT F, + 75 0o, X7 )
a(V) AY = (diag(ﬁ) +7 Yo, (@ + A;%))fl, J(K + K?) QK2 + JK?
= [1y N[5, A9) | 3, = A] (ding(8)BT g, + 75,00, Xi1)
q(A) k= (mIM +akFFT)_1, K(M + M?) K(IM + M?3)
= [T Marlan A7) | @ = A7 (aFT; )
q9(B) A} = (‘PkIN + ﬁkGGT) o K(N + N?) K(JN + N?®)
= IS, NoifBr A7) | B = AL (B.GV )

A, B by maximizing a lower-bound on the marginal log-
likelihood. Let Z be a set of all latent variables:

Z={U,V,A, B). (11)
The marginal log-likelihood log p( X)) is given by
logp(X) = log [ p(X, 2)dz
(X, Z)
> Z)log ———dZ
- / UZ)log a(2)
= Fl(a), (12)

where Jensen’s inequality was used to obtain the varia-
tional lower-bound F(q) and q(Z2) is variational distribu-
tion.

In our previous work on VBMF with side information [18],
variational distributions are assumed to be matrix-wise in-
dependent as in VBMF [2]

q(2)=q(U,V,A,B) =q(U)q(V)q(A)q(B).

The free-form optimization results in products of multivari-
ate Gaussian distributions as summarized in Table 1. Nu-
merical experiments with MovieLens datasets showed that
prediction accuracy can be significantly improved by incor-
porating user demographic information and movie genre
information.

13)

In practice, however, due to the cubic time and quadratic
space complexity with respect to K, the variational infer-
ence algorithms under matrix-wise independence assump-
tion are not well suited to web-scale datasets billions of rat-
ings provided by millions of users are available. To make
matter worse, the use of rich side information in the form
of high dimensional feature vector (e.g. M, N > 10000)
is prohibited because of cubic time complexity with respect
to M and N.
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2.3 Scalable Algorithm

Instead of the matrix-wisely factorized variational distribu-
tions (13), we consider fully factorized variational distribu-
tions which satisfies an element-wise independence,

qU,V,A B) = (14)

1T e TT a(ors) T T aCamn) T T a(onr)-
k,i k,j m,k n,k

The free-form optimization results in products of univariate
Gaussian distributions:

K I
q(U) = H H/\/(Uki|ﬂki, Ski)>

k=1i=1

K J
q(V) =[] [T N (ve;ons, s3).

v (15)
Q(A) = H HN(amk|amk73;lnk')v

m=1k=1

N K ~
9(B) = [T TT NV ®nklbur, sh)-

n=1k=1

We compute the variational lower-bound F(q):

F(q) = Eq {logp(X|U, V)
+logp(U|A, F) +logp(V|B,G)
+logp(A) +logp(B) —logq(U,V,A,V)},

where E,{-} denotes the statistical expectation with respect
to q(U,V, A, B) that is of the form (15). Invoking the
model (4) with prior distributions (7), (8), (9) and (10) as
well as the fully factorized variational distribution (15), we



Scalable Variational Bayesian Matrix Factorization with Side Information

calculate F(q) as

S A Y AN,

Flg) =
(i,j)eQ k=1 i=1 k=1j=1
N K
+ Z Z mk + Z nk’ (16)
m=1k=1 n=1k=1
where
-Fij ]Eq {logp(Xw\U,V)}
1
= —I(R?‘ +Wiy) = 5 log(2n7™),
K
Rij = Z k:zvk];
K
Wi = Z(ﬁiﬁz]’ +?§j8%i + S1iShi)s
=
v = Eq{logp(urilar, f;) —logq(uw:)}
o M
== _7k [(ukl - a;fl)Q + s}ittl + Z S;lnkf,’%”]
m=1
1 1
+§ log(sg;ar) + >
v = Eq{logp(vk;|br,g;) —loga(vi;)}
Br |, T v
= 5 (Tkj — b g;)? + si; + Z Snidn
n=1
1 1
+§ log(sy; Bk) + >
ok = Eg{logp(ame) —log q(amr)}
P 1 a
= ( mk T Smp) + 510g(5mk¢k) +5
Fh = Ey {logp( k) — 1log q(bnk) }
_ Pk 1 1
= 5 (bnk +sh,) + 3 log(shrr) + B

The updating rules for variational parameters can be ob-
tained by setting derivative the variational lower-bound
(16) to zero. For example, in the case of q(ug;), the up-
dating rules for variance and mean are given by

st = (a+7 Y (O +s1,)) (17)
JEQ;
Ui = sp(on@l Fi+7 Y (Xij— Y WwiTr)Thj),

JEQ; k'#k

where (Q; is a set of indices j for which X;; is observed.
Since updating of y; requires O(|€2;| K), and similarly up-
dating Ty,; requires O(|€2;|K’), the time complexity for up-
dating all variational posterior means of factor matrices is
quadratic with respect to K:

K I K J
DD UK YD IIK
k=1 i=1

k=1 j=1

O (2QK?).
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Although this naive implementation requires quadratic time
complexity with respect to K, we can efficiently reduce
the time complexity to linear with a simple trick. Let
Ry = Xij — S0, Upix; denote the residual on (i, )
observation. With the residual 12;;, the updating rule (17)
can be rewritten as

_ u _T =
Ui = Sp | away fi+7 E (Rz’j'f‘ukivkj)ﬂkj

JEQ,

and it requires constant time complexity O(|€);|) with re-
spect to K. When 7y is changed to @), R;; can be easily
updated to R;; for all j € §; by:

R;j =R;; — (ﬂ;ﬂ — Hki)ﬁkj- (18)
Now time complexity per iteration (including updating of
variational posterior variances and residuals) is reduced to

linear with respect to K:

= 0 (6|2/K). (19)

ii3|9|+ZZ3Q | =

1i=1 k=1j=1

Using the similar idea, variational posterior means of re-

gression coefficient matrices can be efficiently updated. Let
== x| . ..

R" =U—A F denote the residual on the variational pos-

terior mean U. With the residual R", the updating rules for

s& 1 and @), can be written as

a
mk

-1
(¢r + arllFnll®)
Sy (R, + amka)Fla

(20)
2y

S

Qmk

where RY € R is the k" row vector of R" and F,,, €
R“I is the m*" row vector of F. When @y, is updated to
R} is updated to R“

mk’

=R} — (@, — Gmr) Fom.- (22)

Note that updating s , and @, takes O(3||Fy,||o), where
|| - || denotes the Ly norm which equals to number of
non-zero elements. Similarly updating s, and b, takes
O(3||Gnllo), hence overall time complexity for updating
variational posterior variances and means {S®, A, S, B}

of regression coefficient matrices is linear in the number of
nonzero elements in feature matrices:

M K N K

0 <Z Y 31 Fnlo+ > 31Gullo
m=1 k=1

K).

n=1k=1
=0 @B([IFllo + 1Gllo)
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Algorithm 1 VBMFSI-CA: linear complexity learning al-
gorithm for variational Bayesian matrix factorization with
side information. VBMFSI-CA can be easily parallelized
in column-by-column manner.

1: Initialize U, S*, V, S*, A, §%, B, S°.
»R=X-U'V,

3 R'=U-AF, R=V-B G
4: for t=1...7T do
6: parallelfor i =1,...,1 do
7: for k=1,...,K do
8: & up;
-1
9: s — (ak + szeﬂi (@ij + SZj))
10: 0+ (%E/Ifi + szeﬁi (Rij +Hki@kj)§kj)
11: Ui — Szi 0
12: for j € Q; do
13: Rij — Rij — (ﬂki — f)@kj
14: end for
15: end for

16:  end parallel for

18: parallelfor j=1,...,J do
19: for k=1,...,K do
20: § Uy
-1
2L Skj € (516 +7 Yieq, (@i + 371&))
22: 0+ (5kagj T ieq, (Rij + ﬂkﬁkj)ﬂki)
23: Vj < SZj 0
24: fori € 2; do
25: Rij — RZJ — ﬂki(ﬁkj - f)
26: end for
27: end for

28:  end parallel for

Our linear time complexity learning algorithm for VBMF
with side information, which is referred in to as VBMFSI-
CA in this paper, is summarized in Algorithm 1. The space
complexity of VBMFSI-CA is also linear with respect to
K because we only have to save the variational posterior
means and variances instead of covariances. VBMFSI-CA
is a coordinate ascent method, where a single variational
posterior parameter or hyperparameter is updated at a time
while keeping others fixed. The convergence of coordinate
ascent method is guaranteed when the the solution for each
coordinate is uniquely attained [19] and VBMFSI-CA ful-
fills this condition. Note that parallelization can be easily
done in a column-by-column manner because each column
of variational parameters {S",U,S",V,S" A, S* B}
can be updated independently from the updates of other
columns.

Our approach bases on the element-wise independence
assumption for variational distributions which is much

30: parallelfor k=1,..., K do

31: for m=1,...,M do

32: & Qmp;

33: EL (¢k+akHF 1)

34: amk — 8% pap(RY + GmiFn VET
35: RE <+ Rk (@i — &) Fm

36: end for

37:  end parallel for

39: parallelfor k. =1,..., K do

40: for n=1,...,N do

41; £ by

42: S?Lk — ((pk + ﬁkHGnHQ)_l

43: Bnk — szkﬁk(Rz -‘rgnan)GZ
44: R} < R} — (bnr — &Gy,

45: end for

46:  end parallel for

47. ek Update hyperparameters *% sttt/
48 T [Q/ Z(z g>eQ(RQ + Wij)

49: for k=1,.

S0: g L -
Z [Um—akf + spi + ngnkffru]
i=1 J m=1

51: 5
Z l Vkj — bk gJ 2y Skt Z snkgm]
i=1 —

52: ¢k(—M ( m=1 mk+smk)

53: v < N/ ( ne1 nk + snk)

54:  end for

55: end for

stricter than matrix-wise independence assumption, hence
there will be an loss in prediction accuracy. However our
experimental results confirmed that the element-wise inde-
pendence assumption does not sacrifice the prediction ac-
curacy. We empirically observed that variational posterior
covariances in (13) are almost diagonal, so it looks like that
information losses due to the element-wise independent as-
sumption is not critical, although we cannot theatrically
guarantee it. In fully observed case, there is an interest-
ing theoretical results [20] but it cannot be applied in the
presence of missing values.

3 RELATED WORK

3.1 Matrix Factorization with Side Information

We briefly review several matrix factorization mod-
els which incorporates side information. Matrix co-
factorization is one of an efficient ways to exploit the side
information. Matrix co-factorization jointly decomposes
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multiple data matrices, where each decomposition is cou-
pled by sharing some factor matrices [21, 22]. For example,
rating matrix X, user side information matrix F' and item
side information matrix G are jointly decomposed as

F=A'U+E/, X=U"V+E*, G=B'V + EY,

where factor matrices U and V are shared in the first two
and last two decompositions respectively, and E/, E®, EY
represents Gaussian noise which reflect uncertainties. Re-
cently Bayesian treatment of matrix co-factorization was
developed, where the inference was performed using a
sampling method [23] and the variational method [24, 25].

There are two different approaches to incorporate the side
information with regression in Bayesian matrix factoriza-
tion framework [26, 17]. In the first approach [26], the re-
gression coefficient and side information are augmented in
factor matrices such that the rating matrix X is estimated
by the sum of the collaborative prediction part and regres-
sion part against side information:

X

.
[UTATFT] [VTGTBT} L E"
U'V+A'G+F'B+ E”.

On the other hand, Regression-based Latent Factor Model
(RLFM) [17] assumes that the user and item factor matri-
ces are generated from the side information via the linear
regression,

U=A"F+E", V=B'G+E", (23)
and then rating matrix X is generated by (1). Recently
RLMF is generalized to hierarchical Bayesian matrix fac-

torization with side information [18].

It was hard to directly compare the effectiveness of previ-
ous three different modelings for side information, because
each model was trained by different inference algorithm
such as Markov Chain Monte Carlo [26], Monte Carlo
Expectation Maximization [17], and variational method
[24, 25, 18]. The experimental results in [18], where all
discussed models are trained by variational method for fair
comparisons, showed that the third approach is the most
promising way to incorporate side information in both cold
and warm start situation. Note that our work also belongs
to this third approach. All discussed methods assumed that
the side information is given in form of the predefined fea-
ture vector. Recently a general functional matrix factor-
ization which automatically constructs the feature function
has been proposed [27].

3.2 Optimization

In the perspective of optimization techniques, our work is
closely related with [8], where similar idea is used to re-
duce the time complexity of ALS algorithm. The trick that
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reuses the residuals on the observation and efficient updat-
ing of them by (18), is a key point of reducing the time
complexity from quadratic to linear and it was presented in
[8]. Note that computational complexity for optimizing the
objective function of weighed trace norm regularized ma-
trix factorization (2) and the variational lower-bound from
the fully factorized variational distribution (16) via coordi-
nate ascent method is similar:

O4|QK) vs. O(6QK).

However the benefit from the extra small effort is crucial:
more accurate model is obtainable without tuning of regu-
larization parameter.

Similar to our VBMFSI-CA, the learning algorithm for
VBMF in [13], which is referred to as VBMF-GA in this
paper, also considers the fully factorized variational dis-
tribution. VBMF-GA updates variational posterior vari-
ances {S", S} and hyperparameters {7, o, 3} by fixed-
point rules as in VBMFSI-CA, however updates variational
posterior means {U, V' } by scaled gradient ascent method,

_ _ FPF\ T ac

Ug; < U+ 7 % ﬁ’

_ _ ?FN\ T ac

Vgj < Vg +7 azﬁkj 5@@ 5 24)

where F is the variational lower-bound, 7 is a learning rate,
and diagonal part of the Hessian matrix is used for scal-
ing with control parameter . The parameter v allows the
learning algorithm to vary from standard gradient ascent
(7 = 0) to diagonal Newton’s method (v = 1). VBMF-GA
also takes linear space and time complexity but it requires
tuning of hyperparameters 1 and . In addition, empiri-
cal results showed that learning speed is slower than our
VBMFSI-CA.

4 NUMERICAL EXPERIMENTS

4.1 Datasets and Side Information

We performed experiments on four large-scale datasets
(MovieLens-10M!, Douban?, Netflix?, and Yahoo! Mu-
sic*) with various side information (binary implicit feed-
back, neighborhood, social network, movie contents, and
music taxonomy). Table 2 presents the statistics of these
four datasets.

Binary implicit feedback: One of the lesson learnt from
the Netflix Prize competition is an importance of integrat-
ing implicit feedback into models [28, 29]. For a dataset

"http://www.grouplens.org/datasets/movielens
“https://www.cse.cuhk.edu.hk/irwin king/pub/data/douban
*http://www.netflixprize.com

*http://kddcup.yahoo.com
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Table 2: Statistics of datasets.

Dataset 1] I J ‘I%l (%)
MovieLens 10M 69,878 10,677 1.34
Douban 17M 129,490 | 58,541 0.22
Netflix 100M 480,189 17,770 1.18
Yahoo! 263M | 1,000,990 | 624,961 0.04

such as the Netflix, the most natural choice for implicit
feedback would be movie rental history, which tells us
about user preferences without requiring them to explic-
itly provide their ratings. For other datasets, browsing or
purchase history could be used as implicit feedback. Al-
though such data is not available to us for experiments, we
alternatively used the binary indicator matrix which indi-
cates whether the user rates the movie as implicit feedback.
In our experiments, we used the normalized binary implicit
feedback as the user side information F' € R *! defined

as
o= { YV
me 0

if (i,m) € Q,

; 2
otherwise, (25)

where the dimension of feature M is equal to the number
of item [V, and each feature vector f, is normalized to unit
length. If we incorporate the normalized binary implicit
feedback feature (25) with our user generative model (5),
then user 7 is modeled as

T
Zjeﬂi Aj

V19l

where 4; € R X is the ;' row vector of A. Note that
this user modeling is equivalent to the one used in SVD++.

u, = A'f,+el= + e,

Neighborhood: The neighborhood-based approach is one
of the primary method for recommendation system. In
[29], the item-based neighborhood model was integrated
with matrix factorization and showed good prediction ac-
curacy. In our experiments, the item-based neighborhood
information is incorporated by defining the item feature
matrix G € RV*/ as

CnilZ;
o= { 1%

0

where dimension of feature N is equal to the number of
item J, cy; is the similarity between two items n and j,
Z; is the appropriate normalizer which makes unit length
g;, 0 is the threshold for determining the neighborhood,
and Pearson correlation coefficient is used as the similarity
criterion [30]. With neighborhood feature (26), item 7 is
modeled as

if Cnj Z 9,

otherwise, (26)

Blg;+el= ) guB, +ei,
nE’I’j

v; =
where T ; is the set of indices n for which g,,; > 0. Note

gn; has the positive value only if item n is the neighbor-
hood of item j.
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Social network: Based on the intuition that users’ social
relations can be employed to enhance the recommender
system, several social recommendation methods have been
proposed [31, 32, 33, 34, 35]. In our experiments, the social
network information is incorporated by defining the user
feature matrix F € RM*I a5

f __{ CmilZi

0
where dimension of feature M is equal to the number of
user I, (m, 1) € T denotes that user m is the friend of user
1, Cm; 18 the similarity between two users m and ¢, Z; is the
appropriate normalizer which makes f, to unit length.

if (m,7) € " and ¢;,; > 6,

otherwise, 27)

Movie content: MovieLens-10M dataset provides the
genre information of the movies. We extend the content
information by collecting the director, actor, and tag infor-
mation from the IMDB. The extended content information
consists of 19 genres, 1710 directors, 35779 actors, and
5294 tags. This movie content information is encoded in
binary valued vector with dimension N = 42802 and then
normalized to unit length.

Music taxonomy: A distinctive feature of the Yahoo! Mu-
sic dataset is that user ratings are given to entities of four
different types: tracks, albums, artists, and genres. The
majority of items are tracks (81.15%), followed by albums
(14.23%), artists (4.46%), and genres (0.16%) [36]. In ad-
dition, items are tied together within a taxonomy. That is,
for a track we know the identity of its album, performing
artist and associated genres. Similarity we have artist and
genre annotation for the albums. There is no genre informa-
tion for artists, because artists may switch between many
genres in their career. This taxonomy information is en-
coded in normalized binary valued vector with dimension
N = 117789, which equals to the sum of the number of
albums, artists, and genres.

4.2 Learning Speed

We compare our learning algorithm for VBMF with side
information, which is referred in to as VBMFSI-CA in this
paper, with three learning algorithms for VBMF.

VBMF-CA: This is a reduced version of VBMFSI-CA,
where side information is not incorporated.

VBMF-BCA: The variational lower bound from the
matrix-wisely factorized variational distributions is opti-
mized by block coordinate ascent method [2]. The time
complexity of VBMF-BCA is cubic with respect to K.

VBMF-GA: The variational lower bound (16) is optimized
by gradient ascent method [13]. The time complexity of
VBMF-GA is linear with respect to K. We followed the
same adaptation rule for learning rate 7 and setting of the
scaling parameter v = 2/3 presented in [13] for fair com-
parison.
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Figure 2: Comparison between VBMFSI-CA, VBMF-CA,
VBMF-BCA, VBMF-GA on the Netflix dataset with K =
50: (a) Number of iteration vs. RMSE, (b) Time vs. RMSE.
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We do not compared the existing learning algorithm for
VBMF with side information proposed in [18], which uses
similar updating rules described in Table 1, because it can’t
handle the side information in the form of high dimensional
feature vector (e.g. M, N >> 10000). We used a quad-core
Intel(R) core(TM) i7-3820 @ 3.6GHz processor and 64GB
memory for the comparison. All algorithms were imple-
mented in Matlab2011a, where main computational mod-
ules are implemented in C++ as mex files and parallelized
with the OpenMP library. °

For the Netflix dataset, we trained the VBMF model with
four algorithms, where rank K was set to 50. In the case
of VBMFSI-CA, the binary implicit feedback was used for
side information. Fig. 2-(a) shows the comparison of the
number of iteration versus test RMSE for the four learn-
ing algorithms. In the perspective of the number of iter-
ation, VBMFSI-CA is the best, VBMF-GA is the worst
and VBMF-BCA (RMSE=0.9000) is slightly better than
VBMF-CA (RMSE=0.9002). However the time per iter-
ation of each algorithm is quite different: 158 seconds,
70 seconds, 66 minutes, and 19 seconds for VBMFSI-
CA, VMBF-CD, VBMF-BCA and VBMF-GA respec-
tively. Hence we also compare the four learning algorithm
in the perspective of training time as shown in Fig. 2-
(b). After factoring the time per iteration, VBMF-GA con-
verges faster than VBMF-BCA but it usually finds bad lo-
cal solution. Our VBMFSI-CA and VBMF-CA clearly out-
performs VBMF-GA and VBMF-BCA both in the learning
speed and the prediction accuracy. Especially VBMFSI-
CA finds the most accurate model by incorporating the bi-
nary implicit feedback information and its additional com-
putational cost is acceptable because it is linear in the num-
ber of nonzero elements in feature matrix, that is almost
equal to the number of observed ratings (|| F||o =~ |£2|).

4.3 Effect of Side Information

We trained VBMFSI-CA for each dataset, where K = 50
and the maximum number of training iteration was set to
100. We performed 5-fold cross-validation for Douban

3Source code: http://mlg.postech.ac.kr.com/~karmal3
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Table 3: Test RMSE and time per iteration on different

datasets with various kinds of side information.

MovieLens 10M, r,,

RMSE | % Improvement | Time (s)
none | 0.8582 0.00% 5.3
C 0.8553 0.34% 5.5
B 0.8455 1.48% 8.2
B,C | 0.8444 1.61% 8.4
Douban, 5-fold cross-validation
RMSE | % Improvement | Time (s)
none | 0.6913 0.00% 17
S 0.6894 0.30% 18
B 0.6856 0.84% 24
Netflix, probel0
RMSE | % Improvement | Time (s)
none | 0.9002 0.00% 70
N 0.9000 0.02% 80
B 0.8968 0.38% 158
B,N | 0.8944 0.64% 167
Yahoo! Music, validation (not test)
RMSE | % Improvement | Time (s)
none | 22.0313 0.00% 237
T 21.8808 0.68% 242
B 21.7045 1.48% 524
B, T | 21.5673 1.87% 531

dataset and used pre-defined train/test split for others. As
shown in Table 3, significant improvement is achieved
when side information is included, where B, N, S, C, and
T denote the binary implicit feedback, neighborhood, so-
cial network, movie contents, and music taxonomy respec-
tively. Especially, the binary implicit feedback gave the
most effective result.

S CONCLUSIONS

We have presented a scalable algorithm for VBMF with
side information, the time complexity of which is linear in
K to update variational parameters in element-wise fash-
ion. Incorporating side information also requires only lin-
ear time complexity with respect to the number of nonzero
elements in feature vectors provided by side information.
In addition, the proposed algorithm is easily parallelized
on multi-core systems. Experimental results on large-scale
datasets with various side information confirmed the useful
behavior of our algorithm such as scalability, fast learning,
and prediction accuracy.
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