
Algebraic Reconstruction Bounds and Explicit Inversion for Phase Retrieval at the Identifiability Threshold

A Algebraic Geometry Fundamentals

A.1 Algebraic Geometry Glossary

We briefly give a glossary of algebraic terms used in the
main corpus. Let K= R or K= C.

Definition A.1. A set X ⊆Kn is called algebraic variety if
there are polynomials f1, . . . , fn variables such that

X= {x ∈Kn : f1(x) = · · ·= fn(x) = 0}.
Definition A.2. The Zariski topology onKn is the induced
topology in which algebraic varieties are open. That is,
Zariski closed sets being finite unions of algebraic vari-
eties, and Zariski open sets the complement. The Zariski
topology on some variety X is the induced relative topol-
ogy.

Definition A.3. An algebraic variety X ⊆ Kn is called ir-
reducible if can not be written as a proper union of al-
gebraic varieties. That is, if X = X1 ∪ X2 for algebraic
varieties X1,X2, then X1 ⊆ X2 or X2 ⊆ X1.

Definition A.4. Let f1, . . . , fm be polynomials in n vari-
ables, let X ⊆ Kn and Y ⊆ Km be algebraic varieties. A
mapping

φ : X→ Y, x 7→ ( f1(x), . . . , fm(x))

is called algebraic map or morphism of algebraic varieties.

Definition A.5. A morphism of algebraic varieties, as
above, is called unramified at x ∈ X and unramified over
φ(x) ∈ Y, if there is a Borel-open neighbourhood U ⊆Kn

(cave: not U ⊆ X), with x ∈ U such that for all z ∈ U ,
if holds that #φ−1φ(x) = #φ−1φ(z). If X is irreducible,
φ is called generically unramified if the points x ∈ X at
which φ is ramified are contained in a proper Zariski
closed subset of X.

Definition A.6. A generically unramified morphism, as
above, with X and Y irreducible, is called birational if
there is a proper Zariski closed subset Z of X such that
f , restricted to X \Z, is bijective.

A.2 Open Conditions and Generic Properties of
Morphisms

In this section, we will summarize some algebraic geome-
try results used in the main corpus. The following results
will always be stated for algebraic varieties over C.

Proposition A.7. Let f : X → Y be a morphism of alge-
braic varieties (over any field). Then, if X is irreducible,
so is f (X). In particular, if f is surjective, and X is irre-
ducible, then Y also is.

Proof. This is classical; suppose the converse, that is,
f (X) = Z1∪Z2 is a proper union of algebraic sets. Then,
using that f is algebraic, and therefore continuous in

the Zariski topology, it follows that X is a proper union
X= f −1(Z1)∪ f −1(Z2) of algebraic sets. This contradicts
X being irreducible, proving the statement by contrapo-
sition.

Theorem 7. Let f : X → Y be a morphism of algebraic
varieties. The function Y→ N, y 7→ dim f −1(y) is upper
semicontinuous in the Zariski topology.

Proof. This follows from [16, Théorème 13.1.3].

Proposition A.8. Let f : X → Y be a morphism of al-
gebraic varieties, with Y be irreducible. Then, there is an
open dense subset V ⊆ Y such that f : U → V , where
U = f −1(V ), is a flat morphism.

Proof. This follows from [15, Théorème 6.9.1].

Theorem 8. Let f : X → Y be a morphism of alge-
braic varieties. Let d,ν ∈ N. Then, the following are
open conditions for y ∈ Y; that is, the sets {y ∈ Y :
condition (*) holds for y} is a Zariski open subset of Y.

(i) dim f −1(y)≤ d.

(ii) f is unramified over y.

(iii) f is unramified over y, and the number of irreducible
components of f −1(y) equals ν.

In particular, if f is surjective, then the following is an open
property as well:

(iv) f is unramified over y, and # f −1(y) = ν.

Proof. (i) follows from [15, Corollaire 6.1.2].
(ii) follows from [16, Théorème 12.2.4(v)].
(iii) follows from [16, Théorème 12.2.4(vi)].
(iv) follows from (i), applied in the case dim f −1(y)≤ 0
which is equivalent to dim f −1(y) = 0 due to surjectivity
of f , and (iii).

Corollary A.9. Let f : X→ Y be a generically unramified
and surjective morphism of algebraic varieties, with Y be
irreducible. Then, there are unique d,ν ∈ N such that the
following sets are Zariski closed, proper subsets of Y (and
therefore Hausdorff zero sets):

(i) {y : dim f −1(y) 6= d}
(ii) {y : f is ramified at y}
(iii) {y : f is ramified at y} ∪ {y : # f −1(y) 6= ν}

Proof. This is implied by Theorem 8 (i), (ii) and (iii), us-
ing that a non-zero open subset of the irreducible variety
Y must be open dense, therefore its complement in Y is
a closed and a proper subset of Y.
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Proposition A.10. Let f : X→ Y be a morphism of alge-
braic varieties, with Y irreducible. Then, the following are
equivalent:

(i) f is unramified over y and # f −1(y) = ν.

(ii) There is a Borel open neighborhood U ⊆ Y of y ∈ U,
such that f is unramified over U and # f −1(z) = ν for
all z ∈ U.

(iii) There is a Zariski open neighborhood U ⊆ Y of y ∈
U, dense in Y, such that f is unramified over U and
# f −1(z) = ν for all z ∈ U.

Proof. The equivalence is implied by Corollary A.9 and
the fact that Y is irreducible. Note that either condi-
tion implies that f is generically unramified due to The-
orem 8 (ii) and irreducibility of Y.

A.3 Real versus Complex Genericity

We derive some elementary results how generic proper-
ties over the complex and real numbers relate. While
some could be taken for known results, they appear not
to be folklore - except maybe Lemma A.12. In any case,
they seem not to be written up properly in literature
known to the authors.

Definition A.11. Let X ⊆ Cn be a variety. We define the
real part of X to be XR := X∩Rn.

Lemma A.12. Let X ⊆ Cn be a variety. Then, dimXR ≤
dimX, where dimXR denotes the Krull dimension of XR,
regarded as a (real) subvariety of Rn, and dimX the Krull
dimension of X, regarded as subvariety of Cn.

Proof. Let k = n − dimX. By [19, section 1.1], X is
contained in some complete intersection variety X′ =
V( f1, . . . , fk). That is ( f1, . . . , fk) is a complete intersec-
tion, with fi ∈ C[X1, . . . , Xn] and dimX′ = dimX, such
that fi is a non-zero divisor modulo f1, . . . , fi−1. Define
gi := fi · f ∗i , one checks that gi ∈ R[X1, . . . , Xn], and
define Y := V(g1, . . . , gk) and YR := Y ∩ Rn. The fact
that fi is a non-zero divisor modulo f1, . . . , fi−1 implies
that gi is a non-zero divisor modulo g1, . . . , gi−1; since
gi · h ∼= 0 modulo g1, . . . , gi−1 implies fi · (h · f ∗i )

∼= 0
modulo f1, . . . , fi−1. Therefore, dimYR ≤ dimX; by con-
struction, X′ ⊆ Y, and X ⊆ X′, therefore XR ⊆ YR, and
thus dimXR ≤ dimYR. Combining it with the above in-
equality yields the claim.

Definition A.13. Let X ⊆ Cn be a variety. If dimX =
dimXR, we call X observable over the reals. If X equals
the (complex) Zariski-closure of XR, we call X defined
over the reals.

Proposition A.14. Let X ⊆ Cn be a variety.

(i) If X is defined over the reals, then X is also observable
over the reals.

(ii) The converse of (i) is false.

(iii) If X irreducible and observable over the reals, then X

is defined over the reals.

Proof. (i) Let k = n − dimXR. By [19, section 1.1],
XR is contained in some complete intersection variety
X′ = V( f1, . . . , fk), with fi ∈ R[X1, . . . , Xn] a complete
intersection. By an argument, analogous to the proof of
Lemma A.12, one sees that the fi are a complete intersec-
tion in C[X1, . . . , Xn] as well. Since the Zariski-closure of
XR and X are equal, it holds that fi ∈ I(X). Therefore,
X ⊆ V( f1, . . . , fk), which imples dimX≤ n−k, and by def-
inition of k, as well dimX≤ dimXR. With Lemma A.12,
we obtain dimXR = dimX, which was the statement to
prove.
(ii) It suffices to give a counterexample: X = {1, i} ⊆ C.
Alternatively (in a context where ∅ is not a variety)
X= {(1, x) : x ∈ C} ∪ {(i, x) : x ∈ C} ⊆ C2.
(iii) By definition of dimension, Zariski-closure preserves
dimension. Therefore, the closure XR is a sub-variety of
X, with dimXR = dimX. Since X is irreducible, equality
XR = X must hold.

Theorem 9. Let X ⊆ Cn be an irreducible variety which is
observable over the reals, let XR be its real part. Let P be
an algebraic property. Assume that a generic x ∈ X is P.
Then, a generic x ∈ XR has property P as well.

Proof. Since P is an algebraic property, the P points of
X are contained in a proper sub-variety Z ⊆ X, with
dimZ � dimX. Since X is observable over the reals, it
holds dimX= dimXR. By Lemma A.12, dimZR ≤ dimZ.
Putting all (in-)equalities together, one obtains dimZR �
dimXR. Therefore, the ZR is a proper sub-variety of XR;
and the P points of XR are contained in it - this proves
the statement.

B Results on Phase Retrieval

B.1 Properties of the Forward Map

In this section we will check that the technical assump-
tions hold in the case of the relevant examples. We start
with introducing notation for two maps which relate the
signal/measurement varieties to projection matrices:

Notation B.1. In the following, we will denote

Υ : Cr×n ×Cr×n→ Pρ(r), (Q, S) 7→Q>S,

ΥC : Cr×n ×Cr×n→ PC(r),

(Q, S) 7→ (Q>Q+S>S,Q>S−S>Q).



Algebraic Reconstruction Bounds and Explicit Inversion for Phase Retrieval at the Identifiability Threshold

The maps Υ and ΥC can be seen to be surjective; as an im-
mediate consequence of this fact, we can relate genericity
of projections to genericity of measurement matrices:

Proposition B.2. Let P,Q ∈ Cr×n be generic matrices.
Then:

(i) Υ (P,Q) resp. ΥC(P,Q) are generic inside Pρ(r)
resp. PC(r)

(ii) Υ (P, P) resp. ΥC(P, P∗) are generic Hermitian matrices
inside Pρ(r) resp. PC(r)

Proof. P,Q ∈ Cr×n being generic, by convention, is equiv-
alent to choosing open dense U1, U2 ⊆ Cr×n. Since Υ and
ΥC are surjective (onto the Hermitian matrices in (ii)),
and as algebraic maps continuous in the Zariski topol-
ogy, the image of U1×U2 (or U1×U∗1) will be open dense
in the image as well.

We now examine the signal and measurement varieties
in more detail:

Proposition B.3. Keep the notations of Section 2.1. For
any r ∈ N, the varieties PC(r) and Pρ(r) are:

(i) irreducible.

(ii) observable over the reals.

(iii) defined over the reals.

In particular, this holds for SC = PC(1) and Sρ = Pρ(1)
as well.

Proof. (i) For PC(r), irreducibility follows from surjectiv-
ity of ΥC, Proposition A.7 and irreducibility of complex
affine space. Similarly, for Pρ(r), the statement follows
from surjectivity of Υ , and Proposition A.7.
(ii) follows from considering the maps ΥC and Υ over the
reals, observing that the rank its Jacobian is not affected
by this.
(iii) follows from (i), (ii) and Proposition A.14 (iii).

Proposition B.4. Keep the notations of Section 2.2.1
and 2.2.2. Assume that S = SC or Sρ. Then φA is gener-

ically unramified for any A ∈ �(Cn×n)γ
�k

. Furthermore,
if P contains S (that is, all rank one signals), then φ is
generically unramified.

Proof. S and P(k) × S are irreducible by Proposition B.3.
By Proposition A.10, it therefore suffices to show that
there exists x in the image of φA or φ such that x does
not ramify - but a generic choice of signal and/or mea-
surement will suffice.

B.2 From Complex to Real Identifiability

Before deriving identifiability statements in the given ter-
minology, we briefly derive results which allow to return
to the original phase retrieval problem 2.1; that is, we
state the principle of excluded middle for real measure-
ments and signals. It implies that the conclusions of our
main theorems 1 and 2 hold for the non-algebraized, real
formulation as well:

Proposition B.5. Write SR := S ∩ (Rn×n)γ and PR :=
(P1 ∩ (Rn×n)γ)× · · · × (Pk ∩ (Rn×n)γ) for their real parts.
Assume that S and P are observable over the reals (as de-
fined in Appendix A.3). Then, the following statements,
about identifying signals Z ∈ S from Tr(Z · A1), . . . , Tr(Z ·
Ak) hold:

(i) If (A1, . . . , Ak) ∈ PR is not generically identifying
(viewed as an element of P), then no signal Z ∈ SR
can be perturbation-stably identified.

(ii) If (A1, . . . , Ak) ∈ PR is generically identifying (viewed
as an element of P), then a generic signal Z ∈ SR can
be perturbation-stably identified.

(iii) If (A1, . . . , Ak) ∈ PR is completely identifying (viewed
as an element of P), then all signals Z ∈ SR can be
perturbation-stably identified.

(iv) If P is not generically identifying, then no signal Z ∈
SR can be perturbation-stably identified by a generic
(A1, . . . , Ak) ∈ PR.

(v) If P is generically identifying, then a generic signal Z ∈
SR can be perturbation-stably identified by a generic
(A1, . . . , Ak) ∈ PR.

(vi) If P is completely identifying, then all signals Z ∈
SR can be perturbation-stably identified by a generic
(A1, . . . , Ak) ∈ PR.

All statements hold when replacing SR by any positive mea-
sure subset S′R such that the Zariski closure of S′R is SR, or
replacing PR by any positive measure subset P′R such that
the Zariski closure of P′R is PR.

B.3 Proofs

Proof of Proposition 2.9

The statement is implied by Proposition A.10.

Proof of Proposition 2.14

The statement follows from Proposition A.10, applied to
the irreducible variety X= Pk × S.
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Proof of Proposition 2.15

Consider the maps

φ : P(k) × S→ P(k) ×Ck,

(A1, . . . , Ak, Z) 7→ (A1, . . . , Ak, Tr(Z · A1), . . . , Tr(Z · An)) ,

ψ : P(k) × S→ P(k), (A1, . . . , Ak, Z) 7→ (A1, . . . , Ak),

π : P(k) × S→ S, (A1, . . . , Ak, Z) 7→ Z .

(i) Consider the set Y = {x ∈ P(k) × S :
φ(x) is identifiable and unramified}. By Proposi-
tion 2.14 Z is a Zariski open set (and possibly empty).
Since ψ is surjective, the set ψ(Y) is therefore an
open subset of P(k), and by construction, describes the
condition (i), therefore proving its openness.

(ii) Keep the notations above, and consider the set-
complement YC of Y in P(k) × S. Since Y is open, YC is
closed, and V :=ψ

�
YC
�

is closed as well. Therefore, the
set-complement VC in P(k) is open. By construction, VC

describes condition (ii), therefore openness of condition
(ii) follows.

Proofs of Theorems 1 and 2

This section contains the technical proofs for Theorems 1
and 2, which are stated in a slightly longer versions for
this purpose.

Theorem 10. For a fixed measurement regime
(A1, . . . , Ak), consider the three cases

(a) A generic signal Z ∈ S is not identifiable from φA(Z).

(b) A generic, but not all signals Z ∈ S, are identifiable
from φA(Z).

(c) All signals Z ∈ S are identifiable from φA(Z).

The three cases above are equivalent to

(a) No signal Z ∈ S is perturbation-stably identifiable
from φA(Z).

(b) A generic, but not all signals Z ∈ S, are perturbation-
stably identifiable from φA(Z).

(c) All signals Z ∈ S are perturbation-stably identifiable
from φA(Z).

Any triple of cases above is furthermore equivalent to

(a) φA is not birational.

(b) φA is birational, but not an isomorphism.

(c) φA is an isomorphism.

In particular, the three cases, in either of the three formu-
lations, are mutually exclusive and exhaustive.

Proof. Mutual exclusivity and exhaustiveness of
(a),(b),(c) follow from the third, algebraic formulation
and elementary logic, once equivalence is established.

We prove equivalence of the first and second triple.
Equivalence of (c) in the first and second triple follows
from the fact that if all signals are identifiable, then all
signals are perturbation-stably identifiable, since S is an
open neighborhood of any signal Z ∈ S. The converse
follows from the fact that perturbation-stably identifi-
able signals are identifiable. Equivalence of (a) and (b)
the first and second triple then follows from the asser-
tion in Proposition 2.9 that the perturbation-stably iden-
tifiable signals form a Zariski open subset of S, and the
perturbation-stable signals are a subset of the identifiable
signals.

We will now prove equivalence of the second and third
triple. For that, note that if φA is birational if and only if
there is Z ∈ S with #φ−1

A φA(Z) = 1, and an isomorphism
if and only if there is no Z ∈ S with #φ−1

A φA(Z) 6= 1.
Proposition 2.9 then establishes the equivalence of the
second and third triple.

Theorem 11. Assume that φ is generically unramified.
Consider the three cases

(a) A generic measurement regime A ∈ Pk is non-
identifying.

(b) A generic measurement regime A∈ Pk is incompletely
identifying.

(c) A generic measurement regime A ∈ Pk is completely
identifying.

The three cases above are equivalent to

(a) A generic measurement regime A ∈ Pk is stably non-
identifying. No measurement regime A ∈ Pk is stably
generically identifying.

(b) A generic measurement regime A∈ Pk is stably incom-
pletely identifying.

(c) A generic measurement regime A ∈ Pk is stably com-
pletely identifying.

Any triple of cases above is furthermore equivalent to

(a) φ is not birational.

(b) φ is birational, and there is no open dense U ⊆ Pk

such that φ is an isomorphism on U × S.
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(c) φ is birational, and there is an open dense U ⊆ Pk

such that φ is an isomorphism on U × S.

In particular, the three cases, in either of the three formu-
lations, are mutually exclusive and exhaustive.

Proof. The proof is analogous to that of Theorem 10.

Proof of Corollary 2.11

This is a direct consequence of Proposition 2.9, using that
by taking Radon-Nikodym derivatives, S-Hausdorff zero
sets are as well probability measure zero sets for any con-
tinuous probability measure.

Proof of Proposition B.5

Statements (i) and (iv) follow already from the defini-
tions, and Proposition 2.15. The other numbered state-
ments are implied by Theorem 9 in the appendix, noting
that all properties above (or their negations) are alge-
braic. The last statement follows from the fact that if a
set V ⊆ SR containing no, generic, or all elements of SR,
the set V ∩S′R contains no, generic, or all elements of S′R,
and the analogue for PR and P′R.

Proof of Lemma 2.19

We prove the statement separately for P(k) being (i)
generically unramified (ii) generically identifying, and
(iii) completely identifying. (i) follows from Theo-
rem 8 (ii). For (ii), the characterization in Theorem 11
yields that is birational. Therefore, there is (A, Z) ∈
P(k) × S above which φ is unramified and for which
#φ−1φ(A, Z) = 1. Since φ remembers A exactly, this
is equivalent to #ϕ−1ϕ(A, Z) = 1; also ϕ is unramified
above (A, Z). We can therefore apply Proposition A.10
to infer that ϕ is birational, which implies the statement
by Theorem 11. (iii) follows in analogy, repeating the
argument for all Z ∈ S.

Proof of Lemma 2.20

We prove the statement separately for P(k) being (i)
generically identifying, and (ii) completely identifying.
Let A1, . . . , Ak be generic inP1, . . . ,Pk; we will treat the Ai
as single matrices. Since z∗Az = 1

2 z∗ (A∗ + A) z, we can as-
sume that the Ai are symmetric/Hermitian and generic.
(i) (A1, . . . , Ak) are generically identifying if for generic
z, one can reconstruct z up to phase/sign from the z∗Aiz.
By definition, there is an invertible matrix S1 such that
U1 = S∗1A1S1 is an orthogonal/unitary projector of rank
ai . Since S1 is invertible, a vector z is generic if and only if
the vector S1 ·z is generic, therefore (A1, . . . , Ak) is gener-
ically identifying if and only if (U1, S∗1A2S1, . . . , S∗1AkS1)
is generically identifying. Since A j , j ≥ 2 was generic,

the matrices S∗1A2S1, . . . , S∗1AkS1 are also generic, and in-
dependent of U1 therefore they can be replaced anew
by generic A2, . . . , Ak. Repeating the argument k times
yields the claim. The proof for (ii) is analogous, noting
that identifiability holds for generic (A1, . . . , Ak), but all
z.

Proof of Proposition 2.22

If suffices to show that no (A1, . . . , An) ∈ (Cn×n)n can be
stably generically identifying. We proceed by contradic-
tion and assume the contrary. Proposition 2.14 then im-
plies that (Cn×n)n is generically identifying, so we may
replace A1, . . . , An by a generic choice in (Cn×n)n. Fixing
z>A1z, . . . , z>Anz yields n equations on z, of degree 2.
By Bezout’s theorem, and using that the Ai are generic,
those equations have 2n solutions. Sign ambiguity leaves
2n−1 
 1 solutions, yielding a contradiction.

Proof of Theorem 3

Note that once we have identifiability for signals S′ =
{zz>, z ∈ Rn} and projectors P′ = S′, we can use Proposi-
tion 2.15 to obtain the statement for the Zariski closure S
of S′ and P of P′. So λ(P)≤ n+1 can be inferred from [4,
Theorems 2.9], and κ(P) = 2n−1 from [4, Theorem 2.2
and Corollary 2.7]. Combined with Proposition 2.22, we
obtain the statement.

Proof of Theorem 4

λ(P)≥ n+1 is implied by Proposition 2.22. κ(P)≥ 2n−
1 is implied by Theorem 3 and the definition of κ. Lower
bounds λ(P) ≤ n+ 1 and κ(P) ≤ 2n− 1 are implied by
combining Theorem 3 and Lemma 2.19. The statement
for orthogonal projectors follows from Lemma 2.20.

Proof of Theorem 5

Taking generic Pi is equivalent to having generic symmet-
ric measurements of rank ri , by Proposition B.2. By the
same argument as in the beginning of Lemma 2.20, we
can thus assume that we have generic Ai of rank ri . The
statement is then implied by Theorem 4 (i) and Proposi-
tion B.5, noting that identifiability of Z = zz> ∈ Rn×n is
equivalent to identifiability of z up to sign.

B.4 Identifiability of Complex Signals

Proposition B.6. Consider identifiability from complex
signals, corresponding to the complex signal variety Sι =
{(x x>+ y y>, y x>− x y>) : x , y ∈ Cn}. For any family of
irreducible varieties Pi ⊆ Cn×n ×Cn×n, i ∈ N, with n ≥ 2,
it holds that κ(P)≥ λ(P), and λ(P)≥ 2n.

Proof. Let φ be the forward map in Problem 2.5.
It holds that dimSι = 2n − 1, therefore the fiber
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φ−1(φ(A1, . . . , Ak, Z)) can be finite only if k ≥ 2n −
1. Since Sι is non-linear, it has degree strictly
bigger than one, implying by Bezout’s theorem that
φ−1(φ(A1, . . . , Ak, Z)) is not finite for k = 2n− 1. There-
fore, λ(P)≥ 2n.

Theorem 12. Consider identifiability from complex sig-
nals S= {(x x>+ y y>, y x>− x y>) : x , y ∈ Cn}, and the
family P= S Then:
λ(P) = 2n, and κ(P)≤ 4n− 4.

Proof. Note that once identifiability for signals S′ =
{(x x> + y y>, y x> − x y>) : x , y ∈ Rn}, and projec-
tors P′ = S′ is established, we can use Proposition 2.15
to obtain the statement for the Zariski closure S of S′ and
P of P′. Thus, λ(P)≤ 2n can be inferred from [4, Theo-
rems 3.4]; the inequality κ(P) ≤ 4n− 4 can be obtained
from [3, section 4]. Combined with Proposition B.6, this
yields the statement.

Theorem 13. Consider identifiability from complex sig-
nals S= {(x x>+ y y>, y x>− x y>) : x , y ∈ Cn}, and the
family Pi := {(Q>Q + S>S,Q>S − S>Q) : S,Q ∈ Cri×n}.
Then:
λ(P) = 2n, and κ(P) ≤ 4n − 4. The result remains
unaltered if the projectors P are restricted to be unitary.

Proof. λ(P) ≥ 2n is implied by Proposition B.6. Lower
bounds λ(P) ≤ 2n and κ(P) ≤ 4n − 4 are implied by
combining Theorem 12 and Lemma 2.19. The statement
for unitary projectors follows from Lemma 2.20.

Proof of Theorem 6

Taking generic Pi is equivalent to having generic symmet-
ric measurements of rank ri , by Proposition B.2. By the
same argument as in the beginning of Lemma 2.20, we
can thus assume that we have generic Ai of rank ri . The
statement is then implied by Theorem 13 (i) and Proposi-
tion B.5, noting that identifiability of (X , Y ) is equivalent
to identifiability of X +ιY = zz∗ ∈ Cn×n, up to phase.


