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Abstract

This paper investigates visual boundary de-
tection, i.e. prediction of the presence of a
boundary at a given image location. We de-
velop a novel neurally-inspired deep architec-
ture for the task. Notable aspects of our
work are (i) the use of “covariance features”
[Ranzato and Hinton, 2010] which depend on
the squared response of a filter to the in-
put image, and (ii) the integration of im-
age information from multiple scales and se-
mantic levels via multiple streams of inter-
linked, layered, and non-linear “deep” pro-
cessing. Our results on the Berkeley Segmen-
tation Data Set 500 (BSDS500) show com-
parable or better performance to the top-
performing methods [Arbelaez et al., 2011,
Ren and Bo, 2012, Lim et al., 2013, Dollár
and Zitnick, 2013] with effective inference
times. We also propose novel quantitative
assessment techniques for improved method
understanding and comparison. We care-
fully dissect the performance of our architec-
ture, feature-types used and training meth-
ods, providing clear signals for model under-
standing and development.

1 Introduction

We consider predicting visual boundaries in natural
images. Martin et al. [2004] give the definition “A
boundary is a contour in the image plane that repre-
sents a change in pixel ownership from one object or

1The work reported was carried out while NH was at
the Gatsby Unit, UCL, UK.
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surface to another.” Detecting such changes is a chal-
lenging problem and significantly different from sim-
ple edge detection: Edge detection, is a low-level tech-
nique to detect an abrupt change in some image feature
such as brightness or colour. In contrast, boundary
detection is involved with detecting abrupt changes in
more global properties, such as texture, and therefore
needs to integrate information across the image. So,
for example, a heavily textured region might give rise
to many edges, but there should be no boundary de-
fined within the region. Although difficult, accurate
detection of boundaries is important as it subserves
many vision tasks including segmentation, recognition
and scene understanding.

Accordingly, there has been considerable interest in
this problem in the computer vision literature. Re-
cent work on boundary detection makes heavy use of
the ground truth provided by the Berkeley Segmenta-
tion Data Set (BSDS) [Arbelaez et al., 2011], where
each of the 500 images was processed by multiple hu-
man annotators. The (deliberately vague) instructions
to the annotators were [Martin et al., 2004]: “Divide
the image into some number of segments, where the
segments represent ‘things’, or ‘parts of things’ in the
scene. The number of segments is up to you, as it de-
pends on the image. Something between 2 and 30 is
likely to be appropriate. It is important that all of the
segments have approximately equal importance.”

In this paper we ask the question to what extent a
general purpose learning architecture such as neural
networks can be used to solve this challenging prob-
lem and we aim to understand which network proper-
ties are critical for good performance. Notable aspects
of our best performing architecture are (i) the use of
complex-cell like “covariance features” [Ranzato and
Hinton, 2010] which depend on the squared response
of a filter to the input image, and (ii) the integration of
image information from multiple scales and semantic
levels via multiple streams of interlinked, layered, and
non-linear “deep” processing. We further propose two
extensions to the commonly used BSDS benchmark
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protocol which provide further insight into strenghts
and weaknesses of different algorithms.

Our results on the Berkeley Segmentation Data Set
500 (BSDS500) show comparable or better perfor-
mance to the top-performing methods gPb [Arbelaez
et al., 2011], SCG [Ren and Bo, 2012], Sketch To-
kens [Lim et al., 2013], and those in Dollár and Zit-
nick [2013]. Additionally, our approach scales effec-
tively with fast prediction times, and avoids several
computationally complex hand-crafted designs which
are commonly used.

The structure of the paper is as follows: We describe
our model and discuss related work in section 2. The
benchmark evaluation protocol is discussed in Sec-
tion 3. Section 4 describes the experiments, including
descriptions of the data set, training procedure, and
performance evaluation. Section 5 provides a sum-
mary and discussion of our main results, and outlines
possible extensions.

2 Methods for Visual Boundary
Prediction

Our network architecture can be conceptually divided
into two parts, the first performs feature extraction,
while the second uses the features for boundary pre-
diction. For the first part we rely on unsupervised fea-
ture learning techniques and in section 2.1 we describe
a variant of the mean-and-covariance restricted Boltz-
mann machine (mcRBM) architecture of Ranzato and
Hinton [2010], and its deep belief net extension, which
we use for this purpose. The learned features are com-
bined with one or multiple read-out layers and the full
network is trained in a supervised manner. This is
described in section 2.2.

2.1 Unsupervised feature learning

The mcRBM-model [Ranzato and Hinton, 2010] is a
generative model for images. The variant we consider
assigns an energy to the joint configuration of visible
units v and hidden units h as follows:
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∑
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where K·f denotes a factor-to-image-units filter for
a factor with index f , and π is a factor pooling
matrix(πjf ≥ 0 ∀ j, f ;

∑
f πjf = 1 ∀ j). M·`

denotes the mean-hidden-unit-to-visible-unit filter for
unit type `. Each of the covariance units hcj and mean
hidden units hm` are associated with biases dj and b`,

respectively. a is the visible unit bias, and σ is a posi-
tive scalar. We simplify the above formulation by set-
ting π to the identity, σ to unity, and the visible unit
bias to zero. We also introduce a pre-learned whiten-
ing basis A2, and pre-process input images to have
zero mean and unit variance.

In our experiments we use diagonally-tiled parameter
sharing, with 8 × 8 receptive fields, stride of 2 units,
and 64/128 (in grey/colour-domain) features of both
kinds per site. Figure I in the appendix provides a
simplified illustration of such a diagonally-tiled convo-
lutional mcRBM (TmcRBM) model instance.

For feature learning in our deep architectures we de-
velop a deep belief network (called the mcDBN) from
the mcRBM, extending it to have an additional layer
of binary hidden units on top, similarly to Dahl et al.
[2010]. We use the same diagonally-tiled convolutional
feature sharing architecture for the additional layer
with a stride of one second layer unit (corresponding
to 8 units in the visible layer). A top-layer hidden
unit layer takes input from a 3×3 region of TmcRBM
(64 + 64/128 + 128) hidden unit stacks under each
of the 4 shifts, containing 512/1024 input ‘channels’
in total. Thus each of the second-layer hidden units
are directly influenced by a 30 × 30-region of visible
units3. We used 512/1024 (in grey/colour-domain)
feature planes, and thus the second-layer has 3 sets
of 512/1024 hidden units, each with their own sets of
weights and biases. Figure II in the appendix shows a
schematic of a diagonally-tiled convolutional mcDBN
(TmcDBN) model instance.

2.2 Supervised boundary prediction

We consider feedforward sigmoidal neural networks for
boundary prediction. The feature planes in first hid-
den layers of our networks are always formed by the ac-
tivation probabilities of the mean and covariance hid-
den units of the TmcRBM. In later hidden layers, for
a feature plane k given input xk, we compute the ac-
tivation of unit zki as

zki = sig(gk +
∑
j

W k
ijx

k
j ), (2)

where W k is the weight matrix, gk a scalar bias, and
sig(z) the logistic sigmoid sig(z) = 1/(1 + e−z).

The output layer has the same dimensionality as the
input image and each pixel i has a corresponding con-
tour unit ui = zout

i . Its activation is interpreted as
2The basis was learned from all 8 × 8 patches in the

training data. Retained dimensions were scaled according
to the inverse of the square root of the associated eigenvalue
of the scatter matrix, similar to ZCA.

33 replicas of 8× 8 filters at all of the diagonal-2-shifts
(6 unit offsets between the first and the last).
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the predicted probability that pixel i is part of a con-
tour. Depending on the architecture, the output layer
receives input from one or more hidden layers in the
network.

We consider three architectures of boundary predic-
tion networks, as shown in Fig. 1. The “shallow” net-
work has only a single layer of hidden units, those
corresponding to the features of the mcRBM model.
The “deep stream” architecture makes contour predic-
tions based on the mcDBN-type hidden units, while
the “two-stream” architecture (see Fig. 1 and III)
uses the connection patterns of both the shallow and
deep streams via skip-layer connections (see e.g. Rip-
ley [1996, page 144] or Sermanet and LeCun [2011]).
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Figure 1: Streams of the Considered Networks. Dots
in a layer denote hidden units, small blocks receptive
fields (no size-consistency). The solid and dashed ar-
rows denote feature-extraction and read-out parame-
ters, respectively.

Importantly we can think of each stream having two
parts: image feature extraction, and hypothesis prop-
agation/read out (solid vs. dashed lines in Fig. 1)4. In
our networks, we use a mirrored connectivity structure
for these two parts. For example, in the shallow net-
works each hidden unit receives input from an 8 × 8
region of visible units, and sends information to an
8 × 8 region of contour units, with the same relative
positioning. Adding an additional encoding layer thus
adds another read-out hidden layer. One reason for do-
ing so is the reduction in the hidden unit grid locations
in the deeper networks. For example for a 142 × 142
input image, there are only 5×5 hidden unit stack posi-
tions at the second hidden layer, for each of the 3 shifts.
In these deeper streams, the number of feature planes
is also applied in an anti-symmetrical fashion, and so
the first and the last hidden layers in the stream have
equal numbers of planes. More complicated structures
could be considered, see i.e. Fig. IV.

4Their boundary is expected to be blurred when
network-wide parameter changes are allowed in training.

The multiple streams are motivated by the need to
capture image information at multiple scales and se-
mantic levels. The shallow networks analyze the input
image very locally, each site being affected by a 14×14
pixel area around it. Such a network is expected to
only detect very local image discontinuities such as
edges. Deeper networks taking input from larger ar-
eas are likely to be needed for distinguishing texture
discontinuities; our results are in line with this notion.

Due to the sparse spatial application of the filters
throughout the networks, the deeper scales are ex-
pected to have only much coarser-scale information
about the data, and contour sites with very local dis-
continuities cannot be detected efficiently. Combining
the streams is expected to be beneficial; our results
demonstrate enhanced recall-rates for the two-stream
over deep-only networks.

2.3 Related work

The Canny edge detector [Canny, 1986] computes the
edge response magnitude

√
G2
x +G2

y at each pixel,

where Gx (resp. Gy) denotes the response of a Gaus-
sian first derivative in the x (resp. y) direction, fol-
lowed by stages of non-maximum suppression and hys-
teresis thresholding. Note that like our method it in-
volves a squared filtering operation followed by non-
linear processing, but in contrast there are a small,
hand-crafted set of filters and post-processing steps.

An important reference method for boundary detec-
tion is gPb [Arbelaez et al., 2011]. gPb is based on a
Pb (probability of boundary) predictor that considers
differences between histograms of brightness, colour
and texture in two half-circles around an oriented edge.
These results are then combined across multiple scales,
and a “globalization” step based on spectral clustering
is added. These operations are mainly hand-crafted,
although there is some optimization of cue combina-
tion coefficients.

There have been a number of papers that have con-
sidered more wholesale learning approaches, taking
as input an image patch and predicting the pres-
ence/absence of a boundary at the centre pixel of the
patch. For example Dollar et al. [2006] consider a large
number of generic features such as gradients and dif-
ferences between histograms at multiple locations, ori-
entations and scales, and a probabilistic boosting tree
is used as a classifier. Both Mairal et al. [2008] and
Ren and Bo [2012] have used representations based on
sparse coding, either directly (the former) or via pool-
ing over oriented half-discs (the latter) to train lin-
ear classifiers. Recent works by Lim et al. [2013] and
Dollár and Zitnick [2013] both train decision forests
that learn to map a large number of low level im-
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age features onto edge predictions for a given image
patch. While the former employs a discrete set of edge-
patches (“sketch tokens”) as labels for the leaves of the
trees which are fixed prior to decision tree training, the
structured decision tree framework of the latter learns
the leaf labels as part of the tree training.

In contrast to these approaches our method builds on
the idea of filters with a squaring non-linearity to learn
a set of image features that form a distributed repre-
sentation of local and global image properties which
are then mapped onto a contour prediction image via
several layers of learned adaptive “deep” nonlinear
processing.

Another line of work has addressed linking together
edge fragments in order to create extended smooth
contours. See e.g. Parent and Zucker [1989] for early
work, and Zhu et al. [2007] for a more recent approach.
We also note that boundary detection is closely re-
lated to region segmentation, a problem which has re-
cently been adressed using convolutional neural net-
works (e.g. Farabet et al. [2012]), although contour
detectors do not necessarily produce closed contours
which partition the image into regions.

3 Methods for Visual Boundary
Prediction Quality Assessment

In section 4 we consider several experiments to com-
pare prediction performance across algorithms. Here,
we first describe the standard evaluation protocol and
then discuss our extensions.

The BSDS assessment protocol involves computing a
precision-recall (P-R) curve, as explained in Martin
et al. [2004]. A P-R curve can be summarized by com-
puting the maximal F-measure score (the harmonic
average of precision and recall) out of the points corre-
sponding to thresholding with a particular value. This
threshold can either be optimized across the data set
(ODS), or on a per image basis (OIS). The F-score
(ODS) is considered the main metric of the benchmark
(see for example Martin et al. [2013a] and Martin et al.
[2013b]). The P-R curve can also be summarized by
the average precision (AP).

As Hou et al. [2013] demonstrate, the BSDS bench-
mark protocol is not without problems. While some
boundaries are “strong” in the sense that all annota-
tors tend to agree (“consensus boundaries”) there is
also a significant fraction of “weak” boundaries, which
were marked only by a few, or even just a single anno-
tator (“orphan boundaries”). As pointed out by Hou
et al. the unreliable orphan boundaries make up a sig-
nificant fraction of the annotations (with 30.15 % of all
annotated boundaries they are almost as frequent as
strong consensus boundaries 30.58 %) and the current

benchmarking protocol tends to reward algorithms for
focusing on these orphans (a phenomenon they refer
to as a “precision bubble”). They further find that ex-
isting algorithms achieve relatively poor performance
on the problem of predicting the unambiguous, strong
boundaries only. While their results do not necessar-
ily imply that one boundary type is more valuable
than the other, they certainly suggest that a single
P-R curve for the full set of annotations provides only
limited information about an algorithm’s strength and
weaknesses for the purposes of different tasks. Moti-
vated by these findings and to provide further insight
into the behavior of different algorithms we choose to
compute P-R curves not just for the full set of anno-
tations but also compared algorithms with respect to
their performance in predicting strong boundaries only
(where, for our analysis we use the definition of “con-
sensus” boundaries introduced by Hou et al. [2013]).
The results of this comparison can be found in Sec
4.2.1.

This additional analysis (partially) addresses the prob-
lem of the ambiguity inherent in the boundary detec-
tion task. A second potential problem with the stan-
dard evaluation protocol is that the pixel-wise inde-
pendent computation of hits and misses does not nec-
essarily capture the perceptual quality of a boundary
prediction (it ignores, for instance, spatial coherence
of a prediction). Similar criticisms have previously
been raised with regards to standard evaluation met-
rics for image restoration tasks where pixel-wise mean-
squared-error based metrics such as the peak signal-
to-noise ratio (PSNR) are widespread. One response
to these criticisms has been the mean structural sim-
ilarity index metric (MSSIM) [Wang et al., 2004] (see
Appendix F for more details) which considers several
kinds of image information, and, importantly, takes
non-local information into account. It is widely re-
garded as a perceptually more valid metric than e.g.
the PSNR. While it may not be immediately obvious
that MSSIM is adequate also for comparing boundary
prediction images we have found that MSSIM scores
(comparing prediction images to human averages) gen-
erally agree very well with the (admittedly subjective)
perceptual quality of such predictions. We have there-
fore included an evaluation in terms of this metric in
our quantitative comparsion of boundary prediction
algorithms, the results of which are discussed in Sec.
4.2.2.

4 Visual Boundary Prediction
Experiments

We consider the BSDS500 dataset in our experiments.
The dataset consists of 500 natural images and asso-
ciated boundary annotations by several humans. We
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follow strictly the protocol in the benchmark and in
our other assessments; this includes not using the test
set for model development and selection.

4.1 Training of the models

The mcRBM/mcDBN models were trained using
stochastic gradient ascent for approximate maximum
likelihood learning using FPCD [Tieleman and Hinton,
2009], with an implementation based on the TmPoT
training code [Ranzato et al., 2010]. The mcDBNs
were trained in the usual greedy manner, layer-by-
layer. (See Appendix B.1 for details.)

For discriminative training of the boundary prediction
networks we perform stochastic gradient ascent in the
log-likelihood L of the training data. We maximize
the conditional likelihood of a ground-truth contour
map y given an image, L =

∑
n,i y

(n)
i log u(n)

i + (1 −
y
(n)
i ) log(1 − u

(n)
i ), where y

(n)
i is the label of the ith

contour unit in nth training image, and u
(n)
i the cor-

responding network prediction (cf. eq. (2)).

The read-out weights were initialized to small random
values, and the biases to zeros except for the contour
bias g which was set to match the overall probability
of a contour in the training data. We use stochas-
tic gradient ascent with mini-batches and momentum,
and apply a small amount of L2 regularization of the
weights. Learning rates are initially kept constant and
then decayed according to a 1

t schedule during the final
phase of learning. (See section B.2 for details.)

To further improve prediction performance we employ
five ‘enhancements’ in our full method (called “En-
hanced Two-Stream” below; see section B.3 in the
Appendix for full details): (1) We standardize each
input image to have zero mean and standard devia-
tion one, making the network more robust to shifts
and changes in scale of global intensity. (2) During
training we average the binary ground truth annota-
tions from different annotators for each image to give
a single probability map y, reducing the noise in the
gradient. (3) We also encourage sparsity of the hidden
unit activations via a cross entropy penalty for devi-
ations from a set target activation level. (4) During
prediction, in order to improve transformation equiv-
ariance, we perform rotation averaging, applying the
network to 16 rotated versions of each image and av-
eraging the prediction results. (5) Finally, as in sev-
eral previous works [Dollár and Zitnick, 2013, Mairal
et al., 2008], we apply non-maximum suppression by
the Canny method to the network predictions.

4.2 Results and method comparison

We now discuss the results of our method and the com-
peting methods in the literature. We have considered

all main state-of-the-art methods for which results or
source code for their computation are available5. Ex-
ample results for one image are given in Fig. 2; other
results are shown in Appendix D.

4.2.1 Dissecting BSDS Boundary Prediction
Performance

We first focus on the P-R analysis. These results are
summarized in Table 1 and Figure 3.

Analyzing performance for gray-scale images (Table 1,
bottom) we note that our network performs generally
better or at least comparably to those approaches for
which gray-level results or source code for their com-
putation was available. This is true especially with
respect to the main metric, F-score (ODS).

In the colour-domain (Table 1, top; see also Fig. 3), for
the standard BSDS500 benchmark (boundaries of all
strength; “any”), we find that our approach achieves
similar performance to the strongest methods from the
literature in terms of F-score (Dollár and Zitnick [2013]
and SCG) although their AP is slightly higher than
ours. Sketch Tokens also achieves a higher AP but is
inferior in terms of F-scores.

Considering separately the performace for strong
boundaries we find in agreement with Hou et al. [2013]
that all methods perform significantly worse at pre-
dicting strong boundaries only (compared to predict-
ing the full set of annotations); this is explained by the
fact that many strong (but not consensus) edges now
become false positives. We further notice, however,
that relative to other methods our network emphasizes
strong boundaries over weak ones: It performs espe-
cially well on the task of predicting consensus bound-
aries only, both in terms of AP and ODS.

4.2.2 Perceptual Quality Performance
Analysis

To assess perceptual quality of boundary predictions
we compared prediction images to human annotation
averages in terms of the MSSIM metric. We first ob-
tained the MSSIM-score for each test image and algo-
rithm. For each image we then computed the pairwise
score-difference between our method and those from
the literature. Histograms of these difference scores
are shown in Figure 4 (see Table I in the appendix for
further details). Overall, the MSSIM scores tend to be
higher for our method than for the other algorithms on
a per-image basis. The most notable difference is be-
tween our method and Sketch Tokens. This is interest-
ing as it paints a rather different picture from the P-R

5We thank Dollár and Zitnick [2013] for providing their
BSDS500 test results via personal communication.
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Data (colour) Canny Dollár & Zitnick

Humans (Average) Sketch Tokens SCG (global)

Us (Enhanced two stream) Rotation averaged Basic

T
w

o-
st

re
am

Us (Enhanced two-stream) Two-stream Deep-stream

Data (grey) gPb-owt-ucm Shallow-stream

Figure 2: Contour Prediction Examples on the BSDS500. Predictions are individually rescaled to fill full intensity
range for visualization purposes. Best viewed on screen.
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F -score

Boundary Strength ODS OIS AP

Us (Enhanced Two-Stream)
Any 0.738 0.759 0.758
Consensus 0.613 0.642 0.611

Dollár and Zitnick [2013]
Any 0.741 0.760 0.780
Consensus 0.588 0.621 0.586

Sketch Tokens [Lim et al., 2013]
Any 0.728 0.746 0.780
Consensus 0.569 0.592 0.561

SCG [Ren and Bo, 2012, (Global)]
Any 0.739 0.758 0.773
Concensus 0.604 0.636 0.561

gPb-owt-ucm [Arbelaez et al., 2011]
Any 0.727 0.759 0.727
Consensus 0.591 0.648 0.491

Us (Enhanced Two-Stream, Grey)
Any 0.722 0.740 0.736
Concensus 0.582 0.613 0.581

gPb-ucm-owt [Arbelaez et al., 2011, Grey]
Any 0.69 0.71 0.67
Consensus 0.543 0.599 0.381

SCG [Ren and Bo, 2012, (Global, Grey)]
Any 0.71 0.73 0.74

Table 1: BSDS500 (Colour, Grey) Prediction Dis-
section. Highest score for each statistic and boundary
category is highlighted.

analysis where Sketch Tokens performs well accord-
ing to the summary results, especially in terms of AP.
The differences relative to SCG and Dollár and Zit-
nick [2013] are much smaller and roughly in line with
the P-R comparison. In general, we find the MSSIM
scores to be relatively well correlated with the percep-
tual quality of the contour prediction as is illustrated
in section D in the appendix, where individual predic-
tion images and associated MSSIM scores are shown
(Figs. XIV- XIX). Notice, for instance, in Fig. XIV
how our approach is particularly effective at suppress-
ing non-boundary edges on the tree and in the back-
ground.

4.2.3 Computational efficiency

Our approach scales well with image size in contrast to
gPb and SCG, and provides significantly faster predic-
tion times empirically (prediction time is 240s and 280s
per image for global gPb and SCG respectively, and 60
and 100s for their local versions, cf. Lim et al. 2013).
As an example, our unoptimized GPU implementation
of the two-stream model takes 0.1 to 0.2 s per test im-
age (grey-scale; 3 times for colour-domain with twice
the number of features). Our enhanced two-stream
inference is currently serial over the orientations but

Any-Strength Consensus

Figure 3: BSDS500 (Colour) Precision-Recall
Curves. “Any strength” is the full BSDS500 annota-
tion set (standard BSDS500 benchmark evaluation).
Colors indicate algorithms: Us, Dollár and Zitnick
[2013], Sketch Tokens, SCG (global), gPb-owt-ucm.
Best viewed on screen.

Figure 4: BSDS500 MSSIM-Score Difference Densi-
ties; Us Minus Competition. The density-curves are
method-specific and colour-coded: Dollár and Zitnick
[2013], Sketch Tokens, SCG (global), gPb-owt-ucm.
Best viewed on screen.

easily parallelized. We note the speeds of Sketch to-
kens [Lim et al., 2013](1 s) and that of in Dollár and
Zitnick [2013] (1/6 s) are comparable to us in speed
without the rotation-averaging. See Appendix C.2 for
more details.

4.3 Dissecting the deep neural prediction
network

In order to understand which features of our archi-
tecture were important for achieving good prediction
results we performed a careful analysis. Here we will
only summarize the main findings, the full results can
be found in Appendix E. We focused on (i) the com-
parison between shallow and different types of deep
networks; (ii) the relative importance of mean and
covariance units; (iii) the effect of unsupervised pre-
training and supervised fine tuning.
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F-score

Model ODS OIS AP

Two-stream:
Full 0.695 0.709 0.673
Covariance-only 0.692 0.708 0.683
Mean-only 0.679 0.696 0.657

Deep-Stream:
Full 0.702 0.715 0.654
Covariance-only 0.696 0.710 0.652
Mean-only 0.679 0.694 0.627

Shallow-Stream:
Full 0.648 0.668 0.637
Covariance-only 0.642 0.660 0.624
Mean-only 0.629 0.652 0.613

Table 2: Network Prediction Performance Dissec-
tion on BSDS500 (grey-scale). Mean-only and
Covariance-only denote network parts including only
and branching from mean and covariance units, re-
spectively. See Table II for an extended dissection.

Shallow vs. deep networks We found that shal-
low networks were generally outperformed by multi-
layer networks by a significant margin (compare
shallow-stream vs. deep-/two-stream in Table 2). This
was expected as shallow networks have very local re-
ceptive fields and are thus not able to integrate image
information more globally. Deep networks with this
capability were much better at suppressing local, non-
boundary edge structure (cf. Fig. 2 bottom). Intro-
ducing skip-layer connections in deep networks tended
to further improve AP (but not having much effect on
the F-score; compare two-stream vs. deep in Table 2)
consistent with the idea that direct access to low-level
features helped improving precision at high recall.

Covariance units Networks with covariance units
generally had higher prediction performance than net-
works with mean units only. This difference was es-
pecially pronounced when the weights obtained with
unsupervised pre-training were not fine tuned. Using
mean units in combination with covariance units pro-
vided a small additional advantage relative to the use
of covariance units only.

Unsupervised pre-training and fine tuning Un-
supervised pre-training and fine tuning both improved
final network performance. In particular, we found the
positive effect of unsupervised pre-training to increase
when moving from shallow to deep networks.

5 Discussion

We have developed a deep neural network architec-
ture for visual boundary prediction built on top of
a diagonally-tiled convolutional mcRBM for feature

learning. The architecture is very different from previ-
ous approaches to this problem. It allows end-to-end
optimization, and fast and scalable inference for pre-
diction. We achieve accuracy comparable or better to
those of the best-performing methods on the BSDS500
dataset and do not require an expensive “globaliza-
tion” step, leading to prediction times that are highly
competitive with most existing methods.

Our extended evaluation protocol which breaks down
the analysis for different boundary strengths and con-
siders visual plausibility highlights some interesting
differences between methods that achieve very simi-
lar summary performance in terms of F-score and AP.
We found our network to be especially good at pre-
dicting strong boundaries (Hou et al. [2013]), and to
produce visually more plausible boundary predictions
than Sketch Tokens despite being outperformed by the
latter in terms of mAP.

Our careful analysis of different network architec-
tures emphasizes the importance of network depth for
integrating image information across multiple scales
which appears to be critical for good performance.
Covariance features are also a crucial ingredient, in
agreement with previous findings that squaring non-
linearties form an important component of vision
pipelines. We finally observe significant benefits of
generative pre-training, possibly indicating that the
amount of annotated training data is limited relative
to the difficulty of the task.

We are currently exploring improved initialization
techniques. Above the read-out parameters were ini-
tialized to random values. An interesting alternative
would be to consider a joint model of the image and
contour data. This could take the form of a dual-wing
harmonium [Xing et al., 2005], in the simplest case in
the form of a RBM that has two sets of visible units:
the RGB and boundary images. Such joint models
would allow not just the learning of “prediction fea-
tures” as an initialization step, but also for other kinds
of interesting applications, including image-prediction
from boundary data (de-sketching) and image com-
pletion. Furthermore, the introduction of stochastic
hidden units would allow dependencies between the
contour units, providing a form of ‘globalization’ as
well as a principled way of dealing with different alter-
native boundary predictions for a given image.
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