Appendix

Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models
on Big Data

This appendix contains proof details for the main paper, as well as some experimental details. In this document, some of the
theorems and equations refer to the main paper; we put “(main paper)” behind these references to avoid confusion.

A Parameter Tuning for Experiments

Model | TM | Dictionary Learning | MMND |
Fugue’s 19 0.01 0.01 0.01
Fugue’s 7/ 0.01 0.01 0.05

BarrieredFugue’s g | 0.01 0.01 0.05
GraphLab’s 19 0.05 0.001 0.1
GraphLab’s step_dec 0.9 0.9 0.9
PSGD’s g 0.005 0.01 0.1

Table 1: Final tuned parameter values for Fugue, BarrieredFugue, GraphLab and PSGD. All the methods are tuned to perform
optimally. 7 is the initial step size, where 7 is defined in equation 4] A is the Dictionary Learning ¢; penalty defined in
equation 77' is parameter that modifies the learning rate when extra updates are executed while waiting for slow workers.
step_dec is a parameter for decreasing learning rate for GraphLab used in their collaborative filtering library.

Table|l|shows the final parameter values for each problem, after they have been tuned optimally for each method. 7]/ controls
the learning rate in additional updates by the worker when it is waiting for slower ones to finish. This makes it satisfy the
condition in equation The modified learning rate 77; =1y * (17/)I+1 where x is the number of extra update iterations the
worker has perfomed while waiting in this sub-epoch. One iteration here means updating all the data points in the curent
sub-epoch once. 7; is the sub-epoch’s original learning rate without any extra updates similar to BarrieredFugue. The learning

rate for epoch ¢ is given by 1y = tz_—"l for Fugue and BarrieredFugue.

B Convergence Proof: Theorem [I| (main paper)

From equation 4] (main paper) we have
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Using n; and N,, as defined in equation [6| (main paper)
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where M, N, = Zfi;ﬂ Now 71;€; 1s a martingale sequence since it is a sum of martingale difference sequence. mNN,, captures
the m whole sub-epochs of work done as a whole by all the workers combined. From Doobs martingale inequality (Friedman,

1975, ch. 1, Thm 3.8)
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where M, = Z;:t n;€;. Lets look at the RHS of equationabove:
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From equation [ we have
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asymptotically.

Note that we do a theoretical analysis of the algorithm without projection steps. Extending the proof to include projection can
be done by using Arzela-Ascoli theorem and the limits of converging sub-sequence of our algorithm’s SGD updates (Kushner
and Yin, 2003). |

C Intra sub-epoch variance
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Summing equation [5|over n;, the number of points updated in block i of a sub-epoch
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As defined earlier, V denotes the joint potential for all the n; points encountered in block . The equation 7] (main paper) for
Vis

p(dJ(Hm) ¢t)d¢(t+nz) :p(v(w(t+ni)’wt))dv
pppHr))dyp ) = / p(WF I (") dytdy ) :/ PV v "
Pt v

Lemma 1 Let u(y 7)) be a function of 1"+ then

BV u( )] = BV [BY [u(u )

Proof. From equation 7]
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Proof. Due to randomness in picking the point to be updated in iteration ¢ + ¢ We have
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Using the definition of V**? in equation [7| (main paper), the fact that V' is a joint variable of each V**% and an any iteration
t 4 ¢ the chance of picking any data point is completely random and indpendent of any other iteration.

]EV [Lt+i(vt+i, wt-{-i)] _ Evf+i [Lt+1 (,Ut-i-i7 ¢t+i)]

Lemma 4

st+i(Ut+i,wt+i) st+j(vt+j’1/}t+i) B dEvt+i[Lt+i(vt+i’wt+i)] d]Eu‘“ [Lt+i(vt+i’1/}t+i)}

v
E'[ daptti dipt+i o dapti dipt+i




Proof. Two different data points picked at iteration (¢ + ) and (¢ + j) are independent of each other. Using this fact and the
definition of potetntial function V' in equation 7]
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Theorem 1 We define 1), as the global optima and Q) as the hessian of the loss at 1, i.e. Qy = % (assuming that 1
is univariate) then
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Proof. Lets define ¢(t);4;) = E¥ [L!F (v, 4*+%)] Using Taylor’s theorem and expanding around 1/,
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Theorem 2 With 1), as defined in theorem[l|and assuming that 1 is univariate we have
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Proof. Expanding L‘*%(v!*% +)'+%) around ), using Taylor’s theorem

AL (0, )
i,

(W = 1) + O((0"™" = 9.)?)

L, ) = D ) W =)

1 d2 Lt (’UHi, w*)

2 dy?
st—i—i(Ut—&-i’ wt+i) _ st+'i (Ut-i-i7 w*) d2Lt+i(Ut+i, w*) ; ; 9
d¢t+i - dw* d?/)f (1/Jt+ - w*) + 0((¢t+ - w*) )
i st+i t+i’ t+1 St st—I-i t+i’ N
= Ev [( E;/;}pri ¢ ))2] —F [( (dq:/}* ¢ ))2
AL (0t ) 2L (0 4y t+i t+i 2
i ti (b4 )t
- B 0y 4 OB{ (s — ) + O(5D)

d’l/)t+i
— Q) + OE[O(py)]) + O(p?)

C.1 Within block variance bound

Theorem 3 The variance of the parameter v at the end of a sub-epoch S in block S; which updated n; points as defined in

equation@ (main paper) is
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Constants Qy and Qy are defined in theorems|[I|and theorems 2] respectively.



Proof. We start with analysing E" [u(«)(**"))] term from lemma
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From equation [§] and lemmal[T]
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From equation above the variance of !*™i is

Va’r(’l/JH_m) _ E¢(t+"i) [("/}(H_m))Q] _ (Ew(H"i) [w(H—m)])Q

=BV [(1")?] — neni BV (20" (Q0 (4" — v + 6) + O(p}))]
(using theoremand defining §, = M)

£ 07 3BV 2{m( + O(Elpd) + O(p7)

+ ;maw — )+ O(p)) (T — 1) + O(p))}]
1£]
— (B ) B (0 i+ 8) + O — . ))])
= EY'[(¢")?] — 20000 E% [(01)?] + 2Q0mnp BV [01] — 2QonnBY [948,] — O(nep?)
+niniQ + O(mipy) + O p7) + O} p}) + O(ni pf)
— (B [01) + 2mm B (] (B (0] — Qo+ E¥' [208,] + O()) — O 2) + O(o)
= Var(y') — 2nmiQo(Var (")) — 2n:n;QoCoVar (i, ;) + ninih
+ Omipe) + O(mpy) + O(n}) + O(ni p}) (10)

Ay




	Parameter Tuning for Experiments
	Convergence Proof: Theorem 1 (main paper)
	Intra sub-epoch variance
	Within block variance bound


