
Supplementary Material for Incremental Tree-Based
Inference with Dependent Normalized Random

Measures

1 Review of Dirichlet Process Mixture Models

In this section, we briefly review Dirichlet process mixture model (DPM) and derive its marginal likelihood.
Let X = {xi}ni=1 be a dataset to model. The generative process of X under DPM is written as:

µ|α,H ∼ DP(α,H) (1)

θi|µ ∼ µ (2)

xi|θi ∼ L(·|θi). (3)

Here, µ can be marginalized out to yield Chinese restaurant process (CRP), which is defined as a conditional
distribution of θi given θ1, . . . , θi=1.

p(θi|θ1, . . . , θi−1) =
αH +

∑i−1
j=1 δθj

α+ i− 1
. (4)

Without loss of generality, assume that {θi}ni=1 are clustered into K distinct values {θ∗k}Kk=1 as follows:

θ1 = θ2 = · · · = θn1 = θ∗1 (5)

θn1+1 = θn1+2 = θn1+n2
= θ∗2 (6)

...
... (7)

θn1+···+nK−1+1 = · · · = θn1+···+nK = θ∗K , (8)

where n1 + · · ·+ nK = n. By (4), the joint probability of {θi}ni=1 is computed as

p({θi}ni=1) =

n∏
i=1

p(θi|θ1, . . . , θi−1)

= H(θ∗1)× 1

α+ 1
× · · · × n1 − 1

α+ n1 − 1

×αH(θ∗2)

α+ n1
× 1

α+ n1 + 1
× · · · × n2 − 1

α+ n1 + n2 − 1

...
αH(θ∗K)

α+ n1 + · · ·+ nK−1
× 1

α+ n1 + · · ·+ nK−1 + 1
× · · · × n1 + · · ·+ nK − 1

α+ n1 + · · ·+ nK − 1

=
Γ(α)

Γ(α+ n)

K∏
k=1

αΓ(nk)H(θ∗k). (9)

From (9), one can see that the joint probability of {θi}ni=1 is invariant to the ordering of items or cluster
labels. Hence, we can write (9) as a proability of a partition π of In and unique parameters {θ∗c}c∈π assigned

1



to each cluster of the partition:

p({θi}ni=1) = p(π, {θ∗c}c∈π) =
Γ(α)

Γ(α+ n)

∏
c∈π

αΓ(|c|)H(θ∗c ). (10)

The same result can be derived using Theorem 2 of in our paper. By Theorem 2, the joint probability of
{θi} and auxiliary variable ξ is

p(π, {θ∗c}, ξ) =
ξn−1e−ψρ(ξ)

Γ(n)

∏
c∈π

κρ(|c|, ξ)H(θ∗c ). (11)

In case of DP, ψρ(ξ) and κρ(|c|, ξ) are computed as

ψρ(ξ) =

∫
R+

(1− e−ξw)αw−1e−wdw = α log(1 + ξ) (12)

κρ(|c|, ξ) =

∫
R+

w|c|e−ξwαw−1e−wdw =
αΓ(|c|)

(1 + ξ)|c|
. (13)

Hence, we have

p(π, {θ∗c}, ξ) =
ξn−1

Γ(n)(1 + ξ)n+α

∏
c∈π

αΓ(|c|)H(θ∗c )

=

(
ξ

1 + ξ

)n−1(
1

1 + ξ

)α+1
1

Γ(n)

∏
c∈π

αΓ(|c|)H(θ∗c ). (14)

Let ξ/(1 + ξ) = v. Then

p(π, {θ∗c}) =

∫
p(π, {θ∗c}, ξ)dξ

=

∫
vn−1(1− v)α+1 1

Γ(n)

∏
c∈π

αΓ(|c|)H(θ∗c )
1

(1− v)2
dv

=
1

Γ(n)

∏
c∈π

αΓ(|c|)H(θ∗c )

∫
vn−1(1− v)α−1dv

=
Γ(α)

Γ(n+ α)

∏
c∈π

αΓ(|c|)H(θ∗c ). (15)

Combined with the likelihood L, the joint probability of DPM is then written as:

p(X, π, {θ∗c}c∈π) =
Γ(α)

Γ(α+ n)

∏
c∈π

αΓ(|c|)L(X(c)|θ∗c )H(θ∗c ), (16)

and the marginal likelihood of X is

p(X) =
Γ(α)

Γ(α+ n)

∑
π

∏
c∈π

αΓ(|c|)p(X(c)|Hc). (17)
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2 Completely Random Measure

In this section, we provide more specific backgrounds on completely random measures (CRMs). Let us
consider a measure space (Θ,Ω), where Ω is the σ-algebra of Θ. A random measure µ on (Θ,Ω) is a random
variable whose values are measures on (Θ,Ω).

Definition 1. A random measure µ on (Θ,Ω) is completly random if for any disjoint A1, . . . , An ⊂ Θ,
the random variables µ(A1), . . . , µ(An) are independent.

It has been shown [1] that a CRM is decomposed into the sum of three independent components: (1) a
nonrandom measure; (2) a countable collection of nonnegative randomm masses at fixed locations, and (3) a
countable collection of nonnegative random masses at random locations.

Theorem 1. ([1]) A CRM µ is decomposed into the sum of three independent components:

µ = µ0 +
∑
j

vjδθ∗j +

∫
R+

wΠ(dw, θ) (18)

= µ0 +
∑
j

vjδθ∗j +
∑
k

wkδθk ,

where µ0 is a nonrandom measure, {vj} are mutually independent random variables on R+ corresponding
to random weights of fixed atoms {θ∗j } of Θ, and Π =

∑
k δ(wk,θk) is a Poisson process defined on a product

space R+ ×Θ with Lévy intensity λ(dw, dθ).

Definition 2. A CRM µ is said to be homogeneous if the Lévy intensity λ of the underlying Poisson
process Π decomposes into a product of two intensities:

λ(dw, dθ) = ρ(dw)H(dθ). (19)

Throughout this article, we consider only homogeneous CRMs without nonrandom measures and fixed atoms,
and we write

µ =

∫
R+

Π(dw, θ) =
∑
k

wkδθk ∼ CRM(ρ,H). (20)

Without loss of generality, we assume that
∫

Θ
H(dθ) = 1. We also assume that ρ satisfies the following two

conditions ∫
R+

ρ(dw) =∞,
∫
R+

(1− e−w)ρ(dw) <∞, (21)

where the first condition ensures that µ has infinite atoms (µ =
∑∞
k=1 wkδθk), and the second condition

ensures that the total mass µ(Θ) =
∑∞
k=1 wk is finite [2].

3 Posterior Analysis of Normalized Random Measure Mixture Models

In this section, we provide the proof of Theorem 2 in our paper. The original proof can be found in [2, 3].

Theorem 2. ([2], Theorem 2 in paper) Let µ ∼ CRM(ρ,H) on (Θ,Ω) and let (π, {θ∗c}) ∼ µ̃. Introducing
an auxiliary variable ξ ∼ Gamma(n, µ(Θ)), the posterior of µ is given by

µ|ξ, π, {θ∗c} = µ̄+
∑
c∈πn

wcδθ∗c , (22)
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where

µ̄ ∼ CRM(ρ̄, H), ρ̄(dw)
def
= e−ξwρ(dw),

and the posterior density over random weights of fixed atoms is given by

p(wc|ξ, π, {θ∗c}) =
w
|c|
c e−ξwcρ(wc)

κρ(|c|, ξ)
,

κρ(m, ξ)
def
=

∫
R+

wme−ξwρ(dw).

The marginal distribution is given by

p(π, {θ∗c}, ξ) =
ξn−1e−ψρ(ξ)

Γ(n)

∏
c∈π

κρ(|c|, ξ)H(θ∗c ),

ψρ(ξ)
def
=

∫
R+

(1− e−ξw)ρ(dw).

The predictive distribution is given by

θ|ξ, π, {θ∗c} ∝ κρ(1, ξ)H +
∑
c∈π

κρ(|c|+ 1, ξ)

κρ(|c|, ξ)
δθ∗c .

Proof. The likelihood of (π, {θ∗c}c∈π) given µ is

p(π, {θ∗c}c∈π|µ) = µ(Θ)−n
∏
c∈π

w|c|c , (23)

where wc is a mass of θ∗c . We introduce an auxiliary variable ξ as follows:

p(ξ|µ) = Gamma(ξ|n, µ(Θ))

p(π, {θ∗c}c∈π, ξ|µ) =
ξn−1 exp(−µ(Θ)ξ)

Γ(n)

∏
c∈π

w|c|c . (24)

We will compute the characteristic functional of the posterior process µ|π, {θ∗c}c∈π, ξ, which is given as:

E
[
e−µ(f)|π, {θ∗c}c∈π, ξ

]
=

E[p(π, {θ∗c}, ξ|µ)e−µ(f)]

E[p(π, {θ∗c}, ξ|µ)]
, (25)

where f is an arbitrary bounded function on Θ and

e−µ(f) def
= exp

{
−
∫
f(θ)µ(dθ)

}
. (26)

The denominator is a special case of the numerator when f = 0, so we first compute the numerator. Let Π
be the underlying Poisson process of µ.

E
[
p(π, {θ∗c}, ξ|µ)e−µ(f)

]
=

ξn−1

Γ(n)
E
[

exp

{
−
∫
w(f(θ) + ξ)Π(dw, dθ)

}∏
c∈π

w|c|c

]
(27)
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By applying the Palm formula or by Lemma 2 in [4], we get

∝ E
[

exp

{
−
∫
w(f(θ) + ξ)Π(dw, dθ)

}]∏
c∈π

H(θ∗c )

∫
w|c|c exp{−wc(f(θ∗c ) + ξ)}ρ(wc) (28)

By the Campbell’s formula [5], this is computed as

= exp

{∫
(e−w(f(θ)+ξ) − 1)ρ(dw)H(dθ)

}∏
c∈π

H(θ∗c )

∫
w|c|c exp{−wc(f(θ∗c ) + ξ)}ρ(wc) (29)

If we set f = 0, we get the denominator:

p(π, {θ∗c}, ξ) = E[p(π, {θ∗c}, ξ|µ)] ∝ exp

{∫
(e−wξ − 1)ρ(dw)H(dθ)

}∏
c∈π

H(θ∗c )

∫
w|c|c e

−wcξρ(wc)

=
ξn−1e−ψρ(ξ)

Γ(n)

∏
c∈π

κρ(|c|, ξ)H(θ∗c ). (30)

Now dividing the numerator with the denominator gives

E
[
e−µ(f)|π, {θ∗c}c∈π, ξ

]
= exp

[ ∫
(e−w(f(θ)+ξ) − e−wξ)ρ(dw)H(dθ)

]∏
c∈π

∫
w
|c|
c exp{−wc(f(θ∗c ) + ξ)}ρ(dwc)

κρ(|c|, ξ)

= exp

[ ∫
(e−wf(θ) − 1)e−wξρ(dw)H(dθ)

]∏
c∈π

∫
w
|c|
c exp{−wc(f(θ∗c ) + ξ)}ρ(dwc)

κρ(|c|, ξ)

(31)

The first term inside the exponential is the characteristic functional of CRM µ̄ with Lévy measure ρ̄ =
e−ξwρ(dw). The second terms inside the product is the characteristic functional of fixed atoms θ∗c with
random masses wc with distribution

p(wc) =
w
|c|
c e−ξwcρ(wc)

κρ(|c|, ξ)
. (32)

4 Posterior analysis for Mixed Normalized Random Measure Mixtures

In this section, we describe the posterior analysis for mixed normalized random measure (MNRM) mix-
tures [6]. All the derivations and proofs can be found in the supplementary material of the original paper [4],
and here we just rewrite them using our own notations.

4.1 Model

Let {νr}Rr=1 be mutually independent homogeneous CRMs on Θ. As in our paper, we will call these CRMs
as basis CRMs.

νr =

∞∑
k=1

wrkδθrk ∼ CRM(ρr, Hr) for r = 1, . . . , R. (33)
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Suppose that we are to model a dataset X1:T =
⋃T
t=1 Xt. The CRM µt to generate Xt is then represented

as a mixture of the basis measures as follows:

µt =

R∑
r=1

qt,rνr for t = 1, . . . , T. (34)

Now for each data point xti, a parameter θti is drawn from its corresponding normalized random measure.

{θti}nti=1|µt
iid∼ µ̃t = µt/µt(Θ). (35)

Since all the θti came from one of the (discrete) basis measures, {{θti}nti=1}
nt
t=1 induces a partition π of the

set of indices I1:T . Moreover, each cluster c in π has its own indicator variable zc which indicates that the
parameter allocated to the cluster c had come from the basis measure νr. We write θ∗c as a representation of
the parameter allocated to the cluster c. Also, let wc be the weight corresponding to θ∗c .

{{θti}nti=1}
T
t=1 = (π, {zc, θ∗c}c∈π) (36)

wc = νzc(θ
∗
c ). (37)

4.2 Posterior processes

The likelihood of (π, {zc, θ∗c}) given {νr} is written as

p(π, {zc, θ∗c}|{νr}) =

T∏
t=1

∏
c∈π(qtzcwc)

|c∩It,nt |

(
∑
r qtrνr(Θ))nt

. (38)

Now we introduce a set of auxiliary Gamma variables {ξt}Tt=1 to obtain closed-form posterior processes.

ξt|{νr} ∼ Gamma

(
nt,

R∑
r=1

qt,rνr(Θ)

)
(39)

p(π, {zc, θ∗c}, {ξt}|{νr}) =

T∏
t=1

ξnt−1
t

Γ(nt)

R∏
r=1

exp

(
− νr(Θ)

T∑
t=1

qt,rξt

)∏
c∈π

q̄c,zcw
|c|
c , (40)

where q̄czc
def
=
∏
t q
|c∩It,nt |
tzc .

Theorem 3. The posterior process νr|π, {zc, θ∗c}, {ξt} is written as

νr|π, {zc, θ∗c}, {ut} = ν̄r +
∑
c∈π
zc=r

I[zc = r]wcδθ∗c , (41)

where

ρ̄r(dw)
def
= exp

{
− w

T∑
t=1

qt,rξt

}
ρr(dw) (42)

ν̄r ∼ CRM(ρ̄r, Hr) (43)

p(wc| . . . ) =
w
|c|
c exp(−wc

∑
t qt,rξt)ρr(wc)

κρr (|c|,
∑
t qt,rξt)

. (44)

Moreover, the marginal distribution is written as

p(π, {zc, θ∗c}, {ξt}) =

T∏
t=1

ξnt−1
t

Γ(nt)

R∏
r=1

exp

{
− ψρr

( T∑
t=1

qt,rξt

)}∏
c∈π

q̄c,zcκρr

(
|c|,

T∑
t=1

qt,zcξt

)
Hzc(θ

∗
c ). (45)
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Proof. We will compute the characteristic functional of the process νr|π, {zc, θ∗c}, {ξt} for an arbitrary
bounded measurable function f on Θ.

E
[
e−νr(f)|π, {zc, θ∗c}, {ut}

]
= E

[
exp

{
−
∫
f(θ)νr(dθ)

}∣∣∣π, {zc, θ∗c}, {ξt}]. (46)

One can easily see that this characteristic functional is written as

E
[
e−νr(f)|π, {zc, θ∗c}, {ξt}

]
=

E[p(π, {zc, θ∗c}, {ξt}|νr)e−νr(f)]

E[p(π, {zc, θ∗c}, {ξt}|νr)]
, (47)

and the denominator is a special case of the numerator when f = 0 for all θ ∈ Θ. Hence we focus on
computing the numerator. Let Π be the underlying Poisson process of νr.

E
[
p(π, {zc, θ∗c}, {ξt}|νr)e−νr(f)

]
=

T∏
t=1

ξnt−1
t

Γ(nt)

∏
r′ 6=r

exp

{
− νr′(Θ)

( T∑
t=1

qt,r′ξt

)}∏
c∈π

q̄c,zc
∏
c∈π
zc 6=r

w|c|c

×E

[
exp

{
−
∫
w

(
f(θ) +

T∑
t=1

qt,rξt

)
Π(dw, dθ)

} ∏
c∈π
zc=r

w|c|c

]
. (48)

By applying the Palm formula or simply by Lemma 2 in [4], we get

∝ E

[
exp

{
−
∫
w

(
f(θ) +

T∑
t=1

qt,rξt

)
Π(dw, dθ)

}]

×
∏
c∈π
zc=r

Hr(θ
∗
c )

∫
w|c|c exp

{
− wc

(
f(θ∗c ) +

T∑
t=1

qt,rξt

)}
ρr(wc). (49)

By the Campbell’s formula [5], the expectation for Poisson process is evaluated as

= exp

[∫ [
exp

{
− w

(
f(θ) +

T∑
t=1

qt,rξt

)}
− 1

]
ρr(dw)Hr(dθ)

]

×
∏
c∈π
zc=r

Hr(θ
∗
c )

∫
w|c|c exp

{
− wc

(
f(θ∗c ) +

T∑
t=1

qt,rξt

)}
ρr(wc). (50)

Now we set f = 0 to get the denominator.

E[p(π, {zc, θ∗c}, {ut}|νr)] ∝ exp

[∫ {
exp

(
− w

T∑
t=1

qt,rξt

)
− 1

}
ρr(dw)Hr(dθ)

]

×
∏
c∈π
zc=r

Hr(θ
∗
c )κρr

(
|c|,

T∑
t=1

qt,rξt

)
. (51)
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Then dividing the numerator with the denominator yields

E
[
e−νr(f)|π, {zc, θ∗c}, {ut}

]
= exp

[∫
(e−wf(θ) − 1) exp

(
− w

T∑
t=1

qt,rξt

)
ρr(dw)Hr(dθ)

]

×
∏
c∈π
zc=r

∫
w
|c|
c exp{−wc(f(θ∗c ) +

∑
t qt,rξt)}

κρr (|c|,
∑
t qt,rξt)

ρr(dwc). (52)

This is the characteristic functional of a CRM with exponentially tilted Lévy measure ρ̄r and fixed atoms as
defined in (42). The marginal likelihood can easily be obtained by similar computations since

p(π, {zc, θ∗c}, {ξt}) = E
[
p(π, {zc, θ∗c}, {ξt})|{νr})

]
. (53)

4.3 Posterior inference via marginal Gibbs sampling

We describe ths marginal Gibbs sampling algorithm we used in our paper. Again, the same stuff can be
found in [4]. Combined with the likelihood function L, the joint likelihood of mixture model is written as:

p(X1:T , π, {zc, θ∗c}) =

T∏
t=1

ξnt−1
t

Γ(nt)

R∏
r=1

exp

{
− ψρr

( T∑
t=1

qt,rξt

)}

×
∏
c∈π

q̄czcκρr

(
|c|,

T∑
t=1

qt,zcξt

)
L(X(c)|θ∗c )Hzc(θ

∗
c ). (54)

Suppose that we use NGGP with the same base measure H as Lévy measures for νr:

Hr = H (55)

ρr(w) =
αr

Γ(1− σ)
w−1−σe−τw (56)

κρr (m,u) =
αrΓ(m− σ)

(u+ τ)m−σΓ(1− σ)
(57)

ψρr (u) =
αr
σ
{(τ + u)σ − τσ}. (58)

Here, for simplicity, we only varied the hyperparemeter αr and fixed other hyperparameters σ and τ . We
also assume that H is a conjugate prior for L. Then we get

p(X1:T , π, {zc}) =

T∏
t=1

ξnt−1
t

Γ(nt)
exp

[
−

R∑
r=1

αr
σ

{( T∑
t=1

qt,rξt + τ

)σ
− τσ

}]∏
c∈π

q̄c,zcαzcΓ(|c| − σ)p(X(c)|Hc)
(
∑
t qt,zcξt + τ)|c|−σΓ(1− σ)

. (59)

Sampling c and zc

The cluster membership of each index (t, i) is sampled at each iteration. (t, i) may be allocated to a existing
cluster c ∈ π\ti where π\ti is a partition of I1:T except (t, i). Also, (t, i) may create a new cluster which may

come from one of the basis measures {νr}Rr=1.

p((t, i) ∈ c| . . . ) ∝
qt,zc(|c| − σ)p(X(c∪(t,i))|Hc∪(t,i))

(
∑
t qt,zcξt + τ)p(X(c)|Hc)

(60)

p((t, i) ∈ c /∈ π\ti, zc = r| . . . ) ∝
qt,rαrp(X

(c∪(t,i))|Hc∪(t,i))

(
∑
t qt,rξt + τ)1−σ . (61)
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Sampling ξt

The posterior distribution of ξt is written as

p(ξt| . . . ) ∝ ξnt−1
t exp

{
−

R∑
r=1

αr
σ

(
qt,rξt +

∑
t′ 6=t

qt′rξt′ + τ

)σ}∏
c∈π

(
qzc,tξt +

∑
t′ 6=t

qzc,t′ξt + τ

)σ−|c|
. (62)

As in [7, 4], we sample ξt vial slice-sampling [8] in log domain. Let vt = log(ξt). Then

log p(vt| . . . ) = ntvt −
R∑
r=1

αr
σ

(
qt,re

vt +
∑
t′ 6=t

qt′,rξt′ + τ

)σ
−
∑
c∈π

(|c| − σ) log

(
qt,zce

vt +
∑
t′ 6=t

qt′,zcξt + τ

)
+ const. (63)

Sampling α

We place a Gamma prior on αr ∼ Gamma(aα, bα). Then

αr| · · · ∼ Gamma

(
aα +

∑
c∈π

I[zc = r], bα +

R∑
r=1

(
∑
t qt,rξt + τ)σ − τσ

σ

)
. (64)

Hence, we can easily sample αr from Gamma distribution.

Sampling τ

We place a Gamma prior on τ ∼ Gamma(aτ , bτ ). Then

p(τ | . . . ) ∝ τaτ−1e−bτ exp

[
−

R∑
r=1

αr
σ

{( T∑
t=1

qt,rξt + τ

)σ
− τσ

}]∏
c∈π

( T∑
t=1

qt,zcξt + τ

)σ−|c|
. (65)

Again, as in [7, 4], τ can easily be sampled via slice sampling in log domian. Let ξ = log(τ).

log p(ξ| . . . ) = aτξ − bτeξ −
R∑
r=1

αr
σ

{( T∑
t=1

qt,rξt + eξ
)σ
− eξσ

}

−
∑
c∈π

(|c| − σ) log

( T∑
t=1

qt,zcξt + eξ
)

+ const. (66)

In practice, following [7], we just fixed τ = 10−3.

Sampling σ

We place a Beta prior on σ ∼ Beta(aσ, bσ).

p(σ| . . . ) ∝ σaσ−1(1− σ)bσ−1 exp

[
−

R∑
r=1

αr
σ

{( T∑
t=1

qt,rξt + τ

)σ
− τσ

}]∏
c∈π

Γ(|c| − σ)

(
∑
t qt,zcξt + τ)|c|−σΓ(1− σ)

, (67)

which can easily be sampled using slice sampling, as in [7].
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