Supplementary Material for Incremental Tree-Based
Inference with Dependent Normalized Random
Measures

1 Review of Dirichlet Process Mixture Models

In this section, we briefly review Dirichlet process mixture model (DPM) and derive its marginal likelihood.
Let X = {z;}_, be a dataset to model. The generative process of X under DPM is written as:

uloy H ~ DP(o, H) (1)
Oilpw ~ n (2)

Here, p can be marginalized out to yield Chinese restaurant process (CRP), which is defined as a conditional
distribution of 6; given 64, ...,0;—1.

aH + 371 b,
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p(6s]61 1) PR (4)
Without loss of generality, assume that {6;}7, are clustered into K distinct values {0}, as follows:
br=0=---=0,, = 0] (5)
9n1+1 = 9711-1‘2 = (9711-"-712 = 9; (6)
(7)
Onitodng 141 = =bniqgn,e = Ok, (8)
where nq + - -- +ng = n. By (4), the joint probability of {6;}?" ; is computed as
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From (9), one can see that the joint probability of {6;}?_; is invariant to the ordering of items or cluster
labels. Hence, we can write (9) as a proability of a partition 7 of I,, and unique parameters {0 }.c, assigned



to each cluster of the partition:

pUBY) = bl (82 o) = s T] ar(e

cem
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The same result can be derived using Theorem 2 of in our paper. By Theorem 2, the joint probability of

{0;} and auxiliary variable ¢ is

g —1o=%p(&)
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In case of DP, 9,(§) and k,(|c|,§) are computed as

0O = [ (e aule e = alog(1 +6)
rp(lcl €)= /]R+ wle=Eau e = (f‘i(gl)
Hence, we have
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Combined with the likelihood L, the joint probability of DPM is then written as:
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p(X, 7 {00 cer) = T(a+n)

[T erde)L(x6:)H(67),
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and the marginal likelihood of X is

p(X) = a+n ZHar (X H,).
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2 Completely Random Measure

In this section, we provide more specific backgrounds on completely random measures (CRMs). Let us
consider a measure space (0, ), where Q is the o-algebra of ©. A random measure p on (0,€) is a random
variable whose values are measures on (©, €2).

Definition 1. A random measure p on (©,52) is completly random if for any disjoint As,..., A, C ©,
the random variables p(Ay), ..., (A,) are independent.

It has been shown [1] that a CRM is decomposed into the sum of three independent components: (1)
nonrandom measure; (2) a countable collection of nonnegative randomm masses at fixed locations, and (3)
countable collection of nonnegative random masses at random locations.

a
a
Theorem 1. ([1]) A CRM u is decomposed into the sum of three independent components:

- R+
J

o + Zvj(se; + Zwk§9ka
j k

where po is a nonrandom measure, {v;} are mutually independent random variables on R™ corresponding
to random weights of fixed atoms {9;‘} of ©, and I = 37, O(wy.0,) 18 a Poisson process defined on a product

space Rt x © with Lévy intensity \(dw, dd).

Definition 2. A CRM p is said to be homogeneous if the Lévy intensity \ of the underlying Poisson
process I1 decomposes into a product of two intensities:

Adw, df) = p(dw)H (d6). (19)

Throughout this article, we consider only homogeneous CRMs without nonrandom measures and fixed atoms,
and we write

= /]R+ II(dw, 8) = zk:wkégk ~ CRM(p, H). (20)

Without loss of generality, we assume that f® H(df) = 1. We also assume that p satisfies the following two
conditions

/ p(dw) = oo, (1—e ")p(dw) < oo, (21)
R+ R+

where the first condition ensures that p has infinite atoms (1 = Y p; widg, ), and the second condition
ensures that the total mass u(©) = >"~, wy is finite [2].

3 Posterior Analysis of Normalized Random Measure Mixture Models

In this section, we provide the proof of Theorem 2 in our paper. The original proof can be found in [2, 3].

Theorem 2. ([2], Theorem 2 in paper) Let u ~ CRM(p, H) on (©,8) and let (7,{0%}) ~ . Introducing
an auziliary variable & ~ Gamma(n, 1(0©)), the posterior of p is given by

/J‘f,’/T, {0:} =p+ Z wcég:, (22)
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where

_ _ _ def —tw

g~ CRM(p, H), p(dw) = e Yp(dw),
and the posterior density over random weights of fixed atoms is given by

oy wleSuep(u,)
p(wc|§77ﬂ{9c}) = W,

Kp(m, &) def /R+ w™e™ Y p(dw).

The marginal distribution is given by

e~ ¥o(&)
p(r {0:3,6) = —=——[1 #o(lcl,OH®),

cem
def —tw
vol6) / (1 — e~ )p(dw).
R+
The predictive distribution is given by
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Proof. The likelihood of (7, {0} }.cr) given p is

p(m {0} cenln) = p(©) 7" [T wi, (23)

cem

where w,. is a mass of 8. We introduce an auxiliary variable £ as follows:

pElp) = Gamma(¢[n, u(O))
TGRS TG (24)

We will compute the characteristic functional of the posterior process |, {0 }cex, &, which is given as:

E[p(r, {67}, €|p)e )]
Elp(m, {0z} ¢lw)] (25)

E e_H(f) |7T, {QZ}CEW7 £:|
where f is an arbitrary bounded function on © and

et et exp{ -/ f(9)u(d9)}~ (26)

The denominator is a special case of the numerator when f = 0, so we first compute the numerator. Let II
be the underlying Poisson process of pu.

E[pm {0:},s|u>e“<f>}
SEN IR
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By applying the Palm formula or by Lemma 2 in [4], we get

x ow{ ~ [wtr)+ontau.an b T #6D) [ el exp(-w.(70) + o) (29

cem

By the Campbell’s formula [5], this is computed as

= exp{ / (7 UOF —1)p(d }HH (62) / I exp{—wc(f(67) + )}p(we)  (29)

cem

If we set f =0, we get the denominator:

(. {8:).€) = Elp(r. {02}, )] exp{ / <e-w€—1>p<dw>H<de>}HH(@:) J

cem

- 5” Hn,, |c|, &) H(67). (30)
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Now dividing the numerator with the denominator gives

E[e™Olm, {62} cer €]
_ exp[ /( S OHE) _ ) () H dam / £l exp{—we(f(8;) +&)}oldw.)

cem '%P(|C|7 f)
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= oo i b pld) () H/ (1]

(31)
The first term inside the exponential is the characteristic functional of CRM g with Lévy measure p =
e “p(dw). The second terms inside the product is the characteristic functional of fixed atoms 6 with
random masses w, with distribution
w‘ = Swe p(w,)

Plwe) = =1 )

(32)
O

4 Posterior analysis for Mixed Normalized Random Measure Mixtures
In this section, we describe the posterior analysis for mixed normalized random measure (MNRM) mix-

tures [6]. All the derivations and proofs can be found in the supplementary material of the original paper [4],
and here we just rewrite them using our own notations.

4.1 Model

Let {v,}2 | be mutually independent homogeneous CRMs on ©. As in our paper, we will call these CRMs
as basis CRMs.

vy = Zwrkémk ~ CRM(p,, H,) forr=1,...,R. (33)
k=1



Suppose that we are to model a dataset X 1.7 = Uthl X ;. The CRM p; to generate X is then represented
as a mixture of the basis measures as follows:

R
MtZquur fort=1,...,T. (34)
Now for each data point x4;, a parameter 0;; is drawn from its corresponding normalized random measure.

id o~

{00} ity e = = pu/11(©). (35)

Since all the 6;; came from one of the (dlscrete) bablb measures, {{6;;}:, }it, induces a partition 7 of the

set of indices I1.7. Moreover, each cluster ¢ in 7 has its own 1nd1cator varlable z. which indicates that the

parameter allocated to the Cluster ¢ had come from the basis measure v,. We write 0% as a representation of
the parameter allocated to the cluster c. Also, let w. be the weight corresponding to 6.

{01 Yy = (20,00 een) (36)
we = v, (0)): (37)

4.2 Posterior processes

The likelihood of (7, {z., 0%}) given {v,} is written as

T
P, {ze, O3 }) = HHE’Sq;ijr R

Now we introduce a set of auxiliary Gamma variables {&;}7_; to obtain closed-form posterior processes.

c)|cﬂIt ng

(38)

alint ~ Gamma(nt, qumur(@)) (39)

r=1
. & A
p(m, {ze, 02} {6 H v ) = H H th &t ) ][ Gzl (40)
cem
e g, 1, 0
Theorem 3. The posterior process v,.|m,{zc, 05}, {&} is written as
velm, {ze, 02}, {w} = 7 + Y T[ze = r]wedp:, (41)
cem

where

T
p(dw) % exp { w0 g };»(dw) (12)
t=1
v, ~ CRM(p,, H,) (43)
wlcCI eXP( We Zt qt 'rgt)pr (wc)

p(wc‘ ce ) = ,qpr(|c|, Zt Qt’,rgt) . (44)

Moreover, the marginal distribution is written as

Pl {2, 021,460 H . S11 exp{ — b, @;qs)} -0 (c| th 5) L), (45)

cem




Proof. We will compute the characteristic functional of the process v.|rm,{z.,0%},{&} for an arbitrary
bounded measurable function f on ©.

et O, (2o 823, (u)] =5 exo { = [ 1Owntan) |, o023 (60 (46)

One can easily see that this characteristic functional is written as

T Elp(m e 0} € ) D)
Bl O e 0246 = = i et

and the denominator is a special case of the numerator when f = 0 for all # € ©. Hence we focus on
computing the numerator. Let II be the underlying Poisson process of v..

£ [p(”v {ze,0c} {ft}\w)e*w)]

T oo { - @ (Sae) T T ot
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' ceET zcc€7zrr
T
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By applying the Palm formula or simply by Lemma 2 in [4], we get

exp { - /w (f(e) + i qt,r&>H(dw, dﬂ)}]
< [T H#-7) / wle! exp{ — w, < f05) + gqm&) }pr(wc)- (49)

cem
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By the Campbell’s formula [5], the expectation for Poisson process is evaluated as

e [ [ oo w50+ iqg) b1l m(dw)Hr(de)]
< [T H#-) /w\;l exp { — w, (f(a;f) - t:i qt,r§t> }pr(wc)- (50)

cem
Ze=T

Now we set f = 0 to get the denominator.
T
Elp(m, {zc, 05}, {ut}|lvr)] <  exp [/ { exp <— wZQt,7-§t> - 1}p,.(dw)HT(d9)]
t=1

<] Hr<ez>np7,(|c|éqt,r@). (51)

cem
Ze=T



Then dividing the numerator with the denominator yields

Ele " D|r, {2, 0}, {Ut}:| = exp [/(ewf(e) —1)exp <— wiqt,rft)pr(dw)fﬂ(dﬁ)]
t=1

exp{ we(f(0 *)+ZtQt,r§t)}
) H/ RS )

Ze=T
This is the characteristic functional of a CRM with exponentially tilted Lévy measure p, and fixed atoms as
defined in (42). The marginal likelihood can easily be obtained by similar computations since

p(ﬂ', {an 9Z}a {gt}) =E {p(ﬂ', {ch 9:}a {gt})HVr})} . (53)
O

pr(dwe). (52)

4.3 Posterior inference via marginal Gibbs sampling

We describe ths marginal Gibbs sampling algorithm we used in our paper. Again, the same stuff can be
found in [4]. Combined with the likelihood function L, the joint likelihood of mixture model is written as:

gnf—l R T
p(XlzTa T, {267 H H €xp { - qszr <Z qt,r€t> }

<L (1 th 6 ) LX) .. (6) (54)

cem

Suppose that we use NGGP with the same base measure H as Levy measures for v,.:

H = H (55)
pr(w) = ﬁw_l_%_m (56)

B a,I'(m — o)
’%Pr(m’u) - (U+T)m_gr(1_0) (57)
Up(w) = T +wT 7% (58)

Here, for simplicity, we only varied the hyperparemeter «, and fixed other hyperparameters o and 7. We
also assume that H is a conjugate prior for L. Then we get

g | T G0z L1l = 0)p(X 9 [2He)
p(X 11,7, {2:}) t eXp l Z { (Z qt.r&t + 7‘) -7 }] i (3, qus b+ =T (1 = o) (59)

r=1

Sampling ¢ and z,.

The cluster membership of each index (¢, ) is sampled at each iteration. (¢,¢) may be allocated to a existing
cluster ¢ € m\4; where m\y; is a partition of I;.7 except (,7). Also, (t,i) may create a new cluster which may

come from one of the basis measures {v,.}2_,.
g1,z (le = O)p(X D Hoy.0)
(4 de.zee + T)P(X O |He)
Qt,rarp(X(cu(t’i)) [Heu,i))
Qo @& +1)0

p((t,1) €¢|...) (60)

p((t,i) €c g My 2e=7]...) (61)



Sampling &;
The posterior distribution of &; is written as
. R o, o o—|c|
p(&el...) o &' exp { - Z > (Qt,rft + Z Qrr&e + T) } H (ch,tft + Z Qe &t + 7') : (62)
r=1 t'#t cEm t'#t

As in [7, 4], we sample & vial slice-sampling [8] in log domain. Let v; = log(&;). Then
R o o
logp(vt\ e ) = NtV — Z FT (thevt + tl;tqt/7/r’§t/ + 7'>

= (el — o) log (qt,zce”* D are bt T) + const. (63)

cem t!#t

r=1

Sampling «

We place a Gamma prior on «, ~ Gamma(a,bs). Then

R g o
o~ Gamma(aa T ) (PR o DA EL ki ) (64)
g
r=1

cem

Hence, we can easily sample «, from Gamma distribution.
Sampling 7
We place a Gamma prior on 7 ~ Gamma(a,, b;). Then

o xrecteren 3 (Sae ) N T (Bnser) "

r=1 cem

Again, as in [7, 4], 7 can easily be sampled via slice sampling in log domian. Let & = log(7).

R T -
10gp(£|"') = anbTeSZO;”{<th7T&+eg> 650}
t=1

r=1

T
- Z(|C| —o)log (Z Qt,2.5 + 65) + const. (66)
t=1

cem

In practice, following [7], we just fixed 7 = 1073,

Sampling o

We place a Beta prior on o ~ Beta(ag, by ).

L(le| — o)
H (Zt Gt 2. & + T)‘C|*0'I‘(1 _ 0)’ (67)

r=1 cem

which can easily be sampled using slice sampling, as in [7].
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