
Incremental Tree-Based Inference with Dependent Normalized Random
Measures

Juho Lee and Seungjin Choi
Department of Computer Science and Engineering

Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea
{stonecold,seungjin}@postech.ac.kr

Abstract

Normalized random measures (NRMs) form a
broad class of discrete random measures that
are used as priors for Bayesian nonparametric
models. Dependent normalized random mea-
sures (DNRMs) introduce dependencies in a set
of NRMs, to facilitate the handling of data where
the assumption of exchangeability is violated.
Various methods have been developed to con-
struct DNRMs; of particular interest is mixed
normalized random measures (MNRMs), where
DNRM is represented as a mixture of underlying
shared normalized random measures. Emphasis
in existing works is placed on the construction
methods of DNRMs, but there is a little work
on efficient inference for DNRMs. In this pa-
per, we present a tree-based inference method for
MNRM mixture models, extending Bayesian hi-
erarchical clustering (BHC) which was originally
developed as a deterministic approximate infer-
ence for Dirichlet process mixture (DPM) mod-
els. We also present an incremental inference for
MNRM mixture models, building a tree incre-
mentally in the sense that the tree structure is par-
tially updated whenever a new data point comes
in. The tree, when constructed in such a way,
allows us to efficiently perform tree-consistent
MAP inference in MRNM mixture models, de-
termining a most probable tree-consistent parti-
tion, as well as to compute a marginal likelihood
approximately. Numerical experiments on both
synthetic and real-world datasets demonstrate the
usefulness of our algorithm, compared to MCMC
methods.

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

1 Introduction

Normalized random measures (NRMs) [1] have recently
been highlighted due to their flexibility and generality. As a
broad class of discrete random measures, NRMs are used as
priors in hierarchical Bayesian mixture modelling. NRMs
include Dirichlet process (DP) [2] and normalized gener-
alized Gamma process (NGGP) [3], the latter of which is
an flexible prior with power-law behavior. Like Dirich-
let process mixture models (DPMs) [4], NRMs apply well
to NRM mixture models. Moreover, NRMs yield an ex-
changeable predictive distribution as the DP yields the ex-
changeable predictive distribution (usually referred to as
the Chinese restaurant process (CRP) [5]); this makes the
inference of NRM mixtures tractable.

The exchangeability of NRMs often fails with real-world
datasets, such as time-varying data that are not exchange-
able between different time steps, or spatial data that are not
exchangeable between different locations. Those datasets
shows dependency to certain covariates; for time varying
data and spatial data, time and spatial locations, respec-
tively, are those covariates. Hence, instead of a single ran-
dom measure, models that consider a set of dependent ran-
dom measures have been studied. In early time, dependent
DPs (DDPs) [6] - which considers sets of dependent DPs
were proposed, and many variations of DDP have been pro-
posed [7, 8, 9, 10] by varying the way of giving dependency
to multiple DPs. Such works has recently been extended to
NRMs [11, 12, 13], forming a class of models called de-
pendent NRMs (DNRMs).

Despite the development of flexible models, the inference
of those models has not been extensively studied. For
DPMs, various posterior inference algorithms were pro-
posed, including MCMC sampling [14, 15], variational
inference [16] and Bayesian hierarchical clustering [17].
However, for DDPs, NRMs and DNRMs, almost every
model uses MCMC sampling for inference. Although
MCMC sampling is flexible and convenient to derive, it is
generally expensive. Moreover, MCMC is not eligible for

558

Incremental Tree-Based Inference with Dependent Normalized Random Measures

incremental (online) inference when datasets are not given
all at once, or when the size of a dataset is too large to fit in
memory; thus, MCMC is not eligible for use in clustering
with respect to large-scale or streaming datasets.

In this paper, we propose a novel posterior inference al-
gorithm for DNRM mixtures. Our approach is based on
Bayesian hierarchical clustering (BHC). BHC is a proba-
bilistic hierarchical clustering algorithm, and at the same
time, is an approximate posterior inference algorithm for
DPMs. BHC builds a binary tree that represents the clus-
tering of given data. This tree embeds the clusterings of
datasets that can be obtained by cutting the tree, and each
of those clusterings corresponds to a sample from the pos-
terior of clusterings under DPM. L ikewise, our approach
builds a binary tree that embeds the samples from the pos-
terior of clusterings under DNRM mixtures. Moreover, un-
like the original BHC, our approach incrementally builds
trees by sequentially adding nodes. As a result, our new ap-
proach is much more efficient than the original BHC, and
is well-suited to online inference.

2 Background

We briefly review NRMs [18, 1], and DNRMs with par-
ticular emphasis on recently-developed mixed normalized
random measures (MNRMs) [12]. We also provide a brief
overview of BHC [17], on which we base our incremental
tree-based inference.

2.1 Normalized Random Measures

A completely random measure (CRM) [19] µ on a measure
space (Θ,Ω) is a random measure such that for any disjoint
A1, . . . , An ⊂ Θ, the random variables µ(A1), . . . , µ(An)
are independent. A CRM can be represented as a linear
functional of a Poisson process Π with intensity λ(dw, dθ)
on the product space R+ ×Θ:

µ =

∫
R+

wΠ(dw, dθ) =
∑
k

wkδθk . (1)

Here, λ is called the Lévy intensity of µ. µ is said to be ho-
mogeneous if its Lévy intensity decomposes into a product
of two intensities, λ(dw, dθ) = ρ(dw)H(dθ). Throughout
this paper, we consider only homogeneous CRMs. We also
assume that ρ satisfies:∫

R+

ρ(dw) =∞,
∫
R+

(1− e−w)ρ(dw) <∞, (2)

which ensure that µ has infinite atoms and the total mass
µ(Θ) =

∑∞
k=1 wk is finite [1].

An NRM µ̃ is constructed by normalizing a CRM µ by its

total mass µ(Θ):

µ =
∞∑
k=1

wkδθk ∼ CRM(ρ,H), (3)

µ̃ = µ/µ(Θ). (4)

A well-known example of NRM is a DP, which is obtained
by normalizing a Gamma process that is a CRM with Lévy
intensity ρ(dw)H(dθ) = αw−1e−wdwH(dθ). A gener-
alized Gamma process (NGGP) is a CRM with Lévy in-
tensity ρ(dw)H(dθ) = α

Γ(1−σ)w
−1−σe−τwH(dθ), where

α > 0, σ ∈ (0, 1), and τ ≥ 0. Normalizing a GGP by its
total mass yields a normalized GGP (NGGP) [3].

The calculation of the posterior distribution of NRMs is
crucial in Bayesian nonparametric models. We present
a short summary of the posterior analysis of NRMs, the
details of which can be found in [1]. Denote by In =
{1, . . . , n} a set of indices. A partition π of In is a set
of disjoint nonempty subsets of In whose union is In.
The set of all possible partitions of In is denoted by Πn

For instance, in the case of I5 = {1, 2, 3, 4, 5}, an ex-
emplary random partition that consists of three clusters is
π =

{
{1}, {2, 4}, {3, 5}

}
; its members are indexed by

c ∈ π. Suppose that we are given n observations {θi}
drawn i.i.d. from a normalized random measure µ̃, i.e.,
θi ∼ µ̃ for i = 1, . . . , n. Since µ̃ is discrete, different
observations can take the same values, and thus induce a
partition π ∈ Πn when observations with the same values
are grouped as clusters. For each cluster c ∈ π, we denote
by θ∗c the unique value taken by c and let wc = µ(θ∗c). The
theorem below summarizes the posterior characterization
of µ̃, given (π, {θ∗c}c∈π).
Theorem 1 ([1, 20]). Let µ ∼ CRM(ρ,H) on (Θ,Ω) and
let (π, {θ∗c}c∈π) ∼ µ̃. Introducing an auxiliary variable
ξ ∼ Gamma(n, µ(Θ)), the posterior of µ is given by

µ|ξ, π, {θ∗c} = µ̄+
∑
c∈π

wcδθ∗c , (5)

where

µ̄ ∼ CRM(ρ̄, H), ρ̄(dw)
def
= e−ξwρ(dw),

and the posterior density over random weights of fixed
atoms is given by

p(wc|ξ, π, {θ∗c}) =
w
|c|
c e−ξwcρ(wc)

κρ(|c|, ξ)
,

κρ(m, ξ)
def
=

∫
R+

wme−ξwρ(dw).

The marginal distribution is given by

p(π, {θ∗c}, ξ) =
ξn−1e−ψρ(ξ)

Γ(n)

∏
c∈π

κρ(|c|, ξ)H(θ∗c),

ψρ(ξ)
def
=

∫
R+

(1− e−ξw)ρ(dw).

559

Juho Lee and Seungjin Choi

The predictive distribution is given by

θ|ξ, π, {θ∗c} ∝ κρ(1, ξ)H +
∑
c∈π

κρ(|c|+ 1, ξ)

κρ(|c|, ξ)
δθ∗c .

In the case of DP, the marginal distribution is written as

p(π, {θ∗c}, ξ) =
ξn−1

Γ(n)(ξ + 1)n+α

∏
c∈π

αΓ(|c|)H(θ∗c).

The auxiliary variable ξ can be easily marginalized out in
this case, leading to

p(π, {θ∗c}) =
Γ(α)

Γ(n+ α)

∏
c∈π

αΓ(|c|)H(θ∗c).

The predictive distribution, which is also known as CRP, is
then written as

p(θ|π, {θ∗c}) ∝ αH +
∑
c∈π
|c|δθ∗c .

In the case of NGGP, however, the auxiliary variable ξ can-
not be easily marginalized out. Instead, we get the follow-
ing joint distribution of ξ and π:

p(π, {θ∗c}, ξ) =
ξn−1 exp{−ασ ((τ + ξ)σ − τσ)}

Γ(n)(ξ + τ)n

×
∏
c∈π

αΓ(|c| − σ)

(ξ + τ)−σΓ(1− σ)
H(θ∗c).

2.2 Normalized Random Measure Mixture Models

Suppose that we are given a set of n observations X =
{x1, . . . ,xn}. NRM mixture models assume that observa-
tions {xi} are drawn from a distribution L(·|θi), treating
θi drawn from a NRM µ̃, as the parameter of the distribu-
tion of observation xi. The generation process in a NRM
mixture model is described as follows.

µ ∼ CRM(ρ,H), (6)
θi|µ̃ ∼ µ̃, µ̃ = µ/µ(Θ), (7)
xi|θi ∼ L(·|θi). (8)

For each cluster c ∈ π, we denote by X(c) def
= {xi | i ∈

c} a collection of xi’s where index i is associated with c.
Choosing the base distribution H that is conjugate to the
likelihood L(·|θi) yields the joint distribution in the NRM
mixture model that is of the form

p(X, π, ξ) ∝
∏
c∈π

κρ(|c|, ξ)p(X(c)|Hc), (9)

where

p(X(c)|Hc) def
=

∫
θ

{∏
i∈c

L(xi|θ)
}
H(dθ). (10)

Here, Hc is a hypothesis that the data in c were generated
from a single cluster, and p(X(c)|Hc) is the marginal prob-
ability whenHc holds. Posterior inference in an NRM mix-
ture evaluates the posterior distribution p(π|X, ξ), and so
that the most probable partition π given X can be calcu-
lated. However, this computation is intractable since the
evaluation of the marginal likelihood p(X, ξ),

p(X, ξ) ∝
∑
π∈Πn

∏
c∈π

κρ(|c|, ξ)p(X(c)|Hc), (11)

requires a summation over Πn. The most popular approach
to approximate inference is the use of an MCMC sam-
pler [21], where p(X, ξ) is approximately computed by
drawing many samples from p(π|X, ξ). Sequential Monte
Carlo (SMC) approximates p(π|X, ξ) by generating fixed
number of sequentially growing particles [22].

2.3 Dependent Normalized Random Measure
Mixtures

As mentioned, there are several ways to construct depen-
dent NRMs, and we focus on a specific model called the
mixed normalized random measures (MNRMs) proposed
in [12]. Assume that we want to model T datasets indexed
by a covariate t. Let Xt = {xt,1, . . . ,xt,nt} and X1:T =⋃T
t=1Xt. Let It,nt = {(t, 1), . . . , (t, nt)} be a set of in-

dices for Xt where each index is represented as a tuple of
covariate t and data index i. We write I1:T =

⋃T
t=1 It,nt .

In MNRM, a set of independent basis CRMs on (Θ,Ω) is
defined with covariate r = 1, . . . , R, written as

νr =

∞∑
k=1

wr,kδθr,k ∼ CRM(ρr, Hr), r = 1, . . . , R. (12)

Then each dependent CRM µt is represented as a mixture
of basis CRMs with mixing coefficients qt,r.

µt =
R∑
r=1

qt,rνr. (13)

For example, suppose that we are modelling a time-varying
dataset that changes over time. Let R ⊂ {1, . . . , T}, and
qt,r = exp(−γ|t − r|)1. If t and t′ are close, the corre-
sponding CRMs µt and µt′ are similar since their mixing
coefficients qt,r and qt′,r are similar. MNRMs are then ob-
tained by normalizing µts.

Like in NRMs, Drawing {{θt,i}nti=1}Tt=1 from {µ̃t}Tt=1 in-
duces a partition π of I1:T and the unique samples {θ∗c}c∈π .

Theorem 2. ([12]) Let (π, {θ∗c}) be the samples drawn
from DNRMs described as above. For each cluster c ∈ π,
introduce an auxiliary variable zc where zc = r means

1These mixing coefficients were originally used in the earlier
work on DDPs. [9]

560

Incremental Tree-Based Inference with Dependent Normalized Random Measures

that θ∗c has come from the rth basis CRM νr(νr(θ
∗
c) > 0).

Additionally, introduce a set of auxiliary variables {ξt}Tt=1

where ξt ∼ Gamma(nt, µt(Θ)). Then the marginal and
predictive distribution is written as

p(π, {zc, θ∗c}, {ξt}) =

T∏
t=1

ξnt−1
t

Γ(nt)

∏
r

e−ψρr (ξ̄r)

×
∏
c∈π

q̄c,zcκρr (|c|, ξ̄zc)Hzc(θ
∗
c), (14)

p(θ∗|π, {zc, θ∗c}) ∝
R∑
r=1

κρr (1, ξ̄r)Hr

+
∑
c∈π

qt,zc
κρzc (|c|+ 1, ξ̄zc)

κρzc (|c|, ξ̄zc)
δθ∗c , (15)

where

q̄c,zc
def
=

T∏
t=1

q
|c∩It,nt |
t,zc , ξ̄r

def
=

T∑
t=1

qt,rξr. (16)

The marginal and predictive distribution of the MNRM has
a form similar to that of NRM, except that it includes zc
indicating the basis CRMs from which each sample was
drawn. Hence, the predictive distribution includes R possi-
bilities of drawing new samples from each basis CRM νr.

The generative process of an MNRM mixture model is then
straightforward,

θt,i ∼ µ̃t, xt,i|θt,i ∼ L(·|θt,i), (17)

and the joint likelihood is written as

p(X1:T , π, {ξt})
∝

∏
c∈π

q̄c,zcκρzc (|c|, ξ̄zc)p(X(c)|zc,Hc), (18)

where p(X(c)|zc,Hc) is the same as (10) except that it is
integrated with Hzc instead of H .

2.4 Bayesian Hierarchical Clustering

Bayesian hierarchical clustering (BHC) is a agglomerative
clustering, but unlike traditional methods, it uses marginal
likelihoods of a probabilistic model to decide which clus-
ters to merge, providing a few advantages over traditional
distance-based agglomerative clustering algorithms [17].
BHC was also shown to provide a fast bottom-up ap-
proximate inference for Dirichlet process mixture models
(DPMs). We briefly review BHC here since we base our
tree-based inference on it.

The marginal likelihood of dataX = {x1, . . . ,xn} is writ-
ten as a sum over all possible partitions:

p(X) =
∑
π∈Πn

[(∏
c∈π

p(X(c)|Hc)
)
p(π)

]
, (19)

where p(X(c)|Hc) is the marginal probability of X(c)

when the hypothesis Hc holds, where Hc assumes that all
elements in X(c) were generated from a single cluster c.
In the case of mixture models with DP prior drawn from
DP(α,H), the marginal likelihood is of the form [17]:

p(X) =
Γ(α)

Γ(n+ α)

∑
π∈Πn

∏
c∈π

αΓ(|c|)p(X(c)|Hc), (20)

where |c| is the size of cluster c and Γ(·) is gamma func-
tion. The evaluation of the marginal likelihood requires
summing over all possible partitions of the data, which is
not tractable in practice.

BHC approximately computes the marginal likelihood
(20), summing over all tree-consistent partitions for a par-
ticular tree built greedily bottom-up, instead of summing
over all possible partitions of the data. Such approximation
was shown to yield a tight lower-bound on the marginal
likelihood [23]. We denote by Tc a binary tree whose leaves
are associated with X(c). When binary trees are used to
explain the generation of X(c), only two cases are consid-
ered: (1) generation from a single cluster, reflected by Hc;
(2) two subclusters X(cl) and X(cr), each of which is as-
sociated with subtrees Tcl and Tcr , respectively. Thus, the
probability ofX(c) in tree Tc is written as:

p(X(c)|Tc) = p(Hc)p(X(c)|Hc)
+
(
1− p(Hc)

)
p(X(cl)|Tcl)p(X(cr)|Tcr). (21)

The prior p(Hc) is recursively defined as follows:

γ{i}
def
= α, γc

def
= αΓ(|c|) + γclγcr ,

p(Hc) def
= αΓ(|c|)/γc, (22)

The marginal likelihood in tree TIn , computed by BHC,
is given below, where one can see that BHC provides an
approximate inference for DPMs.
Theorem 3 ([17]).

p(X|TIn) =
1

γIn

∑
π∈ΠTIn

∏
c∈π

αΓ(|c|)p(X(c)|Hc), (23)

where ΠTIn is the set of all tree-consistent partitions ofX .

A notable distinction of the tree-consistent marginal like-
lihood (23), compared to the true marginal likelihood of
DPM (20) is in summing over only tree-consistent parti-
tions, rather than all possible partitions. In fact, it was
shown in [17] that the tree-consistent marginal likelihood
is a lower-bound on the marginal likelihood of DPM:

Γ(α)γIn
Γ(n+ α)

p(X|TIn) ≤ p(X). (24)

We explain how BHC builds a particular tree TIn , given
data X . Starting from n leaves, BHC calculates the pos-
terior probability p(Hc|X(c), Tc) for each pair (cl, cr) to

561

Juho Lee and Seungjin Choi

decide which clusters to merge. Subsequent descriptions
are slightly different from the original paper of BHC. To
this end, we introduce the following potential functions

φ(X(c)|Tc) def
= γc p(X

(c)|Tc), (25)

φ(X(c)|Hc) def
= αΓ(|c|) p(X(c)|Hc), (26)

leading to a simpler form of recursion which combines (21)
and (22)

φ(X(c)|Tc) = φ(X(c)|Hc) + φ(X(cl)|Tcl)φ(X(cr)|Tcr). (27)

With the potential functions defined in (25) and (26), the
posterior probability p(Hc|X(c), Tc) for a pair (cl, cr) can
be written as

p(Hc|X(c), Tc) =
p(Hc)p(X(c)|Hc)

p(X(c)|Tc)
=

1

1 + d(cl ∪ cr)
, (28)

where

d(cl ∪ cr) def
=

φ(X(c)|Tcl)φ(X(c)|Tcr)
φ(X(c)|Hc)

. (29)

In fact, d(cl ∪ cr) serves as a distance between clusters,
since p(Hc|X(c), Tc) becomes larger as d(cl ∪ cr) be-
comes smaller. Thus, at each iteration, a pair of clusters
with smallest d value is merged. The advantage of BHC
over the traditional hierarchical clustering is that it can au-
tomatically choose the level at which to cut a tree (i.e.,
choose the proper number of clusters) using the probability
p(Hc|X(c), Tc). If p(Hc|X(c), Tc) < 0.5 (or d(cl ∪ cr) >
1), cl and cr are concluded to be generated from different
clusters and the merging stops. The BHC algorithm is sum-
marized in Algorithm 1. The time complexity of BHC is
O(n2), as in the standard agglomerative clustering.

Algorithm 1 BHC
Input: X = {x1, . . . ,xn}, α

Assign leaf nodes to each {i} for i = 1, . . . , n.
Compute d(cl ∪ cr) for all pair (i, j).
while Minimum d(cl ∪ cr) < 1 do

Merge c = cl ∪ cr with smallest d(cl ∪ cr).
Compute d(c ∪ c′) for remaining nodes c′.

end while

3 Tree-Based Inferences for MNRM
Mixtures

In this section, we describe the main contribution of our
paper. We first extend BHC, defining φ(X(c)|Hc) appro-
priately for MNRM mixture models. Then we present an
incremental tree-based inference algorithm, where we build
a binary tree incrementally in the sense that the binary tree
built is partially updated as a new node comes in.

3.1 BHC for MNRM Mixture Models

It follows from (18) that the marginal likelihood of a
MNRM mixture model is given by

p(X1:T , {ξt})
∝
∑

π∈Π1:T

∏
c∈π

∑
zc

q̄c,zcκρzc (|c|, ξ̄zc)p(X(c)|zc,Hc),(30)

where Π1:T is a set of all possible partitions of I1:T .

The marginal likelihood (30) is similar to the one of a DPM
(20). Thus, it leads to the same recursive equation (27)
for the potential function φ(X(c)|Tc), while we define the
potential function φ(X(c)|Hc) as

φ(X(c)|Hc) def
=

R∑
zc=1

q̄c,zcκρzc (|c|, ξ̄zc)p(X(c)|zc,Hc), (31)

which is different from (26) defined for a DPM. As in
DPMs, we obtain a similar approximate lower bound on
(30), which is given below.

Theorem 4.

φ(X1:T |TI1:T)

=
∑

π∈Π1:T |TI1:T

∏
c∈π

κρzc (|c|, ξ̄zc)p(X(c)|zc,Hc),(32)

which leads to∏
t

ξ
nt−1
t

Γ(nt)

∏
r

e−ψρr (ξ̄r)φ(X1:T |TI1:T) ≤ p(X1:T , {ξt}). (33)

This can be easily proved by a similar manner to Theo-
rem 3.

3.2 Incremental Bayesian Hierarchical Clustering

The posterior inference may be done using original BHC
(Algorithm 1), but there are two problems, in that case.
First, we need to infer {ξt} and hyperparameters. Actu-
ally, even in simple DPM, there is a hyperparameter α, so
the authors of the original paper [17] proposed an EM-like
algorithm that alternates between building the tree and op-
timizing α. This may be very expensive when n is large.
The second problem is that BHC is designed to operate in a
batch fashion; it is not applicable to incremental inference.

To resolve those problems, we propose incremental BHC
(IBHC). Unlike the original BHC that builds the tree start-
ing from the all the data points, IBHC sequentially inserts
data points into the tree and the tree is completed after all
the data points are inserted. Hence, it is well-suited for
the incremental inferences needed for MNRM mixtures.
Moreover, since IBHC does not need O(n2) computation
of distance measures for all the pair of nodes, it is much
faster than BHC and thus alternating between building the

562

Incremental Tree-Based Inference with Dependent Normalized Random Measures

Algorithm 2 Seq-Insert
Input: c = cl ∪ cr , i

Compute d(cl ∪ cr), d(cl ∪ {i}) and d(cr ∪ {i}).
if d(cl ∪ cr) is the smallest then

insert {i} next to c and stop.
else if d(cl ∪ {i}) is the smallest then

Seq-Insert(cl, {i}).
else

Seq-Insert(cr, {i}).
end if

tree and inferring auxiliary variables and hyperparameters
is quite doable. Note that IBHC outcomes differ by the
order of inserted data points; hence we try a number of ran-
dom permutations and choose the best one.

Let us first consider a single dataset X = {x1, . . . ,xn}.
Starting from a tree with a single data point, we sequen-
tially insert the data points into the tree in the random or-
der. Without loss of generality, assume that the data points
are inserted in the order of x1,x2, . . . ,xn. Suppose that a
tree has been built with x1, . . . ,xi−1, and we are about to
insert xi into this tree. The tree was cut at the level where
the minimum d value was larger than 1, forming a parti-
tion π of Ii−1. For each top-level node c ∈ π, we compute
d(c∪{i}) and find the closest c. If the minimum d is larger
than 1, we conclude that xi belongs to a novel cluster and
create a new leaf node with i; otherwise, xi is inserted into
cluster c using the Seq-Insert algorithm (Figure 1, left).

Now we describe the Seq-Insert algorithm. What the Seq-
Insert essentially do is, when inserting a node into a cluster,
to find the best position of the node inside the cluster, in
terms of the potential function. Suppose that i is inserted
into c = cl ∪ cr. i is attached to one of the three-possible
cases; as a sibling of c, as a sibling of cl, or as a sibling
of cr (Figure 1, right). φ(X(c∪{i})|Tc∪{i}) for each case is
computed as follows.

• Case 1: Inserting i as a sibling of c = cl ∪ cr
φ(X(c∪{i})|Tc∪{i}) = φ(X(c∪{i})|Hc∪{i})

+φ(X(c)|Hc)φ(xi|T{i})

+φ(X(cl)|Tcl)φ(X(cr)|Tcr)φ(xi|T{i})

• Case 2: Inserting i as a sibling of cl

φ(X(c∪{i})|Tc∪{i}) = φ(Xc∪{i}|Hc∪{i})
+φ(X(cl∪{i})|Hcl∪{i})φ(X(cr)|Tcr)

+φ(X(cl)|Tcl)φ(X(cr)|Tcr)φ(xi|T{i})

• Case 3: Inserting i as a sibling of cr

φ(X(c∪{i})|Tc∪{i}) = φ(Xc∪{i}|Hc∪{i})
+φ(X(cr∪{i})|Hcr∪{i})φ(X(cl)|Tcl)

+φ(X(cl)|Tcl)φ(X(cr)|Tcr)φ(xi|T{i})

{x1, . . .xi−1}

xi

cl cr {i} cl cr{i} cl cr {i}
Case 1 Case 2 Case 3

Figure 1: (Left) A new data point xi may be inserted into the
existing clusters, or create a novel one. (Right) Three possible
locations of inserting i into c = cl ∪ cr .

c1 {i} c2

⇒
c3 c1 {i} c2 c3

d((c1 ∪ {i}) ∪ c2) > 1

Figure 2: When splitting oc-
curs after the Seq-Insert.

As a result, comparing the three cases reduces to comparing
the three underlined quantities:

φ(X(c)|Hc)φ(xi|T{i}) = C · d(cl ∪ cr)−1

φ(X(cl∪{i})|Hcl∪{i})φ(X(cr)|Tcr) = C · d(cl ∪ {i})−1

φ(X(cr∪{i})|Hcr∪{i})φ(X(cl)|Tcl) = C · d(cr ∪ {i})−1,

where C = φ(X(cl)|Tcl)φ(X(cr)|Tcr)φ(xi|T{i}). Hence,
we can choose the optimal case by comparing the d values
among the nodes. If d(cl ∪ cr) is the smallest, i is attached
next to c, at which point the Seq-Insert algorithm termi-
nates. Otherwise, if d(cl∪{i}) is the smallest, i is attached
next to cl, and the Seq-Insert algorithm is recursively re-
peated with c← cl (Algorithm 2).

After executing the Seq-Insert(c, i), the potential function
φ(X(c)∪{i}|Tc∪{i}) is computed; starting from the level at
which i was inserted, all the potential functions of clusters
between the starting level and top level (c) are updated. As
the potential functions change, the distance measures d also
change, and some clusters may be split if their distances d
get larger than 1. For example, in Figure 2, after i is in-
serted next to c1, d((c1 ∪ {i}) ∪ c2) becomes larger than
1, and thus c2 and c3 are split. The clusters split during
the updates are kept as separate clusters. Suppose that k
clusters remained after the insertion of the entire data. We
run BHC (Algorithm 1) using those k clusters as bottom
nodes to merge the clusters that were split during the inser-
tion, and this can be done efficiently (O(k2)).

Once the tree is completed, we sample the auxiliary vari-
ables {ξt} and hyperparameters given the partition get by
cutting the tree. Then we fix those variables and build
the tree again. We repeat building the tree and sampling
the variables several times with different random orderings,
and pick the tree with the highest log-likelihood.

Now we describe the algorithm that clusters X1:T =
{X1, . . . ,XT } incrementally. Suppose that we have built
a tree with X1:t = {X1, . . . ,Xt}, and the new dataset
Xt+1 enters. As explained earlier, we insert the new data
points with the Seq-Insert, and resample the auxiliary vari-
ables {ξ1, . . . , ξt+1} and hyperparameters. Note that if

563

Juho Lee and Seungjin Choi

Algorithm 3 IBHC
Input: X1:T =

⋃T
t=1 Xt,M

for t = 1, . . . , T do
for m = 1, . . . ,M do

for i ∈ random ordering of{1, . . . , nt} do
for c ∈ existing clusters do

compute d(c, {i}).
end for
if Minimum d(c, {i}) > 1 then

Set {i} as a new cluster.
else

Seq-Insert(c, {i}) for c with minimum d.
end if

end for
Update the potential functions.
Run BHC with remaining clusters.
Sample {ξt} and hyperparameters.

end for
end for

{ξ1, . . . , ξt} are updated, the potential functions of the tree
built with X1:t should also be updated. After that, we
fix the auxiliary variables and rebuild the tree only for the
Xt+1 (the tree for X1:t is fixed). We repeat this several
times for Xt+1, pick the best one and proceed to the next
dataset Xt+2 (Algorithm 3). Inserting a node into a tree
requiresO(k+h) operations, where k is the number of ex-
isting clusters before inserting the node, and h is the height
of the cluster to insert. When the tree is balanced and the
number of clusters is much smaller than the number of data
points, IBHC is much faster than BHC.

4 EXPERIMENTS

4.1 Synthetic Data

We compared IBHC with other inference algorithms for
MNRM mixtures using synthetic data. We generated 2D
time-varying data from Gaussian mixtures as follows. At
each time, we generated Poisson(1) number of new centers
fromN (0, 10I). Further, when t ≥ 2, we chose a subset of
centers generated in the past with probability 0.7. Then for
each newly generated or selected center µ, we generated
100 data points fromN (µ, 1.5I). We repeated this process
for 15 time steps to generate about 10,000 data points.

For MNRM, we set the r as even numbers between 1 and
15, and set qt,r = exp(−0.2|t − r|). We used NGGP
with the hyperparameters α, τ and σ. we placed a prior
α ∼ Gamma(1, 1); the posterior of α is again Gamma
distributed so that it can be easily sampled. For σ, we
placed a prior σ ∼ Beta(1, 2) and sampled σ via slice-
sampling [24]. We fixed τ = 10−3. We used the same base
measure for all νr, and used the Gaussian likelihood and
the Gaussian-Wishart prior for L and H:

H(µ,Λ) = N (µ|m, (sΛ)−1)W(Λ|Ψ, ν), (34)
L(x|µ,Λ) = N (x|µ,Λ−1), (35)

log-likelihood time [s]
IBHC -62567± 120 36± 2
Gibbs -63970± 735 10611± 956
SMC -64180± 250 2763± 187

Table 1: Comparisons of IBHC (25 iterations), Gibbs sampler
(Gibbs, 3,000 iterations) and SMC (100 particles).

−20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

20

25

−20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

20

25

−20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

20

25

0 50 100 150
−10

−8

−6

−4

−2

0x 10
4

time [s]

lo
g−

jo
in

t−
lik

el
ih

oo
d

IBHC
Gibbs

Figure 3: Clustering results of IBHC (first), Gibbs (second) and
SMC (third, best viewed in color). Log-likelihood change over
time of IBHC and Gibbs sampler (fourth).

where we fixed s = 1, ν = 6 and set m and Λ as the em-
pirical mean and covariance of the dataset, respectively.

We compared three algorithms; IBHC, Gibbs sampler [12]
and SMC [22]. IBHC was iterated 25 times for each exe-
cution, and we sampled {ξt}, α, σ at every five iterations.
Gibbs sampler was iterated 3,000 times, and SMC was run
with 100 particles. IBHC was repeated 10 times, and the
other two were repeated five times. We compared the max-
imum log-joint-likelihoods (18) and running times. All the
experiments were done on an Intel Core i7 3.60GHz, 64GB
RAM machine, and all the programs were written and com-
piled with Microsoft Visual C++ 2. We found that IBHC
achieves the best log-likelihoods in the shortest time (Ta-
ble 1). Figure 3 shows an example of clustering results
from using the three algorithms, and the progression of log-
likelihoods over time for IBHC and Gibbs sampler. Note
that the log-likelihood of IBHC decreases as new data are
imported, and quickly converges to its solution.

4.2 Online Video Segmentation

As a generalization of image segmentation, video segmen-
tation is used to segment videos into coherent segments;
this can be achieved through the clustering of pixels. Video
segmentation is often resolved in the 3D spatio-temporal
domain to incorporate the spatio-temporal smoothness, and
this is referred to as offline video segmentation. However,
offline segmentation is impossible when the video size is
very large. Online video segmentation is an alternative
way of dividing video sequences into a certain number of
chunks, and it segments the chunks incrementally.

We assumed that videos were generated from MNRM mix-
tures, and excuted online video segmentation via IBHC.
We divided video sequences into 10-frame chunks, where-
upon each chunk was over-segmented using SLIC super-

2The source codes will be available at http://mlg.postech.ac.kr/
˜stonecold

564

Incremental Tree-Based Inference with Dependent Normalized Random Measures

200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0.9

Number of segments

2D
 S

eg
m

en
ta

tio
n

A
cc

ur
ac

y

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0.9

Number of segments

3D
 S

eg
m

en
ta

tio
n

A
cc

ur
ac

y

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

Number of segments

2D
 U

nd
er

se
gm

en
ta

tio
n

E
rr

or

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

Number of segments

3D
 U

nd
er

se
gm

en
ta

tio
n

E
rr

or

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of segments

2D
 B

ou
nd

ar
y

R
ec

al
l

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0.9

Number of segments

3D
 B

ou
nd

ar
y

R
ec

al
l

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of segments

E
xp

la
in

ed
 V

ar
ia

tio
n

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

200 300 400 500 600 700 800 900
25

30

35

40

45

50

55

60

65

70

Number of segments

M
ea

n
D

ur
at

io
n

SWA
GB
GBH
Meanshift
Nyström
IBHC
SGBH

Figure 4: Comparison of video segmentation algorithms on Chen’s benchmark dataset.

voxel [25]3. Each supervoxel was represented with a 60-bin
LAB color-histogram (xt,i), and the histograms formed the
tth dataset to cluster (Xt). We used the multinomial and
Dirichlet prior for L and H:

H(θ) = Dir(θ|β160), L(x|θ) = Mult(θ), (36)

where β is a hyperparameter and 160 is the 60 dimensional
one-vector. We used the same NGGP as those outlined
in section 4.1. For the spatial-smoothness, we assumed
that only spatially adjacent pairs would be merged during
IBHC. Instead of the dissimilarity d, we used

d′(cl ∪ cr) =

{
(cl ∪ cr) if adj(cl, cr)
∞ otherwise , (37)

where adj(cl, cr) = 1 if cl and cr are adjacent.

We tested IBHC on Chen’s benchmark [26] using the lib-
svx package4. The benchmark contains eight sequences of
160×240×(60∼80) size. We evaluated the results using
the performance measures proposed in [26], which contains
the following eight measures: (2d/3d) boundary recall,
measuring how well the boundaries of ground-truths are
preserved;, (2d/3d) accuracy, measuring what fraction of
ground-truths are correctly segmented;, (2d/3d) underseg-
mentation error, measuring what fraction of ground-truths
are invaded by other segments;, explained variation, mea-
suring the compression rate of segmentations ; and mean
duration, measuring the average duration of segments. We
compared IBHC with other offline and online methods.
The offline methods include graph based (GB), graph-
based hierarchical (GBH), segmentation by weighted ag-
gregation (SWA), mean-shift and Nyström. The online
method was streaming graph-based hierarchical (SGBH)
(10 frames at once). Since these methods do not infer the

3See http://ivrg.epfl.ch/supplementary_material/RK_
SLICSuperpixels.

4See http://www.cse.buffalo.edu/˜jcorso/r/supervoxels/

number of segments, they are tested to generate multiple
results with different numbers of segments. For IBHC, we
adjusted the hyperparameter β from 1 to 30 to generate
multiple results.5 The results are shown in Figure 4.

IBHC showed the best (2d/3d) accuracy, even if it was
an online method. It also outperformed most of the of-
fline methods in other performance measures, but showed
poor mean-duration and boundary recalls. Compared to the
online method (SGBH), IBHC was better in (2d/3d) ac-
curacy and explained variations. In summary, IBHC was
comparable to the state-of-the-art algorithms without much
application-specific tuning.

5 CONCLUSIONS

In this paper we have presented an incremental approxi-
mate inference, referred to as IBHC, for MNRM mixture
models, which can be applied to the task of clustering of
time-varying data where the assumption of exchangeability
is violated. We have first described the extension of BHC
(which was originally developed for DPMs) to MNRM
mixture models, and then developed its incremental algo-
rithm, IBHC, where the tree structure is partially updated
when a new node comes in. Experiments on both synthetic
and real-world datasets demonstrated the validity and effi-
ciency of IBHC, compared to MCMC methods.

Acknowledgements: This work was supported by Na-
tional Research Foundation (NRF) of Korea (NRF-
2013R1A2A2A01067464), NIPA-MSRA Creative IT/SW
Research Project, and POSTECH Rising Star Program.

5See [26] for more detailed explanations and references for performance mea-
sures and comparing methods.

565

Juho Lee and Seungjin Choi

References

[1] L. F. James, A. Lijoi, and I. Prünster. Posterior anal-
ysis for normalized random measures with indepen-
dent increments. Scandinavian Journal of Statistics,
36(1):76–97, 2009.

[2] T. S. Ferguson. A Bayesian analysis of some nonpara-
metric problems. The Annals of Statistics, 1(2):209–
230, 1973.

[3] A. Brix. Generalized Gamma measures and shot-
noise Cox processes. Advances in Applied Probabil-
ity, 31:929–953, 1999.

[4] C. E. Antoniak. Mixtures of Dirichlet processes
with applications to Bayesian nonparametric prob-
lems. The Annals of Statistics, 2(6):1152–1174, 1974.

[5] D. Aldous. Exchangeability and related topics. École
d’Été de Probabilités de Saint-Flour XIII-1983, pages
1–198, 1985.

[6] S. N. MacEachern. Dependent nonparametric pro-
cesses. In Proceedings of the Section on Bayesian
Statistical Science, 1999.

[7] J. E. Griffin and M. F. J. Steel. Order-based dependent
Dirichlet processes. Journal of the American Statisti-
cal Association, 101(473):179–194, 2006.

[8] F. Caron, M. Davy, and A. Doucet. Generalized
Polya urn for time-varying Dirichlet process mix-
tures. In Proceedings of the Annual Conference on
Uncertainty in Artificial Intelligence (UAI), 2007.

[9] V. Rao and Y. W. Teh. Spatial normalized Gamma
processes. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 22. MIT Press, 2009.

[10] D. Lin, E. Grimson, and J. Fisher. Construction of
dependent Dirichlet processes based on Poisson pro-
cesses. In Advances in Neural Information Processing
Systems (NIPS), volume 23. MIT Press, 2010.

[11] C. Chen, N. Ding, and W. Buntine. Dependent hi-
erarchical normalized random measures for dynamic
topic modeling. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), Ed-
inburgh, UK, 2012.

[12] C. Chen, V. Rao, W. Buntine, and Y. W. Teh. Depen-
dent normalized random measures. In Proceedings
of the International Conference on Machine Learning
(ICML), Atlanta, Georgia, USA, 2013.

[13] N. J. Foti, J. D. Futoma, D. N. Rockmore, and S. A.
Williamson. A unifying representation for a class
of dependent random measures. In Proceedings of
the International Conference on Artificial Intelligence
and Statistics (AISTATS), Scottsdale, AZ, USA, 2013.

[14] M. D. Escobar and M. West. Bayesian density esti-
mation and inference using mixtures. Journal of the
American Statistical Association, 90:577–588, 1995.

[15] S. Jain and R. M. Neal. A split-merge Markov chain
Monte Carlo procedure for the Dirichlet process mix-
ture model. Journal of Computational and Graphical
Statistics, 13:158–182, 2000.

[16] D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[17] K. A. Heller and Z. Ghahrahmani. Bayesian hi-
erarchical clustering. In Proceedings of the Inter-
national Conference on Machine Learning (ICML),
Bonn, Germany, 2005.

[18] E. Regazzini, A. Lijoi, and I. Prünster. Distriub-
tional results for means of normalized random mea-
sures with independent increments. The Annals of
Statistics, 31(2):560–585, 2003.

[19] J. F. C. Kingman. Completely random measures. Pa-
cific Journal of Mathematics, 21(1):59–78, 1967.

[20] L. F. James. Bayesian Poisson process partition cal-
culus with an application to Bayesian Lévy moving
averages. The Annals of Statistics, 33(4):1771–1799,
2005.

[21] S. Favaro and Y. W. Teh. MCMC for normalized
random measure mixture models. Statistical Science,
28(3):335–359, 2013.

[22] J. E. Griffin. Sequential Monte Carlo methods for
normalized random measure with independent incre-
ments mixtures, 2011. Preprint.

[23] H. M. Wallach, S. T. Jensen, L. Dicker, and K. A.
Heller. An alternative prior process for nonparamet-
ric Bayesian clustering. In Proceedings of the In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS), Sardinia, Italy, 2010.

[24] R. M. Neal. Slice sampling. The Annals of Statistics,
31(3):705–767, 2003.

[25] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fuaa,
and S. Süsstrunk. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(11):2274–2282, 2012.

[26] C. Xu and J. J. Corso. Evaluation of super-voxel
methods for early video processing. In Proceedings
of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), Providence,
Rhode Island, USA, 2012.

566

