
PAC-Bayesian Collective Stability

Ben London Bert Huang Ben Taskar Lise Getoor
University of Maryland University of Maryland University of Washington University of California,

Santa Cruz

Abstract

Recent results have shown that the gener-
alization error of structured predictors de-
creases with both the number of examples
and the size of each example, provided the
data distribution has weak dependence and
the predictor exhibits a smoothness property
called collective stability. These results use
an especially strong definition of collective
stability that must hold uniformly over all
inputs and all hypotheses in the class. We
investigate whether weaker definitions of col-
lective stability suffice. Using the PAC-Bayes
framework, which is particularly amenable to
our new definitions, we prove that generaliza-
tion is indeed possible when uniform collec-
tive stability happens with high probability
over draws of predictors (and inputs). We
then derive a generalization bound for a class
of structured predictors with variably convex
inference, which suggests a novel learning ob-
jective that optimizes collective stability.

1 INTRODUCTION

London et al. (2013) recently showed that the general-
ization error of certain structured predictors is better
than was previously known. They provided bounds
that decrease with both the number of structured ex-
amples and the size of each example, thus enabling
generalization from even a single example under cer-
tain conditions. In doing so, they introduced the no-
tion of collective stability, a measure of the sensitivity
of a structured predictor to perturbations of its input.
In particular, their analysis relied on a restrictive ver-
sion of this property that must hold uniformly over
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all inputs and all hypotheses in the class. Though
they showed that this condition is met by a class of
structured predictors used in practice, such a strict
definition may not be necessary for generalization.

In this paper, we show that weaker definitions of col-
lective stability enable generalization from a few large,
structured examples. Our results are two-fold. First,
we relax the requirement that all hypotheses in the
class exhibit collective stability; that is, certain hy-
potheses are robust to all possible input perturba-
tions, but others may not be. Our analysis is based
in the PAC-Bayes framework, in which prediction is
randomized over draws from a posterior distribution
over hypotheses. PAC-Bayesian analysis is particu-
larly amenable to relaxing uniform stability, since one
can construct a posterior that places more mass on
“good” hypotheses and less weight on “bad” ones. We
thus derive PAC-Bayes generalization bounds of order

O

(
Pr{h ∈ Bad}+

√
Complexity

mn

)
,

where m is the number of examples, n is the size of
each example, and Complexity is measured by the
KL divergence between the posterior and a prior dis-
tribution over hypotheses. Provided the probability
of a bad hypothesis, Pr{h ∈ Bad}, is sufficiently low,
the generalization error converges to zero in the limit
of either infinite examples or infinitely large examples.
Our second generalization bound relaxes the stability
condition further by requiring that good hypotheses
only exhibit stability with respect to a certain subset
of the instance space. If this set has sufficient support
under the generating distribution, one obtains gener-
alization guarantees of a similar form.

We apply our generalization bounds to two classes of
structured predictors. The first class—which achieves
uniform collective stability by assuming parameter-
tying, bounded weights and a strongly convex infer-
ence function—illustrates how our new PAC-Bayesian
analysis can achieve the tightest known generalization

bounds for structured prediction, of order O
(√

lnn
mn

)
.

The second class relaxes the assumption of bounded
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weights, and parameterizes the convexity of the infer-
ence function. Despite this class not having uniform
collective stability, we are still able to derive a gen-
eralization bound with comparable decay. Moreover,
since the bound is stated in terms of the parameters
of the learned hypothesis (rather than uniform upper
bounds), it implies a new learning objective that opti-
mizes collective stability by optimizing the convexity
of inference.

Our specific contributions are summarized as follows.
We first define new, weaker forms of collective stabil-
ity, and derive some novel concentration inequalities
for functions of interdependent random variables. Us-
ing these tools, we then derive improved PAC-Bayes
bounds for structured prediction. Unlike previous
PAC-Bayes bounds, ours decrease proportionally to
both the number of examples and the size of each ex-
ample. To illustrate the implications of our theory, we
give two examples of generalization bounds for struc-
tured predictors—the latter of which relaxes some as-
sumptions and suggests a novel learning objective.

1.1 Related Work

Until recently, the generalization error of structured
predictors was thought to decay proportionally to the
number of examples (Taskar et al., 2004; Bartlett et al.,
2005; McAllester, 2007; Keshet et al., 2011). London
et al. (2013) then showed that, given suitably weak de-
pendence within each example, certain classes of struc-
tured predictors are capable of much faster uniform
convergence rates. Their analysis crucially relied on
a property they referred to as uniform collective sta-
bility, which is akin to a global Lipschitz smoothness
condition. Our analysis departs from theirs by relaxing
the stability requirement to classes with non-uniform
collective stability, thus making our bounds applica-
ble to a wider range of predictors, while maintaining
comparable generalization error rates.

There is a large body of theory on learning local (i.e.,
non-structured) predictors from various types of inter-
dependent data. For learning problems that induce a
dependency graph, Usunier et al. (2006) and Ralaivola
et al. (2010) used fractional coloring to analyze the
generalization error of local predictors. For φ-mixing
and β-mixing temporal data, Mohri and Rostamizadeh
(2009, 2010) derived risk bounds using an independent
blocking technique, due to Yu (1994), though the hy-
potheses they consider predict each time step indepen-
dently. McDonald et al. (2011) used a similar tech-
nique to bound the risk of autoregressive forecasting
models, in which the prediction at time t depends on a
moving window of previous observations. We analyze
a more general setting in which hypotheses perform
joint inference over arbitrarily structured examples.

In our setting, techniques such as graph coloring and
independent blocking do not apply, since the global
prediction does not decompose.

PAC-Bayesian analysis was introduced by McAllester
(1999) and later refined by a number of authors (e.g.,
Langford and Shawe-Taylor, 2002; Seeger, 2002; Am-
broladze et al., 2006; Germain et al., 2009). Our PAC-
Bayes proofs are based on a martingale technique due
to Lever et al. (2010) and Seldin et al. (2012). Our
application of PAC-Bayes to interdependent data is
related to work by Alquier and Wintenburger (2012),
though they consider one-step time series forecasting.

Various notions of stability have been used in machine
learning. Bousquet and Elisseeff (2002) used the sta-
bility of a learning algorithm to derive generalization
bounds in the non-structured setting. Chan and Dar-
wiche (2006), Wainwright (2006) and Honorio (2011)
analyzed the sensitivity of probabilistic graphical mod-
els to changes in parameters. The notion of stability
we use builds off of London et al. (2013), who consid-
ered the sensitivity of a predictor to changing inputs.

Our analysis uses concentration inequalities for Lips-
chitz functions of dependent random variables, similar
to those presented by Chazottes et al. (2007) and Kon-
torovich and Ramanan (2008). To accommodate func-
tions that are not uniformly Lipschitz, we adapt a tech-
nique used by Kutin (2002) and Vu (2002), and pair
it with a coupling construction due to Fiebig (1993).

2 PRELIMINARIES

In the structured prediction framework we consider,
each example contains n interdependent random vari-
ables, Z , (Zi)

n
i=1, with joint distribution P. Each

Zi , (Xi, Yi) is an input-output pair, taking values in
a sample space Z , X × Y.1 We denote realizations
of Z by z ∈ Zn. We use the notation EZ∼P to specify
the expectation over Z, unless it is clear from context.

We are interested in predicting Y , (Yi)
n
i=1, condi-

tioned on X , (Xi)
n
i=1. Let H ⊆ {h : Xn → Ŷn}

denote a class of hypotheses, where Ŷ ⊆ Rk, for some
k ≥ 1. For example, if Y contains k states, then h(X)
returns a score for each Yi taking each state. We use
hi(X) to denote the prediction vector for Yi, and hji (X)
to denote its jth entry. Let H denote a predetermined
prior distribution on H, and let Q denote a poste-
rior distribution, possibly learned from training data.
In the PAC-Bayes framework, prediction is stochastic.
Given an input X, we first draw a hypothesis h ∈ H,

1To minimize bookkeeping, we have assumed a one-to-
one correspondence between input and output variables,
and that the Zi variables have identical domains, but these
assumptions can be relaxed.
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according to Q, then compute the prediction h(X).

For a loss function ` : Y × Ŷ → R+ and hypothesis
h, denote the average loss on a set of m structured

examples, Ẑ , (Z(l))ml=1 = ((Z
(l)
i )ni=1)ml=1, by

L(h, Ẑ) ,
1

mn

m∑
l=1

n∑
i=1

`
(
Y

(l)
i , hi(X

(l))
)
. (1)

(Decomposable losses, such as this, are common in the
tasks we consider.) Let L(h) , EZ∼P[L(h,Z)] denote
the expected loss (also known as the risk) over realiza-
tions of a single example Z, which corresponds to the
error h will incur on future predictions. Since predic-
tion in the PAC-Bayes framework is randomized, we
use the expectations of these measures over draws of
h, which we denote by

L(Q, Ẑ) , E
h∼Q

[L(h, Ẑ)] and L(Q) , E
h∼Q

[L(h)].

We are interested in the difference of L(Q)−L(Q, Ẑ).

3 STRUCTURED PREDICTORS

We are interested in hypotheses that perform joint rea-
soning over all variables simultaneously, according to
some prior knowledge about the structure of the prob-
lem. One such model is a Markov random field (MRF).
An MRF consists of a graph G , (V, E) with cliques
C, random variables Z , (Zi)i∈V , feature functions
f(Z) , (fc(Z))c∈C , and weights w , (wc)c∈C , which
define a distribution pw(Z) ∝ exp (〈w, f(Z)〉). The
edge set E captures the dependencies in Z, and is typ-
ically determined by the problem structure. For now,
assume that the sample space is discrete, and that each
feature outputs a basis vector representation wherein
f jc (Z) = 1 if Zc is in its jth state and 0 otherwise.

The canonical inference problems for MRFs are max-
imum a posteriori (MAP) inference, which computes
the mode of the distribution, and marginal inference,
which computes the marginal distribution of a subset
of the variables. We represent the marginals of the

cliques by a vector µ ∈ RN , where N ,
∑
c∈C |c|

|Z|

and µjc indicates the probability that Zc is in its jth

state. The set of all consistent marginal vectors is
called the marginal polytope, which we denote by M.
When Z is discrete and the features output the above
representation, the marginals are the solution to

arg max
µ∈M

〈w,µ〉+H(µ), (2)

where H(µ) is the entropy of the distribution consis-
tent with µ (Wainwright and Jordan, 2008). This
identity can be adapted for approximate marginal
inference by relaxing M and replacing H with a

tractable surrogate, such as the Bethe approximation.
Further, Equation 2 has an interesting relationship
with MAP inference, in that the mode is given by

arg max
z∈Zn

pw(z) = Γ

(
arg max
µ∈M

〈w,µ〉
)
,

where Γ : M→ Zn is a linear projection that selects
and decodes the unary clique marginals. The key in-
sight is that MAP inference is equivalent to marginal
inference without entropy maximization.

For discriminative tasks, in which each Zi is actually
a tuple (Xi, Yi) of input-output pairs, an MRF can be
used to model the conditional distribution pw(Y |X).
For an observation x ∈ Xn (regardless of whether X
is discrete), the conditional marginals are the solution
to

arg max
µ∈MY

〈w, f(x,µ)〉+H(µ),

where MY is the marginal polytope of Y, and f con-
ditions µ on x via a linear map. The relationship with
MAP inference holds in this case as well.

A common technique for defining MRFs is templating
(also known as parameter-tying). A clique template is
a complete subgraph pattern, such as a singleton, pair
or triangle. Given a graph, a set of templates parti-
tions the cliques into subgraphs with common struc-
ture. Thus, a templated MRF replaces the per-clique
features and weights with per-template ones, which are
then applied to each grounding (i.e., matching clique).
Since the features are no longer tied to specific ground-
ings, one can define general inductive rules to reason
about datasets of arbitrary size and structure. Because
of this flexibility, templating is used in many relational
models, such as relational Markov networks (Taskar
et al., 2002), relational dependency networks Neville
and Jensen (2004), Markov logic networks (Richard-
son and Domingos, 2006) and hinge-loss MRFs (Bach
et al., 2013).

3.1 Templated Structured Models

We now present a general class of models that includes
variations of the above graphical models.

Definition 1. A templated structured model (TSM) is
defined by:

• a search space S;

• a set of clique templates T ;

• a set of feature functions {ft}t∈T , with output
length dt ≥ 1;

• a set of weights {wt ∈ Rdt}t∈T ;

• a regularizer Ψ : S → R;

• a linear projection Γ : S → Ŷn.
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Given a graph G and input x ∈ Xn, let t(G) denote
the groundings of G, and let

f(x, s) ,

( ∑
c∈t(G)

ft(xc, sc)

)
t∈T

and w , (wt)t∈T , both of which have (output) length
d ,

∑
t∈T dt. Define the energy function E as

Ew(x, s) , 〈w, f(x, s)〉 −Ψ(s).

A TSM hypothesis h outputs

h(x) , Γ

(
arg max

s∈S
Ew(x, s)

)
.

The search space, clique templates, feature functions,
regularizer and projection are typically chosen a priori.
The graph for a given input is determined implicitly by
the data or prior knowledge of the problem structure.
Thus, learning a TSM usually amounts to learning the
weights.

Though the TSM representation is abstract, one can
show that inference in TSMs is equivalent to inference
in some of the previous models. To recreate (approxi-
mate) marginal inference in a templated MRF, we de-
fine S as the (local) marginal polytope of Y, and each
ft as a linear map that conditions on xc; Ψ is (a sur-
rogate for) the negative entropy, and the projection Γ
selects the unary clique (pseudo)marginals. We can
also recover (approximate) MAP inference by letting
Ψ(s) , 0 and decoding the unary terms.

4 COLLECTIVE STABILITY

A key component of our analysis is the algorithmic
stability of joint inference. Broadly speaking, stabil-
ity ensures that small changes to the input result in
bounded variation in the output. In learning theory,
it has traditionally been used to quantify the variation
in the output of a learning algorithm upon adding or
removing training examples (Bousquet and Elisseeff,
2002). We apply this concept to an arbitrary class of
vector-valued functions, F , {ϕ : Zn → RN}, where
N does not necessarily equal n. For vectors z, z′ ∈ Zn,
denote their Hamming distance by

Dh(z, z′) ,
n∑
i=1

1{zi 6= z′i}.

Definition 2. We say that a function ϕ ∈ F has β-
uniform collective stability if, for any inputs z, z′ ∈ Zn,

‖ϕ(z)− ϕ(z′)‖1 ≤ β Dh(z, z′). (3)

Similarly, we say that the class F has β-uniform col-
lective stability if every ϕ ∈ F has β-uniform collective
stability.

Put differently, a function with uniform collective sta-
bility is Lipschitz under the Hamming norm of its do-
main and 1-norm of its range.

Though uniform stability seems like a strong require-
ment, it is met by a broad class of models used in
practice (London et al., 2013). Nonetheless, part of
the scope of this paper is to explore weaker definitions
of collective stability. For example, suppose uniform
stability holds for most functions in the class, but not
all. This is of particular interest in the PAC-Bayes
framework, in which a predictor is selected according
to a distribution over hypotheses.

Definition 3. Let Q be a distribution on F . We say
that F has (Q, η, β) collective stability if there exists
a “bad” set BF ⊆ F such that Q{ϕ ∈ BF} ≤ η and
every ϕ 6∈ BF has β-uniform collective stability.

We might also allow that uniform stability holds for
most inputs, but not all.

Definition 4. Let Z , (Zi)
n
i=1 be random variables

with joint distribution P. We say that ϕ ∈ F has
(P, ν, β) collective stability if there exists a “bad” set
B ⊆ Zn such that P{Z ∈ B} ≤ ν and Equation 3 holds
for any z, z′ 6∈ B.

A still weaker definition combines Definitions 3 and 4.

Definition 5. Let P be the distribution of Z, and Q
a distribution on F . We say that F has (P, ν,Q, η, β)
collective stability if there exist “bad” sets B ⊆ Zn and
BH ⊆ F such that:

1. P{Z ∈ B |ϕ 6∈ BF} ≤ ν;

2. Q{ϕ ∈ BF} ≤ η;

3. Equation 3 holds for any ϕ 6∈ BF and z, z′ 6∈ B.

There is a taxonomical relationship between these def-
initions, with Definition 2 being the strongest. Clearly,
if F has β-uniform collective stability, then it has
(Q, 0, β) collective stability and (P, 0,Q, 0, β) collec-
tive stability with respect to any distributions P and Q.
Definitions 3 and 4 both extend Definition 2, but in dif-
ferent ways; Definition 3 accommodates broader func-
tion classes, and Definition 4 accommodates broader
instance spaces. Definition 5 is the weakest in the hi-
erarchy, accommodating classes in which only some
functions satisfy Definition 4.

As shown in Appendix B, the collective stability of
a hypothesis extends to any admissible loss function,
meaning a stable predictor will have stable loss. For
functionals (i.e., when N = 1), such as the average
loss, L, we use the term difference-bounded (following
Kutin, 2002) instead of collective stability. Further, we
say that a functional ϕ is α-uniformly range-bounded
if, for any z, z′ ∈ Zn, |ϕ(z)− ϕ(z′)| ≤ α.
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5 STATISTICAL TOOLS

Before presenting our generalization bounds, we re-
view some supporting definitions and introduce a novel
moment-generating function inequality for functions of
interdependent random variables. We use this later to
obtain high-probability bounds on the difference of the
expected and empirical risks.

We first introduce a data structure to measure depen-
dence. Let π be a permutation of [n] , {1, 2, . . . , n},
where π(i) denotes the ith element in the sequence and
π(i : j) denotes a subsequence of elements i through
j. Used to index variables Z , (Zi)

n
i=1, denote by

Zπ(i) the ith variable in the permutation and Zπ(i:j)

the subsequence (Zπ(i), . . . , Zπ(j)).

Definition 6. We say that a sequence of permutations
π , (πi)

n
i=1 is a filtration if, for i = 1, . . . , n− 1,

πi(1 : i) = πi+1(1 : i).

Let Π(n) denote the set of all filtrations for a given n.

For probability measures P and Q on a σ-algebra Σ, re-
call the standard definition of total variation distance,

‖P−Q‖tv , sup
A∈Σ
|P(A)−Q(A)| .

Definition 7. Fix a filtration π ∈ Π(n). For i ∈ [n],
j > i, z ∈ Zi−1 and z, z′ ∈ Z, define the η-mixing
coefficients2,

ϑπi,j(z, z, z
′) ,

∥∥∥∥ P
(
Zπi(j:n) |Zπi(1:i) = (z, z)

)
−P
(
Zπi(j:n) |Zπi(1:i) = (z, z′)

) ∥∥∥∥
tv

.

We use these to define the upper-triangular depen-
dency matrix Θπ

n ∈ Rn×n, with entries

θπi,j ,


1 for i = j,

supz∈Zi−1

z,z′∈Z
ϑπi,j(z, z, z

′) for i < j,

0 for i > j.

Finally, recall the definition of the induced matrix ∞-
norm, ‖Θπ

n‖∞ , maxi∈[n]

∑n
j=1

∣∣θπi,j∣∣. Observe that,
if Z1, . . . , Zn are mutually independent, then Θπ

n is the
identity and ‖Θπ

n‖∞ = 1.

We do not assume that Z corresponds to a temporal
process, which is why permuting the order can have
such a strong impact on ‖Θπ

n‖∞. In general, given an
arbitrary graph topology, ‖Θπ

n‖∞ measures the decay
of dependence over graph distance. For example, for
a Markov tree process, Kontorovich (2012) orders the

2The η-mixing coefficients were introduce by Kon-
torovich and Ramanan (2008), and are related to the max-
imal coupling coefficients used by Chazottes et al. (2007).

variables via a breadth-first traversal from the root; for
an Ising model on a lattice, Chazottes et al. (2007) or-
der the variables with a spiraling traversal from the ori-
gin. Both these instances use a static permutation, not
a filtration. Nonetheless, under suitable contraction or
temperature regimes, the authors show that ‖Θπ

n‖∞
is bounded independent of n (i.e., ‖Θπ

n‖∞ = O(1)).
By exploiting filtrations, we can show that the same
holds for Markov random fields of any bounded-degree
structure, provided the distribution exhibits suitable
mixing. We discuss these conditions in Appendix A.4.

With the supporting definitions in mind, we are ready
to present our moment-generating function inequality.
The proof is provided in Appendix A.2.

Theorem 1. Let Z , (Zi)
n
i=1 be random variables

with joint distribution P. Let ϕ : Zn → R be a measur-
able function that is (P, ν, β) difference-bounded, and
α-uniformly range-bounded. Then, for any λ ∈ [0, 1],
there exists a set Bλ ⊆ Zn such that P{Z ∈ Bλ} ≤
nν/λ and, for any τ ∈ R and π ∈ Π(n),

E
[
eτ(ϕ(Z)−E[ϕ(Z)]) |Z 6∈ Bλ

]
≤ exp

(
nτ2(2λα+ β)2 ‖Θπ

n‖
2
∞

8

)
.

Some implications of this result, including novel con-
centration inequalities (which may be of interest out-
side of this context), are discussed in Appendix A.3.

6 PAC-BAYES BOUNDS

We now present two new PAC-Bayes generalization
bounds using the non-uniform definitions of collec-
tive stability from Section 4. The so-called “explicit”
bounds we present, while not as tight as some “im-
plicit” bounds, are arguably more interpretable, and
are easily obtained using our martingale-based con-
centration inequalities. Proofs are provided in Ap-
pendix B, so here we provide only a high-level sketch.

Let Ẑ , ((Z
(l)
i )ni=1)ml=1 denote a training set ofm struc-

tured examples, distributed according to Pm. We de-
fine a function Φ(h, Ẑ) , L(h) − L(h, Ẑ). Then, for
some set BH ⊆ H of “bad” hypotheses, we let

Φ′(h, Ẑ) ,

{
Φ(h, Ẑ) if h 6∈ BH
0 otherwise

. (4)

Observe that

L(Q)− L(Q, Ẑ) = E
h∼Q

[
Φ(h, Ẑ)

]
= Q{h ∈ BH} E

h∼Q

[
Φ(h, Ẑ) |h ∈ BH

]
+ E
h∼Q

[
Φ′(h, Ẑ)

]
.
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Further, for any a free parameter u ∈ R, and any
prior and posterior distributions, H and Q, on H, we
have via Donsker and Varadhan’s change of measure
inequality (see Appendix B.1) that

E
h∼Q

[
Φ′(h, Ẑ)

]
=

1

u
E
h∼Q

[
uΦ′(h, Ẑ)

]
≤ 1

u

(
DKL(Q‖H) + ln E

h∼H

[
euΦ′(h,Ẑ)

])
.

Combining these expressions and applying Markov’s
inequality, we have, with probability at least 1− δ,

L(Q)− L(Q, Ẑ)

≤ Q{h ∈ BH} E
h∼Q

[
Φ(h, Ẑ) |h ∈ BH

]
+

1

u

(
DKL(Q‖H) + ln E

h∼H
E

Ẑ∼Pm

[
1

δ
euΦ′(h,Ẑ)

])
.

We can then upper-bound EẐ∼Pm

[
euΦ′(h,Ẑ)

]
, using

Theorem 1, and optimize u. However, if we optimize u
for a particular posterior Q, the bound might not hold
for all posteriors simultaneously. We therefore adopt
a technique due to Seldin et al. (2012) in which we
discretize the space of u and assign each posterior to a
value that approximately optimizes the bound. Using
the union bound to upper-bound the probability that
the bound fails for some discrete value of u, we ensure
that the bound holds for all posteriors simultaneously
with high probability.

To isolate the collective stability of the hypothesis
class, our bounds are stated in terms of the following
properties of the loss function.

Definition 8. We say that a loss function ` : Y×Ŷ →
R+ is (M,Λ)-admissible if:

1. ` is M -uniformly range-bounded;

2. for all y ∈ Y and ŷ, ŷ′ ∈ Ŷ,

|`(y, ŷ)− `(y, ŷ′)| ≤ Λ ‖ŷ − ŷ′‖1 .

6.1 Q Collective Stability Bounds

In the following theorem, we use (Q, η, β) collective
stability to obtain a new PAC-Bayes bound. This is a
weaker requirement than the uniform condition used
by London et al. (2013), in that it allows the hypoth-
esis class to contain a subset BH with “bad” collective
stability—that is, Equation 3 does not hold for some
desired β. Provided the posterior places suitably low
measure, η, on this set, we obtain the same asymptotic
convergence rate as the uniform case.

Theorem 2. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and δ ∈
(0, 1). Let H denote a class of hypotheses, ` an (M,Λ)-

admissible loss function, and Ẑ , ((Z
(l)
i )ni=1)ml=1 a

training set. For any prior H on H, with probabil-
ity at least 1 − δ over realizations of Ẑ, the following
holds simultaneously for all posteriors Q such that H
has (Q, η, β) collective stability:

L(Q)− L(Q, Ẑ) ≤

ηM +
2(M + Λβ) ‖Θπ

n‖∞√
2mn

√
DKL(Q‖H) + ln

2

δ
. (5)

SupposeH has
(
Q,O

(
(mn)−1/2

)
,O(1)

)
collective sta-

bility and DKL(Q‖H) = O (log(mn)). If the data dis-
tribution is weakly dependent, with ‖Θπ

n‖∞ = O(1),
then Equation 5 decreases with both m and n. This
decays much faster than bounds that ignore the intra-
example dependence when each structured example is
large and the number of examples is small. Even for
m = 1, Equation 5 goes to zero as n increases, meaning
one can generalize from a single, large example.

Theorem 2 is easily extended to classes with uniform
collective stability (see Section 7.1), since η = 0, mak-
ing it strictly more general than London et al. (2013).
We also note that, unlike some previous PAC-Bayes
bounds for structured prediction (e.g., Bartlett et al.,
2005; McAllester, 2007; Keshet et al., 2011), ours do
not have lnm or lnn in the numerator—though they
may be introduced when bounding the KL divergence.

6.2 (P,Q) Collective Stability Bounds

In our next PAC-Bayes bound, we relax the collec-
tive stability requirements even further, to hypothe-
sis classes with (P, ν,Q, η, β) collective stability. From
Definition 5, this means that there exists a “bad” set
of inputs B ⊆ Zn and a “bad” set of hypotheses
BH ⊆ H. The probability of drawing a “bad” hypoth-
esis h ∈ BH, under the posterior Q on H, is at most
η; conditioned on any “good” hypothesis h 6∈ BH, the
probability of drawing a “bad” input z ∈ B, under P,
is at most ν. For any “good” inputs z, z′ 6∈ B, and
any “good” hypothesis h 6∈ BH, the stability condition
(Equation 3) holds for the given β.

Theorem 3. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and
δ ∈ (0, 1). For ν ∈ [0, 1], let ε(ν) , 2ν(mn)2. Let H
denote a class of hypotheses, ` an (M,Λ)-admissible

loss function, and Ẑ , ((Z
(l)
i )ni=1)ml=1 a training set.

For any prior H on H, with probability at least 1 − δ
over realizations of Ẑ, the following holds simultane-
ously for all posteriors Q such that H has (P, ν,Q, η, β)
collective stability, and δ > ε(ν):

L(Q)− L(Q, Ẑ) ≤

ηM +
4(M + Λβ) ‖Θπ

n‖∞√
2mn

√
DKL(Q‖H) + ln

2

δ − ε(ν)
.
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Theorem 3 implies generalization when ν is sufficiently
small; e.g., o

(
(mn)−K

)
, for some order K > 2. As-

sume that the learning algorithm has full knowledge
of the hypothesis class and which inputs are “bad” for
each hypothesis. The learner can designate a “good”
set of hypotheses based on some criteria that map to
collective stability. The only unknown is the distri-
bution of the bad inputs, B, which can be estimated
from the training data. Given an empirical estimate of
P{Z ∈ B |h 6∈ BH}, the learner can construct a poste-
rior that allocates mass to hypotheses proportionally
to the mass of their bad inputs, thereby effectively
shrinking ν. As the size of the data grows, the learner’s
estimate of P{Z ∈ B |h 6∈ BH} improves, allowing it to
reduce ν accordingly. We plan to explore this strategy
of learning and posterior construction in future work.

7 EXAMPLES

In this section, we derive generalization bounds for a
generic collective classification problem. To represent
multiclass label assignment for k ≥ 2 labels, we use the
standard basis vectors, wherein each y ∈ Y has exactly
one nonzero entry, set to 1, whose ordinal corresponds
to a label; similarly, the predictor outputs a nonneg-
ative vector, ŷ ∈ Ŷ ⊆ Rk+, wherein each dimension
indicates a score for a particular label. We measure
multiclass prediction error using a margin loss,

`γ(y, ŷ) , 1
{(
〈y, ŷ〉 − max

y′∈Y:y 6=y′
〈y′, ŷ〉

)
≤ γ

}
,

for some γ ≥ 0. Thus, an error is incurred whenever
the score of the true label does not exceed a margin of
γ over any competing label. Note that `0 is equivalent
to the standard 0-1 loss.

The bounds presented in this section are derandom-
ized, in that the loss is stated in terms of a determinis-
tic predictor. We use the PAC-Bayes framework as an
analytic tool. Our motivation for this decision is that
derandomized bounds offer greater insight in practice,
where one typically uses a deterministic predictor. The
derandomized bounds are easily rerandomized by a
simple modification of the proof technique. Proofs for
this section are provided in Appendix D.

7.1 Strongly Convex TSMs

Certain classes of TSMs satisfy the condition of uni-
form collective stability; in particular, TSMs whose
inference objectives are strongly convex. (See Ap-
pendix C.1 for our precise definition of strong con-
vexity, which we specialize for the 1-norm.) In this
subsection, we apply our PAC-Bayes bounds to an in-
stance of this class, and obtain generalization bounds
that decay faster than previous results.

Consider a TSM with a convex search space S, weights
w, features f and regularizer Ψ. Let

φw(x, s) , −〈w, f(x, s)〉 ,

and note that φ is convex in S if either (a) the features
are linear, or (b) the features are concave in S and the
weights are nonnegative (such as in a hinge-loss MRF
(Bach et al., 2013)). Assuming φ is convex in S, if one
further assumes that Ψ is κ-strongly convex, then it is
readily verified that the negative energy, −Ew(x, s) =
φw(x, s) + Ψ(s), is at least κ-strongly convex in S.
Using this fact, London et al. (2013) proved an upper
bound on the uniform collective stability of strongly-
convex, bounded TSMs.

Definition 9. Denote by Hsc
T a class of strongly con-

vex TSMs with bounded features, where:

1. S is a convex set, φ is convex in S and ∃κ > 0
such that Ψ is κ-strongly convex;

2. ∃b ≥ 1 such that ∀t ∈ T , ‖ft(·, ·)‖b ≤ 1;

3. Γ has induced 1-norm ‖Γ‖1 ≤ 1.

Definition 10. Denote by Hsc
T ,R,κ ⊂ Hsc

T a class of
κ-strongly convex, totally bounded TSMs, where:

1. Ψ is κ-strongly convex;

2. ∃a, b ≥ 1 : 1/a+ 1/b = 1 such that ‖w‖a ≤ R and
∀t ∈ T , ‖ft(·, ·)‖b ≤ 1.

Theorem 4. Fix a graph G , (V, E) on n nodes. For
a set of clique templates T , let

CG , max
i∈V

∑
t∈T

∑
c∈t(G)

1{i ∈ c}

denote the maximum number of groundings involv-
ing any node in G. Then, any h ∈ Hsc

T has
(2
√
‖w‖a CG/κ)-uniform collective stability.

Corollary 1. The class Hsc
T ,R,κ has (2

√
RCG/κ)-

uniform collective stability.

The proof (in Appendix C.2) leverages the strong con-
vexity of the inference objective and the bounded norm
properties. For graphs with bounded degree (i.e., the
maximum degree is independent of n), it can be shown
CG is upper-bounded by a constant. This is further
improved when |T | = O(1). An important special case
is a pairwise TSM, in which T contains only the unary
and pairwise templates.

In our first example, we apply Theorem 2 to a sub-
class of Hsc

T ,R,κ for approximate marginal inference.
An example of this class is the “convexified” Bethe
approximation (Wainwright, 2006).

Definition 11. Denote by Hpam
R,κ ⊂ Hsc

T ,R,κ a class of
pairwise TSMs that perform approximate marginal in-
ference, where:
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1. S is the local marginal polytope; Ψ is a κ-strongly
convex surrogate for the negative entropy;

2. T contains the unary and pairwise templates;

3. ‖w‖∞ ≤ R and ∀t ∈ T , ‖ft(·, ·)‖1 ≤ 1.

Theorem 5. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈
(0, 1) and γ > 0. Also, fix a graph G on n nodes, with
maximum degree ∆G = O(1). Then, with probability

at least 1 − δ over realizations of Ẑ , ((Z
(l)
i )ni=1)ml=1,

the following holds simultaneously for all h ∈ Hpam
R,κ:

L
0
(h)− Lγ(h, Ẑ) ≤

2 ‖Θπ
n‖∞√

2mn

(
1 +

6

γ

√
R(∆G + 1)

κ

)

×

√
d ln

(
18Rn(∆G + 2)

κγ2

)
+ ln

2

δ
.

Since the model is templated, and the templates are
bounded, it is reasonable to assume that d and R do
not grow with n. Thus, the effective convergence rate

is O
(
‖Θπ

n‖∞
√

lnn
mn

)
. This is an improvement over

London et al.’s uniform collective stability risk bounds
(2013) in that it avoids the lnm term in the numerator.

7.2 Variable-Convexity TSMs

We now consider an interesting new class of pairwise
TSMs that have variable convexity. This example
highlights the benefits of using (Q, η, β) collective sta-
bility instead of uniform collective stability.

Definition 12. Denote by Hpvc ⊂ Hsc
T a class of pair-

wise TSMs with variable convexity, where:

1. Ψ is 1-strongly convex, κ > 0 is a parameter and

Ew,κ(x, s) , 〈w, f(x,y)〉 − κΨ(s);

2. T contains the unary and pairwise templates;

3. ∀t ∈ T , ‖ft(·, ·)‖1 ≤ 1.

Learning a TSM from Hpvc involves learning a weight
vector w ∈ Rd and convexity parameter κ > 0.

The first thing to note is that this class does not place
any restrictions on the norm of w. Secondly, this class
contains hypotheses for which −E has arbitrarily low
convexity, as κ → 0. Thus, the convexity parameter
facilitates a continuum of inference functions; for ex-
ample, from (approximate) marginal inference to (ap-
proximate) MAP inference. This smoothing between
marginal and MAP inference has been explored by a
number of authors (e.g., Hazan and Urtasun, 2010;
Meshi et al., 2012). Another interpretation is that κ
controls the amount of hedging, discounting extreme
points in the inference optimization.

We use Theorem 2 to derive a risk bound for Hpvc.

Theorem 6. Fix any m ≥ 1, n ≥ 2, π ∈ Π(n), δ ∈
(0, 1), γ ∈ (0,

√
n] and G with ∆G = O(1). Then,

with probability at least 1− δ over realizations of Ẑ ,
((Z

(l)
i )ni=1)ml=1, the following holds simultaneously for

all h ∈ Hpvc with parameters (w, κ):

L
0
(h)− Lγ(h, Ẑ) ≤ 2√

mn
+

2d

mn

+
2 ‖Θπ

n‖∞√
2mn

(
1 +

6

γ

√(
‖w‖∞
κ

+ 1

)
(∆G + 1)

)

×

√
d ln

(
9n(∆G + 2)

γ2

√
ln(mn)

)
+
‖w‖22
2κ2

+ ln
2

δ
.

Unlike Theorem 5—which uses a uniform upper bound
for ‖w‖ and a prescribed convexity κ—Theorem 6 is
stated in terms of the parameters of given (learned)
hypothesis, with no such restrictions. This makes the
bound closer to actual learning practices. Moreover,
it implies a learning objective that minimizes the em-
pirical margin loss, Lγ(h, Ẑ), while also controlling the
complexity and stability by minimizing ‖w‖ /κ. Opti-
mizing κ effectively learns the amount of hedging, such
as the tradeoff between uniform and peaked marginals.
Thus, Theorem 6 yields a new approach to learning
structured predictors.

8 CONCLUSION

We have shown that Õ (1/
√
mn) generalization is in-

deed possible without requiring uniform collective sta-
bility. We derived two new PAC-Bayes bounds, based
on probabilistic notions of collective stability, and il-
lustrated how they yield generalization bounds for a
broad class of structured predictors. These bounds
suggest a novel learning objective that optimizes col-
lective stability in addition to minimizing empirical
risk. In future work, we plan to design learning algo-
rithms based on these insights.
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