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Abstract

Fully-observable high-order Boltzmann Ma-
chines are capable of identifying explicit high-
order feature interactions theoretically. How-
ever, they have never been used in prac-
tice due to their prohibitively high computa-
tional cost for inference and learning. In this
paper, we propose an efficient approach for
learning a fully-observable high-order Boltz-
mann Machine based on sparse learning and
contrastive divergence, resulting in an inter-
pretable Sparse High-order Boltzmann Ma-
chine, denoted as SHBM. Experimental re-
sults on synthetic datasets and a real dataset
demonstrate that SHBM can produce higher
pseudo-log-likelihood and better reconstruc-
tions on test data than the state-of-the-art
methods. In addition, we apply SHBM to
a challenging bioinformatics problem of dis-
covering complex Transcription Factor inter-
actions. Compared to conventional Boltz-
mann Machine and directed Bayesian Net-
work, SHBM can identify much more biolog-
ically meaningful interactions that are sup-
ported by recent biological studies. To the
best of our knowledge, SHBM is the first work-
ing Boltzmann Machine with explicit high-
order feature interactions applied to real-
world problems.

1 Introduction

Identifying high-order feature interactions is an impor-
tant problem in machine learning and effective solu-
tions to this problem have a large set of use scenarios.
Particularly, in biomedical applications, interactions
among multiple proteins play critical roles in many bi-
ological processes, and thus the identification of such
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high-order interactions itself becomes critical. Theo-
retically, fully-observable high-order Boltzmann Ma-
chines (HBM) [24] are capable of identifying explicit
high-order feature interactions. However, they have
never been applied to any real problems because they
have too many energy terms even for a fair number
of features and the learning procedure is prohibitively
slow.

In this paper, we propose an interpretable Sparse
High-order Boltzmann Machine, denoted as SHBM, and
an efficient learning algorithm to learn an SHBM for
Big-Data problems. We extend the energy function of
an HBM as in [24] to have a combination of different
orders of feature interactions up to a maximum or-
der allowed. We introduce sparsity constraints on the
feature interaction terms so as to construct a sparse
model. The learning algorithm for SHBM is decoupled
into two steps: high-order interaction neighborhood
estimation and interaction weight learning. We pro-
pose an efficient sparse high-order logistic regression
method, denoted as shooter, for identifying inter-
pretable high-order feature interactions and thus to de-
termine the energy function of an SHBM. The shooter

method greedily explores the structures among feature
interactions via solving a set of `1-regularized logistic
regression problems. Significant speed-up is enabled
by organizing the search space within a tree structure
as well as a block-wise expansion of the possible in-
teractions conforming to the tree. Given the energy
function determined by shooter, we propose differ-
ent sampling algorithms that scale to large number of
features and interactions in order to finally learn the
interaction weights within an SHBM. Our experiments
on both large synthetic and real datasets demonstrate
that SHBM and its sub-routine shooter can effectively
identify problem-inherent high-order feature interac-
tions in large-scale settings, which has great potential
to be applied to many Big-Data problems.

The paper is organized as follows. In Section 2,
we present the interpretable sparse high-order Boltz-
mann Machines. In Section 3, we present the shooter

method for identifying high-order feature interactions
within an SHBM. In Section 4, we present sampling
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methods for solving SHBM. In Section 6, experimental
results are presented. Section 7 concludes the paper
with some discussions and future work.

2 Sparse High-order Boltzmann
Machines

2.1 Review of Boltzmann Machines and
High-order Boltzmann Machines

In this section, we review traditional fully observ-
able Boltzmann Machines (BMs) and High-order BM
(HBMs). A fully-observable BM [1] is an undirected
graphical model with symmetric connections between
p visible units v ∈ {0, 1}. The joint probability distri-
bution of a configuration v is defined as follows:

p(v) =
1

Z
exp(−E(v)), (1)

where Z =
∑

u exp(−E(u)) is the partition function.
The energy E(v) is defined as

− E(v) =
∑
ij

Wijvivj +
∑
i

bivi, (2)

where bi is the bias on unit vi, and Wij is the connec-
tion weight between unit vi and vj . The weights are
updated via maximizing the log-likelihood of the ob-
served input data using the following gradient descent

∆Wij = ε(〈vjvj〉data − 〈vivj〉∞),

where ε is the learning rate, 〈·〉data is the expectation
with respect to the data distribution and 〈·〉∞ is the
expectation with respect to the model distribution.

BMs are conventionally used to model pairwise inter-
actions between input features. They have been ex-
tended in [24] to model high-order interactions by in-
corporating higher-order energy functions. For exam-
ple, the quadratic energy function as in Equation 2 can
be replaced by a sum of energy functions with orders
from 1 to m as follows:

−E(v) =
m∑
j=1

∑
i1i2···ij

Wi1i2···ijvi1vi2 · · · vij ,

where Wi1i2···ij is the weight for the order-j interac-
tion among units vi1 , vi2 , · · · , and vij . The derived
model is the so-called High-order Boltzmann Machine
(HBM), and its learning rule with respect to order-j
interactions correspondingly becomes

∆Wi1i2···ij = ε(〈vi1vi2 · · · vij 〉data − 〈vi1vi2 ...vij 〉∞).
(3)

However, due to the painfully slow Gibbs Sampling
procedure to get samples from the model distribution,
HBMs have never been applied to any interesting prac-
tical problems.

2.2 Sparse High-Order Boltzmann Machines

In this section, we propose our methods for solving
HBMs with sparsity constraint. In practice, it is typi-
cally infeasible for HBMs to include all possible energy
functions of different orders. Thus, we need to per-
form structure learning, which is a challenging task
for high-dimensional discrete graphical models. Fol-
lowing [17], the structure learning of HBMs could be
conducted by minimizing the following `1-regularized
negative log-likelihood

min
W

E(v) + logZ + λ‖W‖1.

That is, we constrain the HBM to have only a sparse
set of all possible high-order interactions. However,
calculating the above negative log-likelihood and its
gradient is intractable. To address this, we convert
the problem of minimizing the negative log-likelihood
of observed data into that of minimizing the negative
pseudo log-likelihood as proposed in [13]. Specifically,
we solve the following optimization function

min
W

∑
i

log p(vi|v−i,W ) + λ‖W‖1,

where v−i is the set of visible units except vi. Essen-
tially, the above optimization takes the form of a set
of `1-regularized logistic regression problems that are
not independent due to the shared parameters W .

Due to the extremely large space of the parameters for
the high-order interactions, we approximate the above
pseudo log-likelihood further by utilizing a strategy
proposed by Wainwright et al [26] and propose the fol-
lowing decoupled 2-step method for learning a Sparse
High-order Boltzmann Machine, denoted as SHBM.

Step 1: high-order interaction neighborhood
estimation: we first estimate the high-order interac-
tion neighborhood structure of each visible unit, i.e.,
the Markov blanket of each unit. We formulate this
problem as a high-order feature selection problem and
propose a learning algorithm, denoted as shooter, as
described in Section 3.2. In particular, for each visible
unit (i.e., each feature), we consider a regression prob-
lem from all the other visible units and their high-order
interactions.

Step 2: SHBM weight learning: once the high-
order interaction neighborhood structure of each visi-
ble unit is identified, we add the corresponding energy
functions with respect to the high-order interaction
of that unit into the energy function of HBM. Then
we use Maximum-Likelihood Estimation updates as in
Equation 3 to learn the weights associated with the
identified high-order energy functions, which requires

615



Martin Renqiang Min, Xia Ning, Chao Cheng, Mark Gerstein

drawing samples from the model distribution. In Sec-
tion 4, we present Gibbs Sampling and Mean-Field up-
dates for obtaining samples. Instead of drawing sam-
ples exactly from the equilibrium model distribution,
we only perform sampling a few steps and use Con-
trastive Divergence (CD) [11] to update the weights.

3 Sparse High-Order Logistic
Regression for SHBM

3.1 Review of `1-regularized Logistic
Regression

Given a dataset of n data points {xi, yi}, where xi ∈
Rp, yi ∈ {+1,−1}, and i = 1, . . . , n, `1-regularized
Logistic Regression, denoted as `1-LR, seeks a classi-
fication function f(w, b) by solving the following `1-
regularized optimization problem:

min
w,b

f(w, b) = min
w,b

L(w, b) + λ‖w‖1,

where

L(w, b) =
n∑
i=1

log(1 + exp(−yi(wTxi + b))),

and ‖w‖1 is the `1-norm of w. The sub-differential of
f(w, b) with respect to wj is

∂jf(w, b) = ∇jL(w, b) + λsign(wj), (4)

where ∇jL(w, b) is the standard gradient of the loss
function L(w, b) with respect to wj . Since the pseudo-
gradient [2] of f(w, b) is the sub-differential of f(w, b)
at w with minimum norm, and because the sub-
differential in Equation 4 is separable in the variables
wj ’s, the pseudo-gradient of f(w, b) with respect to
each variable wj can be calculated in a closed form [21].

Among many algorithms solving the above optimiza-
tion problem (see [21] for a comprehensive review),
Projected Scaled Sub-Gradient (PSSG) method is one
of the most efficient [21]. In specific, in PSSG, dur-
ing each iteration, the weight vector w is split into
two sets: a working set that contains all sufficiently
non-zero weights and an active set that is the comple-
ment of the working set. Then an L-BFGS update is
performed on the working set and a diagonally-scaled
pseudo-gradient update is performed on the active set
so as to get the the descent direction d. Finally, or-
thant projections are applied on both sets. The or-
thant projection P on weight vector w with the de-
scent direction d takes the following form:

P(w + d)j =

{
0 if wj(wj + dj) < 0,
wj + dj otherwise,

(5)

which ensures that some weights are set to exactly
0 and the weight updates never cross points of non-
differentiability.

3.2 Sparse High-Order `1-Regularized
Logistic Regression

We extend the conventional `1-LR to have both single
features and multiplicative feature interactions of or-
ders up to m as predictors with `1 regularization, and
this method is denoted as sparse high-order logistic
regression (shooter). The optimization problem of
shooter with feature interactions of maximum order
m is as follows:

min
w,b

n∑
i=1

log{1+

exp[−yi(
m∑

k=1

∑
j1<j2<···<jk

wj1j2···jkx
j1
i x

j2
i · · ·x

jk
i + b)]}

+

m∑
k=1

λk

∑
j1<j2<···<jk

|wj1j2···jk |,

(6)

where xji denotes the j-th feature of xi. Solving the
problem in Equation 6 directly is intractable even for
fair feature set size p and small interaction order m
(e.g. p = 500, m = 6). Thus, we propose a greedy
block-wise optimization method to solve Equation 6.

We decompose the above problem into several sub-
problems and solve the sub-problems greedily from the
lowest order 1 up to the maximum order m as follows.

Step 1: first, we denote the set of all the single

features as F
(1)
0 , that is,

F
(1)
0 = {xj· |∀j}

We use PSSG to solve the optimization problem as in
Equation 7.

min
w(1),b(1)

n∑
i=1

log{1 + exp[−yi(
∑

x
j
i∈F

(1)
0

w
(1)
j xji + b(1))]}

+ λ1

∑
x
j
i∈F

(1)
0

|w(1)
j |.

(7)

The discriminative single features are identified as the

ones which have non-zero weights w
(1)
j across all the

data points. We denote this set of identified single
features by F (1), that is,

F (1) = {xj· |xj· ∈ F
(1)
0 , w

(1)
j 6= 0},

where j = 1, ..., p1, p1 = |F (1)|.

Step 2: then we multiply each discriminative fea-
ture in F (1) with all the rest p − 1 single features in

F
(1)
0 to construct the set of all possible second-order

feature interactions F
(2)
0 , that is

F
(2)
0 = {xj1· xj2· |xj1· ∈ F (1), xj2· ∈ F

(1)
0 , j1 6= j2}
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We solve the optimization problem as in Equation 8

min
w(2),b(2)

n∑
i=1

log{1+

exp[−yi(
∑

x
j1
i ∈F

(1)

w
(2)
j1
xj1i

+
∑

x
j1
i x

j2
i ∈F

(2)
0

w
(2)
j1j2

xj1i x
j2
i + b(2))]}

+ λ1

∑
x
j1
i ∈F

(1)

|w(2)
j1
|+ λ2

∑
x
j1
i x

j2
i ∈F

(2)
0

|w(2)
j1j2
|.

(8)

so as to identify discriminative second-order feature
interaction set F (2), that is,

F (2) = {xj1· xj2· |xj1· xj2· ∈ F
(2)
0 , w

(2)
j1j2
6= 0}.

Step 3: similarly, we multiply each discriminative
(k− 1)-th order feature interaction in set F (k−1) with

p− k+ 1 other single features in F
(1)
0 to construct the

set of all possible k-th order interactions F
(k)
0 , that is,

F
(k)
0 ={xj1· xj2· · · ·xjk· |xj1· xj2· · · ·x

jk−1
· ∈ F (k−1),

xjk· ∈ F
(1)
0 ,

jk 6= jk−q,∀q = 1, · · · , k − 1}

Then from F
(k)
0 we identify discriminative feature in-

teraction set F (k) by solving the optimization problem
as in Equation 9.

min
w(k),b(k)

n∑
i=1

log{1 + exp[−yi(
k−1∑
q=1∑

x
j1
i x

j2
i ···x

jq
i ∈F

(q)

w
(k)
j1j2···jqx

j1
i x

j2
i · · ·x

jq
i

+
∑

x
j1
i x

j2
i ···x

jk
i ∈F

(k)
0

w
(k)
j1j2···jqx

j1
i x

j2
i · · ·x

jk
i

+ b(k))]}

+

k−1∑
q=1

λq

∑
x
j1
i x

j2
i ···x

jq
i ∈F

(q)

|w(k)
j1j2···jq |

+ λk

∑
x
j1
i x

j2
i ···x

jk
i ∈F

(k)
0

|w(k)
j1j2···jk |.

(9)

and the order-k discriminative feature interaction set
F (k) is identified as

F (k) = {xj1· xj2· · · ·xjk· |xj1· xj2· · · ·xjk· ∈ F
(k)
0 , w

(k)
j1j2···jk 6= 0}.

Note that in Equation 9 we include discriminative sin-
gle features and discriminative lower-order interactions
F (1), · · · , F (k−1) into the `1-regularized optimization

problem for order k so as to optimally remove less im-
portant lower-order interactions when high-order in-
teractions present. To speed up the optimization, we
divide each identified discriminative feature interac-
tion set F into equal-sized blocks, and we expand each
block and solve the `1-regularized optimization prob-
lem for the particular block.

The above greedy optimization approach sequentially
identifies discriminative feature interactions of differ-
ent orders that essentially form a tree structure, be-
cause each k-th order discriminative feature interac-
tions must have at least one of its (k−1)-th order con-
stituents belonging to F (k−1), where k > 1. Although
this greedy approach can only identify a sub-optimal
solution to the original intractable optimization prob-
lem in Equation 6, it performs very well in practice as
demonstrated by our experimental results.

4 Sampling Methods for SHBM

In this section, we present Contrastive Divergence
(CD) learning [11] based on Gibbs Sampling (GS) and
damped Mean-Field updates (MF). The weight updates
in SHBM based on CD are as follows,

∆Wi1i2···ij = ε(〈vi1vi2 · · · vij 〉data − 〈vi1vi2 ...vij 〉T ),
(10)

where 〈vi1vi2 ...vij 〉T is calculated using the samples ob-
tained from different sampling methods after T steps.
Although CD updates do not exactly follow the gradi-
ent of data log-likelihood, it works well in practice.

Gibbs sampling (GS) can be used within CD for drawing
samples. To perform Gibbs Sampling, we initialize r(0)

to be a random data vector, and we sample each visible
unit vj sequentially using the conditional probability

p(t)(vj |r(t)
1 , · · · , r(t)

j−1, r
(t−1)
j+1 , · · · , r(t−1)

p )

to get the sample for unit vj in step t, where j =
1, . . . , p, t = 1, . . . , T , and p is the total number of
visible units. Then we use the statistics in the T -step
samples to calculate the second term in Equation 10
for weight updates.

However, standard GS cannot be performed in paral-
lel due to the sequential sampling procedure over all
the visible units. To speed up learning, we use mean-
field approximations (MF) [27] to calculate the sampled
values for all the visible units in each step in parallel
given the sample values in the previous step (please
note that GS and MF have the same computational com-
plexity without parallelization). In specific, we use
the damped version of mean-field updates [20] to draw
samples to increase sampling stability. Starting from a
random data vector r(0), we calculate the t-step sam-
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ple for each visible unit vj as follows,

r
(t)
j = λr

(t−1)
j + (1− λ)p(vj = 1|v−j ,W),

where t = 1, . . . , T , and p(vi = 1|v−i,W) is the con-
ditional probability of vi = 1 given its neighborhood
interactions. Please note that, unlike in GS, we can cal-
culate r(t) for all the visible units in parallel to speed
up our computation because the calculation for r(t) is
only dependent on r(t−1). In all our experiments, we
set λ = 0.2 for parameter learning based on Damped
MF updates.

5 Related Work

For continuous features, undirected `1-regularized
Gaussian graphical model [9] and its extension [18]
have been developed for pairwise feature interaction
identification by estimating nonzero entries of inverse
feature covariance matrix. For discrete binary fea-
tures, undirected graphical models with only pair-
wise feature interactions are equivalent to traditional
Markov Random Field (MRF) [16] and Boltzmann Ma-
chine [12]. Most existing work on undirected graph-
ical models [26, 21] focuses on pairwise interactions
and their extensions to high dimensions (see chapter 5
and 6 of [21] for related literature and recent work in
[14] for large-scale Gaussian Graphical Models), and
there are only a few exceptions on high-order interac-
tions. Dahinden et al [6] utilized the log-linear models
to learn the structure for discrete data using group `1-
regularization, where all potentials up to a fixed order
are considered. However, their methods work on tiny
toy datasets and are not scalable to even medium-size
problems. Schmidt et al [22] addressed the high-order
interaction problem among features via convex opti-
mization, which is the state of the art for high-order
structure learning, but they have a strong hierarchical
assumption on the high-order interactions and com-
pute the partition function in an expensive manner.
Ding [7] proposed a method to learn the high-order
interactions among data labels, not on data features.
Schmidt et al [23] also proposed a conditional ran-
dom field method to learn the high-order interactions
among labels.

6 Experiments

We conduct three sets of experiments to demonstrate
the performance of shooter and SHBM on interaction
neighborhood estimation, feature interaction identifi-
cation (structure learning) and data reconstruction,
respectively. In particular, to test the performance of
shooter for interaction neighborhood estimation, we
test the classification performance of shooter in the
presence of true high-order feature interactions.

6.1 Datasets

We use three datasets, i.e., synsmall, synlarge and
mnist for interaction neighborhood identification via
classification; and one dataset TF for interaction net-
work learning and data reconstruction.

The dataset synsmall is synthetic, in which high-order
feature interactions are explicitly designed and en-
coded. In specific, 10,000 data points of 2,000 binary
features were randomly generated. Out of the 2,000
features, 1% of them were randomly selected as in-
formative features at level 1. We randomly pick two
informative features from level 1 as seed features of
level 2. For each seed feature at level 2, another set of
1% of the entire 2,000 features was randomly selected
to be the ones that interact with the seed, and thus to
generate the 2nd-order interactions. Such expansion
was kept going up to the 3rd-order interactions. Then
for each data point, a new feature vector was gener-
ated by considering all selected feature interactions as
new feature dimensions. The values assigned to these
new features were calculated as the product of the val-
ues that the data point has for the original component
features. In the end, a weighting vector was randomly
generated for all the new feature vectors of each data
point, and positive (negative) label was assigned to
the data point if the sum of the product between the
weighting vector and the new feature vector is positive
(negative). Finally, we randomly flipped the labels of
0.1% of the generated data points to introduce noise.

The dataset synlarge was also synthetic and gener-
ated in a same way as to synsmall, except there are
10,000 data points and 200,000 features. Out of these
20,000 features 0.01% were selected as informative fea-
tures, and another set of 0.01% of the entire 200,000
features were selected interactively for constructing
higher-order interactions. We also introduced noise
as we did for generating synsmall. This dataset is con-
sidered as very large and used to test the scalability of
shooter.

The dataset mnist is constructed from the MNIST
database of handwritten digits1. We chose all the im-
ages of digit 0 and 6 and gave label +1 to the images
of digit 0 and label -1 to the images of digit 6, re-
spectively. We vectorized all the image pixels so as to
convert each originally 28 × 28 image to a vector of
length 784, with all the pixel values normalized from
range [0, 255] to range [0, 1] by dividing the maximal
possible pixel value (i.e., 255). We used all such vec-
tors and their labels in the experiments, considering
each image as a data point and each pixel as a feature.
The dataset mnist has in total 13,779 data points.

1http://yann.lecun.com/exdb/mnist/
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The dataset TF is downloaded from Gerstein et al [10].
Against a set of regulatory targets which have
promoter-proximal binding sites, 116 human TFs were
tested through ChIP-seq experiments. On those confi-
dent gene-TF interactions shown by the experiments,
interaction scores were calculated based on a proba-
bilistic model and weighed by the characteristic profile
of the corresponding TF [4]. Then the most confident
interactions were selected based on the refined inter-
action scores so as to construct the TF dataset. In TF,
each gene is considered as a data point, each TF is con-
sidered as a feature dimension, and each data point is
represented by the interaction profile (i.e., 1 for inter-
action and 0 for non-interaction) of the corresponding
gene with respect to the TFs. The dataset TF has in
total 14153 data points and 116 features with density
30%.

6.2 Classification

We compare the performance of shooter for classifica-
tion against other three alternatives: Support Vector
Machines (SVM) [5] with a linear kernel, logistic re-
gression and `1-regularized logistic regression [19]. We
chose these three methods for comparison because they
are either strong classifiers and/or they have feature
selection mechanisms. These three comparison meth-
ods are denoted as lin-SVM, LR and `1-LR, respectively.
In this set of experiments, classification error is used
as the metric to evaluate the performance.

For these datasets, we randomly selected 20% of the
entire data as test set. We used 30% of the remaining
80% data as a validation set and the rest 70% as train-
ing set. The optimal parameters are first identified by
training a model from the training set and testing it
on the validation set. With the optimal parameters,
another model is trained using both the training data
and the validation data and tested on the test set.

Table 1 presents the performance of different meth-
ods on synsmall, synlarge and mnist. Overall, shooter
outperforms lin-SVM, LR and `1-LR on all the classifi-
cation tasks. On the synthetic dataset synsmall and
synlarge, in which the high-order interactions exist by
design, shooter performs dramatically better than the
others. The error on the test set is 84.4% and 63.2%
smaller than the best of the other methods for synsmall
and synlarge respectively. In particular, shooter is
significantly faster than lin-SVM on synlarge, which
demonstrates its scalability on large-scale classification
tasks. For the cases of dataset mnist, where shooter

still outperforms others, the improvement is 18.2%
compared with the best of the other three methods.
By introducing layers of hidden units on learned inter-
actions, the classification performance can be poten-
tially significantly improved. In addition to superior

classification performance, for all the three datasets,
shooter successfully identifies order-3 feature inter-
actions (i.e., 3 parameters for shooter in Table 1).
The significant improvement of shooter over others
demonstrates the effectiveness of shooter in identify-
ing beneficial high-order interactions for neighborhood
identification purpose for SHBM.

6.3 Interaction Network Learning

We evaluate the performance of SHBM with different
sampling methods against BM and BN on unsuper-
vised feature interaction identification and interaction
weight learning on the TF dataset. We first use en-
richment to evaluate the performance. Enrichment for
TF-TF interactions [4] is calculated as

enrichment =
nobserved
nexpected

,

where nobserved is the number of true interactions
that are correctly predicted by different methods, and
nexpected is the expected number of physical interac-
tions by chance, which is calculated as

nexpected =

(
nTF

2

)
× n0(nTF0

2

) ,
where nTF is the number of TFs in TF dataset, n0 is
the total number of true physical interactions among
human TFs, and nTF0

is the total number of human
TFs. Higher enrichment score corresponds to more
accurate interaction predictions.

Table 2 shows the enrichment of SHBM with GS, SHBM
with MF, shooter (i.e, SHBM without weight refitting,
that is, only use shooter to identify interaction neigh-
borhood; if one interaction appears multiple times, we
use the maximum of the weights as the final weight for
the interaction, which is proposed in [26]), BM with GS,
BM with GS, and BN, for top 50 up to top 250 ranked
order-2 interactions based on interaction weights, re-
spectively. SHBM outperforms other methods consis-
tently except that for top 100 ranked interactions it is
slightly worse than shooter. In particular, SHBM with
GS is notably better than the others for top ranked
interactions. BM is competitive, but it is not able to
identify any higher-order interactions.

Figure 1, Figure 2 and Figure 3 show the networks
of top 100 interactions identified by SHBM with GS, BM
with GS and BN on dataset TF, respectively2. BN has
been the state of the art in bioinformatics for iden-
tifying interactions. However, compared to BN and
BM, SHBM identifies more biologically meaningful and

2The networks identified by SHBM with MF and BM with
MF are presented in the supplementary materials
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Table 1: Classification performance

Method
synsmall synlarge mnist

param verr terr param verr terr param verr terr

shooter 80, 100, 100 0.122 0.048 130, 130, 110 0.133 0.125 3.5, 0.7, 0.7 0.005 0.009
lin-SVM 1 0.408 0.364 10 0.464 0.483 1 0.003 0.014
LR - 0.405 0.367 - 0.460 0.480 - 0.002 0.014
`1-LR 80 0.325 0.308 130 0.349 0.332 3.5 0.008 0.011

The column corresponding to “param” represents the values for the parameters in the corresponding meth-
ods: for lin-SVM, the parameter is C, the cost factor; for `1-LR, the parameter is λ, the parameter for the `1
regularization; and for shooter, it is a list of parameter λ’s, corresponding to the regularization parame-
ters for each order of interactions. The column corresponding to “verr” represents the errors on validation
set corresponding to the optimal parameters. The column corresponding to “terr” represents the errors
on testing set using the optimal parameters. The bold numbers correspond to the best performance on
the testing set.

Figure 1: Interactions from SHBM with GS

Figure 2: Interactions from BM with GS

Figure 3: Interactions from BN

Table 2: Enrichment results

Method top-50 top-100 top-150 top-200 top-250

SHBM with GS 33.653 18.696 22.435 24.305 20.192
SHBM with MF 33.653 18.696 19.942 19.631 18.696
shooter 33.653 20.566 16.203 15.892 17.200
BM with GS 18.696 18.696 16.203 17.761 16.453
BM with MF 18.696 18.696 16.203 18.696 18.696
BN 7.478 5.609 3.739 3.739 2.991

The columns corresponding to top-50, top-100, top-150, etc, rep-
resent the enrichment for top 50, top 100, top 150, etc, ranked
interactions predicted by different methods. The bold numbers
correspond to the best performance across the methods.

significant interactions. As an example, four impor-
tant interactions: MYC vs MAX, STAT1 vs STAT2,
STAT1 vs STAT3 and FOXA1 vs GATA3, are success-
fully identified (highlighted in Figure 1 by SHBM. BM

only identifies MYC vs MAX and FOXA1 vs GATA3
but misses the others. BN misses all the four important
interactions. MYC and MAX form a MAX/MYC het-
erodimer, which has been discovered and studied re-
cently in literature [3]. The interaction between MYC
and MAX is ranked 11 by SHBM among all the identi-
fied interactions. STAT1 and STAT2 also form an het-
erodimer and the interaction has been studied in litera-
ture [15] and this interaction is ranked 8 by SHBM. The
interaction between STAT1 and STAT3 was studied
in [28]. The interaction between FOXA1 and GATA3
is highly ranked by SHBM, which also has literature sup-
port from several recent studies [25] SHBM also identi-
fies some famous high-order interactions such as USF1-
USF2-NFE2 [29], and FOS-NFYA-STAT3 [8], etc.

6.4 Data Reconstruction

We compare SHBM and BM with GS and MF, respectively,
on how well they can fit the data and accordingly gen-
erate new interactions that are true with high prob-
abilities. This set of experiments is conducted on TF

dataset, which has no labels but its interaction net-
work has important biological significance. 80% of the
entire TF dataset is used for SHBM and BM training,
whereas the rest 20% is held out for testing.
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Table 3: Reconstruction performance

Method 5 10 15 20 25 30

SHBM with GS 1385.0 2757.6 4257.6 5561.5 7037.6 8228.7
SHBM with MF 1618.8 3284.5 5044.2 6588.1 8413.3 9928.3
BM with GS 1600.6 3217.6 4930.7 6566.2 8139.6 9467.0
BM with MF 1574.0 3155.1 4839.2 6440.6 7997.8 9302.1

The columns corresponding to 5, 10, 15, etc, represent the reconstruction
errors when the corresponding number of features are marked off and to be
constructed. The bold numbers correspond to the best performance across
the methods.

Table 4: Model fitting performance

SHBM with GS SHBM with MF BM with GS BM with MF

pNLL 0.9829e+05 1.1846e+05 1.1607e+05 1.1421e+05

The row corresponding to “pNLL” represents the pseudo negative
log-likelihood on the testing set. The bold numbers correspond to
the best performance across the methods.

Table 4 presents the pseudo negative log-likelihood
(pNLL) of different methods on the test data. SHBM

with GS outperforms others in term of pNLL, demon-
strating that SHBM with GS better fits the data. SHBM

with GS has an improvement 13.9% over BM with MF,
which is the second best performing method in term
of pNLL.

For the data reconstruction, first a random set of fea-
tures is selected and masked off from the entire data,
that is, all the corresponding binding between TFs and
proteins are reset as none, and it is to utilize the infor-
mation of the rest features in the data and the interac-
tion relations among features to recover the masked-
off part of the original interactions. 5, 10, 15, 20, 25
and 30 features out of 116 are randomly selected and
masked off, and then reconstructed by SHBM and BM.
Such procedure is repeated 20 times and the average
squared errors over the 20 times from SHBM and BM

are presented in Table 3. Consistently, SHBM with GS

outperforms others on all the cases, and improvement
from the second best method, which is BM with MF,
is 12.0%, 12.6%, 12.0%, 13.6%, 12.0%, 11.5%, respec-
tively. This demonstrates that SHBM is able to better
fit the data and accordingly generate most possible
interactions.

6.5 Comparison with Other Methods

We compare SHBM with the hierarchical log-linear
model proposed by Schmidt et al [22], denoted by
HLLM. HLLM is not scalable to even medium-size
datasets and we couldn’t get results from HLLM on TF

within three days. Due to this, we only compared SHBM

and HLLM on a small synthetic dataset generated from
the source code provided with HLLM, but with only
1000 data points and 10 features. The performance is

presented in Table 5.

Table 5: Comparison results

SHBM with GS HLLM

pNLL 2329.39 2334.81

Table 5 shows that for the small dataset, SHBM and
HLLM are very comparable. However, SHBM is scalable
to very large datasets, while HLLM significantly suffers
from scalability issues. This makes SHBM particularly
useful in practice for real large-scale problems.

7 Conclusion

In this paper, we present SHBM, an interpretable
sparse high-order Boltzmann machine, and propose
a two-step learning algorithm for SHBM. In the first
step of SHBM learning, we propose shooter, a greedy
sparse learning approach via `1-regularized logistic re-
gression to identify high-order feature interactions so
as to identify interaction neighborhood structure for
SHBM. In the second step of SHBM, different sam-
pling methods are proposed to learn the interaction
weights in SHBM. experimental results demonstrate
that shooter outperforms other methods in identify-
ing interaction neighborhood by exploring high-order
interactions during classification. In addition, weight
learning in SHBM produces better rankings among inter-
actions and better generative models than other com-
peting models. In particular, SHBM successfully identi-
fies biologically meaningful and significant interactions
from a real biological dataset, whereas other state-of-
the-art methods miss such interactions. SHBM is also
demonstrated to be scalable to very large problems,
while the state-of-the-art method for high-order inter-
actions fail.

In the future, we will incorporate abundant group in-
formation of features to enhance the power of shooter,
when limited data points are available. Moreover, we
will add hidden units and gated hidden units to in-
crease the generative power of SHBM for unsupervised
feature interaction identification and for collaborative
filtering applications.
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