A Geometric Algorithm for Scalable MKL

A Proofs from Section 4
We collect together proofs and auxiliary algorithms from Section 4.

A.1 Proof of Lemma 4.1

u

. o al o
Lemma A.1. The exponential of a matrix in the form (uTn b) , Where a and b are nonnegative, is

(A.1)

o ((coshy+sinhycosy)an’ sinh ysin yit o (L, —0a" 0
e . . AT . +eé 5
sinh y sin yi coshy —sinhycosy 0 0

where W is the unit vector u/|lu

L9 =(a+b)/2, w=1/(a—b)*/4+]|u

We symbolically exponentiate an n+ 1 X n+ 1 matrix of the form

al, u
M= (uT b).

Since this matrix is real and symmetric, its eigenvalues A; are positive and its unit eigenvectors v; form an orthonormal
basis. The method that we use to symbolically exponentiate it is to express it in the form

2, and y = tan~ ' (2||u||/(a —b)).

n
M= Z AiV,‘VlT.
i=1
The exponential then becomes

n
M= Ze}"’vivf.
i=1

As a matter of notation, let @ be the unit vector such that |ju||d = u.

Eigenvalues. The characteristic equation for M is not difficult to calculate. It is:

(A —a)" Y (A% — (a+b)A +ab— |u|?). (A.2)

This yields n — 1 eigenvalues equal to a, and the other two equal to (a+b)/2++/(a—b)?/4+|u|)? and (a+b)/2 —
V/(@a—b)2/4+ ||u|]2. We label them A; and A, respectively, and the rest are equal to a.

Eigenvectors. First we show that M has two eigenvectors of the form (u,c)":

(ﬁIT" Z) () - (fﬁ f;‘;) ’

So as long as we choose ¢ such that ¢® +ac = ||[u||> +bc, or ¢ = (b—a)/2 % \/(a—b)?/4+ |u|%, then (u,c)" is an
eigenvector with eigenvalue a + ¢. These two eigenvalues are just A; and A,. We will call the corresponding eigenvectors
vi and vy.

Since M is symmetric, all of its eigenvectors are orthogonal. The remaining eigenvectors are of the form (w,0) ", where

wiu=0:

al, w\ (w\ (aw

u' »J\0) " \0)"
Clearly the corresponding eigenvalue for any such eigenvector is a, so there are n — 1 of them. The corresponding parts of
these eigenvectors are labeled w;, where 3 <i < n+ 1, and we assume they are unit vectors.

Moeller, Raman, Saha, Venkatasubramanian

Since

n
M= Z el"v,-viT7
i=1

and the eigenvalue a is of multiplicity n — 1, we have
T
M V1Y 0
e =e +e +e
TS oy e M A
M uuT aw) et w' cu Lot L,—ai’ 0
lf2+ct \ern” et) P+ \eu” 3 ot 0

The last term in the equality is due to the fact that @ and the W; form an orthonormal basis for R”, so i + ¥ W, W T =1,.

We can reduce some of the factors in the expression by observing that |Ju|| = —cjc;. Let

Bt = llull?/(Jul* +c1) = —cic2/(c] = c1c2) = e2/ (2 — 1) = 3 /(3 — c1c2) = &3/ (|[u]* +3)
B2 = llull?/([ul* +c3) = —cie2/(3 —c1c2) = —e1/(e2—er) = i /(] —c1e2) = ¢t /(|[ul* +¢F)

Note also that 87 + 7 = 1.

The Exponential. All that remains is to put everything together:
n
M= Z i V,'Vl-T
i=1

) e (D

Some variable substitutions will give us the form in (A.1); A; = ¢ + y, A, = ¢ — v, and ; = cos(y/2):

o ((coshy—+sinhycosy)an’ sinh ysin yi I,—aa’" 0
=e . . AT . + e’ .
sinh y sin y coshy —sinhycosy 0 0

A.2 Selecting o

Recall that u; = A;a (from section 4). Let 4; = u;/||u;]|. Let us denote the elements of the matrix in (A.1) as

pi! =e? (cosh y + sinh ycosy) =¢% coshy
p}2 =ef (sinh ysiny) = —¢? sinh v
p?* =e® (cosh y — sinh ycos y) = ¢% coshy

We observe that ;@ is a rank one outer product with unit trace and that a; is the same for all i. So }; Q;() @ P; is given

as:
m

(i@p}zﬁ?m)) o> -—mn—1)" =Y (p/' +pi’s). (A.3)
i=0

i=0

It is worth noting that the right hand side bears a close resemblance to the trace of P, which is m(n—1)e® + Y7 (p}! + p??)
(the trace of I, is n, and the trace of 0;{; Tis always 1). We know that s = @ = 1 (see Section 4), so this makes the RHS
equal to the trace. Also from normalization step of Algorithm 1 we know that P is normalized with trace 1, so we have the
following:

(i(Zp}zﬁ?Ai)> al) > —1. (A4)

i=1

Practical Considerations. We highlight two important practical consequences of our formulation. First, the procedure
produces a very sparse update to ¢: in each iteration, only two coordinates of « are updated. This makes each iteration

A Geometric Algorithm for Scalable MKL

very efficient, taking only linear time. Second, by expressing u; in terms of g; we never need to explicitly compute A; (as
u; = A;), which in turn means that we do not need to compute the (expensive) square root of G; explicitly.

Another beneficial feature of the dual-finding procedure for MKL is that terms involving the primal variables P are either
normalized (when we set the trace of P to 1) or eliminated (due to the fact that we have a compact closed-form expression
for P), which means that we never have to explicitly maintain P, save for a small number (4m) of variables.

A.3 Proof that p? is O(1)

Lemma A.2. p is bounded by 3/2.

Proof. p is defined as the maximum of ||Q(c"))|| for all 7. Here || - || denotes the largest eigenvalue in absolute value [3].
Because s = @ = 1 (see Section 4), the eigenvalues of Q;(a!")) are 1 (with multiplicity n — 1), and 1 + ||A;a")|. The
greater of these in absolute value is clearly 1+ ||A;o®)].

|A;o)| is equal to
1

(@) AT A} = (£ (@) G)

ri

al) always has two nonzero elements, and they are equal t0 1 / 2. They also correspond to values of y with opposite signs,
so if j and k are the coordinates in question, (a)”G;a") < (1/4)(G; itjj) T Gi (kk)) because Gj(jr) and Gy are both

negative. Because of the factor of 1/r;, and because r; is the trace of G;, ||A;at(")|| < 1/2. This is true for any of the i, so
the maximum eigenvalue of Q(a")) in absolute value is bounded by 1+1/2 = 3/2. O

A.4 Exponentiating M

From Ml() in Algorithm 1 and (4.2), we have M((Q,()+ plI,.1), where p is a program parameter which is
explained in 4.2.

Our Q;(a) = ((AI&) Aia> is of the form (Z}? l;;) , where @ = 1 and b = 1 are non-negative Vi and u; = A;@. So

we have

1
u v = (Aia)TAia = (xTAI-TA,-oc =o' —Go (A.S5)

ri

where the last equality follows from A A; = iG' (cf. (4. 2)) As we shall show in Algorithm 3, at each iteration the
matrix to be exponentiated is a sum of matrices of the form 2% (Q,(Zt 1 al) ptL,11), so Lemma A.1 can be applied at

every iteration. Additionally, @ = b, so many of the substltutlons simplify considerably: ¢ = a, ¥ = ||ul|, siny = =1, and
cosy=0.

We provide in detail the algorithm we use to exponentiate the matrix M. This subroutine is called from Algorithm 3 in
Section 4.

Practical considerations. In Lemma A.1, large inputs to the functions exp, cosh, and sinh will cause them to rapidly
overflow even at double-precision range. Fortunately there are two steps we can take. First, exp(x)/2 gets exponentially
close to both sinh(x) and cosh(x) as x gets larger, so above a high enough value, we can simply approximate sinh(x) and
cosh(x) with exp(x)/2.

Because exp can overflow just as much as sinh or cosh, this doesn’t solve the problem completely. However, since P
is always normalized so that tr(P) = 1, we can multiply the elements of P by any factor we choose and the factor will
be normalized out in the end. So above a certain value, we can use exp alone and throw a “quashing” factor (e~9~9)
into the equations before computing the result, and it will be normalized out later in the computation. For our purposes,
setting ¢ = 20 suffices. Note that this trades overflow for underflow, but underflow can be interpreted merely as one kernel
disappearing from significance.

Moeller, Raman, Saha, Venkatasubramanian

Algorithm 4 EXPONENTIATE-M

Input: y, o, {G;}, €, p, ¢t
¢ —55;(1+p)t
for i € [1..m| do

[l + v/ oTG;a

) 1 .
& ¢ T Gic

Vi 5w
end for
q < max; y;
if ¢ < 20 then
foric[l..m] do
M« cosh(y;)
11 + —sinh(y;)

end for
em <+ 1
else
foric[l..m] do
I pVi—q
1;12 T
end for
em — 2e7 4
end if

S m(n—1)em+2%;11
foric [1..m] do
M—it/s
112 112/s
end for
g+ Y20 g
Return lilz, g

