
A Geometric Algorithm for Scalable MKL

A Proofs from Section 4

We collect together proofs and auxiliary algorithms from Section 4.

A.1 Proof of Lemma 4.1

Lemma A.1. The exponential of a matrix in the form
(

aIn u
u> b

)
, where a and b are nonnegative, is

eφ
(
(coshψ + sinhψ cosγ)ûû> sinhψ sinγû

sinhψ sinγû> coshψ− sinhψ cosγ

)
+ ea

(
In− ûû> 0

0 0

)
, (A.1)

where û is the unit vector u/‖u‖, φ = (a+b)/2, ψ =
√

(a−b)2/4+‖u‖2, and γ = tan−1(2‖u‖/(a−b)).

We symbolically exponentiate an n+1×n+1 matrix of the form

M =

(
aIn u
u> b

)
.

Since this matrix is real and symmetric, its eigenvalues λi are positive and its unit eigenvectors vi form an orthonormal
basis. The method that we use to symbolically exponentiate it is to express it in the form

M =
n

∑
i=1

λiviv>i .

The exponential then becomes

eM =
n

∑
i=1

eλiviv>i .

As a matter of notation, let û be the unit vector such that ‖u‖û = u.

Eigenvalues. The characteristic equation for M is not difficult to calculate. It is:

(λ −a)n−1(λ 2− (a+b)λ +ab−‖u‖2). (A.2)

This yields n− 1 eigenvalues equal to a, and the other two equal to (a+ b)/2+
√

(a−b)2/4+‖u‖2 and (a+ b)/2−√
(a−b)2/4+‖u‖2. We label them λ1 and λ2, respectively, and the rest are equal to a.

Eigenvectors. First we show that M has two eigenvectors of the form (u,c)>:

(
aIn u
u> b

)(
u
c

)
=

(
(a+ c)u
‖u‖2 +bc

)
,

So as long as we choose c such that c2 + ac = ‖u‖2 + bc, or c = (b− a)/2±
√

(a−b)2/4+‖u‖2, then (u,c)> is an
eigenvector with eigenvalue a+ c. These two eigenvalues are just λ1 and λ2. We will call the corresponding eigenvectors
v1 and v2.

Since M is symmetric, all of its eigenvectors are orthogonal. The remaining eigenvectors are of the form (w,0)>, where
w>u = 0:

(
aIn u
u> b

)(
w
0

)
=

(
aw
0

)
.

Clearly the corresponding eigenvalue for any such eigenvector is a, so there are n−1 of them. The corresponding parts of
these eigenvectors are labeled wi, where 3≤ i≤ n+1, and we assume they are unit vectors.



Moeller, Raman, Saha, Venkatasubramanian

Since

eM =
n

∑
i=1

eλiviv>i ,

and the eigenvalue a is of multiplicity n−1, we have

eM = eλ1
v1v>1
‖v1‖2 + eλ2

v2v>2
‖v2‖2 + ea

n

∑
i=3

(
wiw>i 0

0> 0

)

=
eλ1

‖u‖2 + c2
1

(
uu> c1u
c1u> c2

1

)
+

eλ2

‖u‖2 + c2
2

(
uu> c2u
c2u> c2

2

)
+ ea

(
In− ûû> 0

0> 0

)

The last term in the equality is due to the fact that û and the ŵi form an orthonormal basis for Rn, so ûû>+∑ ŵiŵ>i = In.

We can reduce some of the factors in the expression by observing that ‖u‖=−c1c2. Let

β 2
1 = ‖u‖2/(‖u‖2 + c2

1) =−c1c2/(c2
1− c1c2) = c2/(c2− c1) = c2

2/(c
2
2− c1c2) = c2

2/(‖u‖2 + c2
2)

β 2
2 = ‖u‖2/(‖u‖2 + c2

2) =−c1c2/(c2
2− c1c2) =−c1/(c2− c1) = c2

1/(c
2
1− c1c2) = c2

1/(‖u‖2 + c2
1)

Note also that β 2
1 +β 2

2 = 1.

The Exponential. All that remains is to put everything together:

eM =
n

∑
i=1

eλiviv>i

= eλ1

(
β 2

1 ûû> β1β2û
β1β2û> β 2

2

)
+ eλ2

(
β 2

2 ûû> −β1β2û
−β1β2û> β 2

1

)
+ ea

(
In− ûû> 0

0> 0

)
.

Some variable substitutions will give us the form in (A.1); λ1 = φ +ψ , λ2 = φ −ψ , and β1 = cos(γ/2):

= eφ
(
(coshψ + sinhψ cosγ)ûû> sinhψ sinγû

sinhψ sinγû> coshψ− sinhψ cosγ

)
+ ea

(
In− ûû> 0

0 0

)
.

A.2 Selecting α

Recall that ui = Aiα (from section 4). Let ûi = ui/‖ui‖. Let us denote the elements of the matrix in (A.1) as

p11
i =eφ (coshψ + sinhψ cosγ) = eφ coshψ

p12
i =eφ (sinhψ sinγ) =−eφ sinhψ

p22
i =eφ (coshψ− sinhψ cosγ) = eφ coshψ

We observe that ûiû>i is a rank one outer product with unit trace and that ai is the same for all i. So ∑i Qi(α)•Pi is given
as: (

m

∑
i=0

(2p12
i û>i Ai)

)
α ≥−m(n−1)ea−

m

∑
i=0

(p11
i + p22

i s). (A.3)

It is worth noting that the right hand side bears a close resemblance to the trace of P, which is m(n−1)ea+∑m
i=0(p11

i + p22
i )

(the trace of In is n, and the trace of ûiû>i is always 1). We know that s = ω = 1 (see Section 4), so this makes the RHS
equal to the trace. Also from normalization step of Algorithm 1 we know that P is normalized with trace 1, so we have the
following: (

m

∑
i=1

(2p12
i û>i Ai)

)
α(t) ≥−1. (A.4)

Practical Considerations. We highlight two important practical consequences of our formulation. First, the procedure
produces a very sparse update to α: in each iteration, only two coordinates of α are updated. This makes each iteration



A Geometric Algorithm for Scalable MKL

very efficient, taking only linear time. Second, by expressing ui in terms of gi we never need to explicitly compute Ai (as
ui = Aiα), which in turn means that we do not need to compute the (expensive) square root of Gi explicitly.

Another beneficial feature of the dual-finding procedure for MKL is that terms involving the primal variables P are either
normalized (when we set the trace of P to 1) or eliminated (due to the fact that we have a compact closed-form expression
for P), which means that we never have to explicitly maintain P, save for a small number (4m) of variables.

A.3 Proof that ρ2 is O(1)

Lemma A.2. ρ is bounded by 3/2.

Proof. ρ is defined as the maximum of ‖Q(α(t))‖ for all t. Here ‖ · ‖ denotes the largest eigenvalue in absolute value [3].
Because s = ω = 1 (see Section 4), the eigenvalues of Qi(α(t)) are 1 (with multiplicity n− 1), and 1±‖Aiα(t)‖. The
greater of these in absolute value is clearly 1+‖Aiα(t)‖.
‖Aiα(t)‖ is equal to

((α(t))T AT
i Aiα(t))

1
2 =

(
1
ri
(α(t))T Giα(t)

) 1
2
.

α(t) always has two nonzero elements, and they are equal to 1/2. They also correspond to values of y with opposite signs,
so if j and k are the coordinates in question, (α(t))T Giα(t) ≤ (1/4)(Gi( j j) +Gi(kk)), because Gi( jk) and Gi(k j) are both
negative. Because of the factor of 1/ri, and because ri is the trace of Gi, ‖Aiα(t)‖ ≤ 1/2. This is true for any of the i, so
the maximum eigenvalue of Q(α(t)) in absolute value is bounded by 1+1/2 = 3/2.

A.4 Exponentiating M

From M(t)
i in Algorithm 1 and (4.2), we have M(t)

i = 1
2ρ (Qi(α(t))+ ρIn+1), where ρ is a program parameter which is

explained in 4.2.

Our Qi(α) =

(
In Aiα

(Aiα)> 1

)
is of the form

(
aIn ui
ui
> b

)
, where a = 1 and b = 1 are non-negative ∀i and ui = Aiα . So

we have

u>i ui = (Aiα)>Aiα = α>A>i Aiα = α>
1
ri

Giα (A.5)

where the last equality follows from A>i Ai =
1
ri

Gi (cf. (4.2)). As we shall show in Algorithm 3, at each iteration the
matrix to be exponentiated is a sum of matrices of the form 1

2ρ (Qi(∑τ
t=1 α(t))+ρtIn+1), so Lemma A.1 can be applied at

every iteration. Additionally, a = b, so many of the substitutions simplify considerably: φ = a, ψ = ‖u‖, sinγ =±1, and
cosγ = 0.

We provide in detail the algorithm we use to exponentiate the matrix M. This subroutine is called from Algorithm 3 in
Section 4.

Practical considerations. In Lemma A.1, large inputs to the functions exp, cosh, and sinh will cause them to rapidly
overflow even at double-precision range. Fortunately there are two steps we can take. First, exp(x)/2 gets exponentially
close to both sinh(x) and cosh(x) as x gets larger, so above a high enough value, we can simply approximate sinh(x) and
cosh(x) with exp(x)/2.

Because exp can overflow just as much as sinh or cosh, this doesn’t solve the problem completely. However, since P
is always normalized so that tr(P) = 1, we can multiply the elements of P by any factor we choose and the factor will
be normalized out in the end. So above a certain value, we can use exp alone and throw a “quashing” factor (e−φ−q)
into the equations before computing the result, and it will be normalized out later in the computation. For our purposes,
setting q = 20 suffices. Note that this trades overflow for underflow, but underflow can be interpreted merely as one kernel
disappearing from significance.



Moeller, Raman, Saha, Venkatasubramanian

Algorithm 4 EXPONENTIATE-M

Input: y, α , {Gi}, ε ′, ρ , t
φ ←− ε ′

2ρ (1+ρ)t
for i ∈ [1..m] do
‖ui‖←

√
αT Giα

gi← 1
‖ui‖Giα

ψi← ε ′
2ρ ‖ui‖

end for
q←maxi ψi
if q < 20 then

for i ∈ [1..m] do
l11
i ← cosh(ψi)

l12
i ←−sinh(ψi)

end for
eM← 1

else
for i ∈ [1..m] do

l11
i ← eψi−q

l12
i ←−l11

i
end for
eM← 2e−q

end if
S← m(n−1)eM +2∑i l11

i
for i ∈ [1..m] do

l11
i ← l11

i /S
l12
i ← l12

i /S
end for
g← ∑i 2l12

i gi
Return l12

i , g


