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Abstract

We present a geometric formulation of the Mul-
tiple Kernel Learning (MKL) problem. To do
so, we reinterpret the problem of learning ker-
nel weights as searching for a kernel that max-
imizes the minimum (kernel) distance between
two convex polytopes. This interpretation com-
bined with novel structural insights from our geo-
metric formulation allows us to reduce the MKL
problem to a simple optimization routine that
yields provable convergence as well as quality
guarantees. As a result our method scales effi-
ciently to much larger data sets than most prior
methods can handle. Empirical evaluation on
eleven datasets shows that we are significantly
faster and even compare favorably with a uni-
form unweighted combination of kernels.

1 Introduction

Multiple kernel learning is a principled alternative to
choosing kernels (or kernel weights) and has been suc-
cessfully applied to a wide variety of learning tasks and
domains [18, 4, 2, 36, 10, 35, 22, 26]. Pioneering work
by Lanckriet et al. [18] jointly optimizes the Support Vec-
tor Machine (SVM) task and the choice of kernels by ex-
ploiting convex optimization at the heart of both problems.
Although theoretically elegant, this approach requires re-
peated invocations of semidefinite solvers. Other existing
methods [26, 18, 25, 32, 33], albeit accurate, are slow and
have large memory footprints.

In this paper, we present an alternate geometric perspective
on the MKL problem. The starting point for our approach is
to view the MKL problem as an optimization of kernel dis-
tances over convex polytopes. The ensuing formulation is
a Quadratically Constrainted Quadratic Program (QCQP)
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which we solve using a novel variant of the Matrix Mul-
tiplicative Weight Update (MMWU) method of Arora &
Kale [3]; a primal-dual combinatorial algorithm for solv-
ing Semidefinite Programs (SDP) and QCQPs. While the
MMWU approach in its generic form does not yield an
efficient solution for our problem, we show that a care-
ful geometric reexamination of the primal-dual algorithm
reveals a simple alternating optimization with extremely
light-weight update steps. This algorithm can be described
as simply as: “find a few violating support vectors with
respect to the current kernel estimate, and reweight the ker-
nels based on these support vectors”.

Our approach (a) does not require commercial cone or SDP
solvers, (b) does not make explicit calls to SVM libraries
(unlike alternating optimization based methods), (c) prov-
ably converges in a fixed number of iterations, and (d) has
an extremely light memory footprint. Moreover, our focus
is on optimizing MKL on a single machine. Existing tech-
niques [26] that use careful engineering to parallelize MKL
optimizations in order to scale can be viewed as comple-
mentary to our work. Indeed, our future work is focused on
adding parallel components to our already fast optimization
method.

A detailed evaluation on eleven datasets shows that our pro-
posed algorithm (a) is fast, even as the data size increases
beyond a few thousand points, (b) compares favorably with
LibLinear [11] after Nystrom kernel approximations are
applied as feature transformations, and (c) compares fa-
vorably with the uniform heuristic that merely averages all
kernels without searching for an optimal combination. As
has been noted [7], the uniform heuristic is a strong base-
line for the evaluation of MKL methods. We use LibLinear
with Nystrom approximations (LIBLINEAR+) as an addi-
tional scalable baseline, and we are able to beat both these
baselines when both m and n are significantly large.

2 Related Work

In practice, since the space of all kernels can be unwieldy,
many methods operate by fixing a base set of kernels and
determining an optimal (conic) combination. An early ap-
proach (UNTIFORM) eliminated the search and simply used
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an equal-weight sum of kernel functions [22]. In their sem-
inal work, Lanckriet et al. [18] proposed to simultaneously
train an SVM as well as learn a convex combination of ker-
nel functions. The key contribution was to frame the learn-
ing problem as an optimization over positive semidefinite
kernel matrices which in turn reduces to a QCQP. . Soon
after, Bach et al. [4] proposed a block-norm regularization
method based on second order cone programming (SOCP).

For efficiency, researchers started using alternating opti-
mization methods that alternate between updating the clas-
sifier parameters and the kernel weights. Sonnenburg et al.
[26] modeled the MKL objective as a cutting plane problem
and solved for kernel weights using Semi-Infinite Linear
Programming (SILP) techniques. Rakotomamonjy et al.
[25] used sub-gradient descent based methods to solve the
MKL problem. An improved level set based method that
combines cutting plane models with projection to level sets
was proposed by Xu et al. [32]. Xu et al. [33] also de-
rived a variant of the equivalence between group LASSO
and the MKL formulation that leads to closed-form updates
for kernel weights. However, as pointed out in [7], most of
these methods do not compare favorably (both in accuracy
as well as speed) even with the simple uniform heuristic.

Other works in MKL literature study the use of different
kernel families, such as Gaussian families [19], hyperk-
ernels [20] and non-linear families [29, 8]. Regulariza-
tion based on the £>-norm [16] and £,-norm [15, 30] have
also been introduced. In addition, stochastic gradient de-
scent based online algorithms for MKL have been studied
in [21]. Another work by Jain et al. [13] discusses a scal-
able MKL algorithm for dynamic kernels. We briefly dis-
cuss and compare with this work when presenting empiri-
cal results (Section 5).

In two-stage kernel learning, instead of combining the op-
timization of kernel weights as well as that of the best hy-
pothesis in a single cost function, the goal is to learn the
kernel weights in the first stage and then use it to learn the
best classifier in the second stage. Recent two-stage ap-
proaches seem to do well in terms of accuracy — such as
Cortes et al. [9], who optimize the kernel weights in the
first stage and learn a standard SVM in the second stage,
and Kumar et al. [17], who train on meta-examples de-
rived from kernel combinations on the ground examples.
In Cortes et al. [9], the authors observe that their algorithm
reduces to solving a meta-SVM which can be solved using
standard off-the-shelf SVM tools such as LibSVM. How-
ever, despite being highly efficient on few examples, Lib-
SVM is very inefficient on more than a few thousand exam-
ples due to quadratic scaling [6]. As for Kumar et al. [17],
the construction of meta-examples scales quadratically in
the number of samples and so their algorithm may not scale
well past the small datasets evaluated in their work.

Interestingly, our proposed MWUMKL can easily be run
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as a single-kernel algorithm. We can then apply our scala-
bility to the two-stage algorithm of [9], allowing it not to be
limited by the same constraints as LibSVM (which scales
quadratically or worse in the number of examples [6]).

3 Background

Notation. We will denote vectors by boldface lower case
letters like z, and matrices by bold uppercase letters M.

0 Zero vector or matrix
1 all-ones vector or matrix
M >0 Mis positive semidefinite
AOB Tr(AB) = ZiﬁinjBij
diag(a)  The diagonal matrix A such that A;; = g;

Modeling the geometry of SVM. Suppose that X €
R™“ is a collection of n training samples in a d-
dimensional vector space (the rows Xi,Xp,...,X, are the
points). Also, y = (y1,¥2,---,¥u) € {—1,+1}" are the bi-
nary class labels for the data points in X. Let X, C X de-
note the rows corresponding to the positive entries of y, and
likewise X_ C X for the negative entries.
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o
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Figure 1: Illustration of primal-dual relationship for classifica-
tion.

(dual) closest pair

From standard duality, the maximum margin SVM prob-
lem is equivalent to finding the shortest distance between
the convex hulls of X and X_. This shortest distance be-
tween the hulls will exist between two points on the respec-
tive hulls (see Figure 1). Since these points are in the hulls,
they can be expressed as some convex combination of the
rows of X and X_, respectively. That is, if p is the clos-
est point on the positive hull, then p can be expressed as
alXy, where @[1 =1 and a; > 0, with a similar con-
struction for p_ and o _.

This in turn can be written as an optimization
1 2
min ||p+ —p—|| G.D
a 2

st ajl=1, a'l=1, a;,0->0
Collecting all the ¢ terms together by defining o;; = Oy, j»

and expanding the distance term ||p — p_||?, it is straight-
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forward to show that Problem (3.1) is equivalent to

1
min - a'YXX'Ya—a'l (3.2)

OCT

S.t. y=0, o;>0.

where o' YXX ' Ya is merely a compact way of writing
Y kex O OkY Vi <xj, Xk>. Problem (3.2) is of course the fa-
miliar dual SVM problem. The equivalence of (3.1) and
(3.2) is well known, so we decline to prove it here; see Ben-

nett & Bredensteiner [5] for a proof of this equivalence.

Kernelizing the dual. The geometric interpretation of
the dual does not change when the examples are trans-
formed by a reproducing kernel Hilbert space (RKHS).
The Euclidean norm of the base vector space in ||p; —p—||?
is merely substituted with the RKHS norm:

Ip+ — Pz = K(p+,p+) + K(p—,p-) — 2K (p4+.P-),

where the kernel function x stands in for the inner product.
This is dubbed the kernel distance [24] or the maximum
mean discrepancy [12]. The dual formulation then changes
slightly, with the covariance term XX being replaced by
the kernel matrix K. For brevity, we will define G £ YKY.

Multiple kernel learning. Multiple kernel learning is
simply the SVM problem with the additional complication
that the kernel function is unknown, but is expressed as
some function of other known kernel functions.

Following standard practice [18] we assume that the ker-
nel function is a convex combination of other kernel func-
tions; i.e., that there is some set of coefficients y; > 0, that
Y u; =1, and that k = ¥ y;x; (which implies that the Gram
matrix version is K =Y ;K;). We regularize by setting
tr(K) = 1 [18]. The dual problem then takes the following
form [18]:

1
maxmin - ' Go—a 'l 3.3)
K o« 2

m
st. K=Y uK;, u(K)=1, K=0, pu>0
i=1

When juxtaposed with (3.1) and (3.2), this can be inter-
preted as searching for the kernel that maximizes the short-
est (kernel) distance between polytopes.

4 Our Algorithm

The MKL formulation of (3.3) can be transformed (as we
shall see later) into a quadratically-constrained quadratic
problem that can be solved by a number of different
solvers [18, 1, 27]. However, this approach requires a mem-
ory footprint of ®@(mn?) to store all kernel matrices. An-
other approach would be to exploit the min-max structure
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of (3.3) via an alternating optimization: note that the prob-
lem of finding the shortest distance between polytopes for
a fixed kernel is merely the standard SVM problem. There
are two problems with this approach: (a) standard SVM
algorithms do not scale well with m,n, and (b) it is not ob-
vious how to adjust kernel weights in each iteration.

Overview. Our solution exploits the fact that a QCQP is
a special case of a general SDP. We do this in order to apply
the combinatorial primal-dual matrix multiplicative weight
update (MMWU) algorithm of Arora & Kale [3]. While
the generic MMWU has expensive steps (a linear program
and matrix exponentiation), we show how to exploit the
structure of the MKL QCQP to yield a very simple alternat-
ing approach. In the “forward” step, rather than solving an
SVM, we merely find two support vector that are “most vi-
olating” normal to the current candidate hyperplane (in the
lifted feature space). In the “backward” step, we reweight
the kernels involved using a matrix exponentiation that we
reduce to a closed form computation without requiring ex-
pensive matrix decompositions. Our speedup comes from
the facts that (a) the updates to support vectors are sparse
(at most two in each step) and (b) that the backward step
can be computed very efficiently. This allows us to reduce
our memory footprint to O(mn).

QCQPs and SDPs. We start by using an observation due
to Lanckriet et al. [18] to convert (3.3)! into the following
QCQP:

max (200" 1—35) .1
a,s

T

1
st. s> —o' Gio, «

i

y=0, >0

where G; = YK;Y, r € R, and r; = tr(K;).

Next, we rewrite (4.1) in canonical SDP form in order to
apply the MMWU framework:

®* =max 2a'l-—s (4.2)
a,s
. ) o I,, A,'(X
st. Vie[l.m] Qia)= <(Aia)T . ) 7
Qi(a)>0, o'y=0, a>0.

where A A; = 1 G; for all i € [0..m].

The MMWU framework. We give a brief overview of
the MMWU framework of Arora & Kale [3] (for more de-
tails, the reader is directed to Satyen Kale’s thesis [14]).

I'We note that (4.1) is the hard-margin version of the MKL
problem. The standard soft-margin variants can also be placed in
this general framework [18]. For the 1-norm soft margin, we add
the constraint that all terms of o are upper bounded by the mar-
gin constant C. For the 2-norm soft margin, another term o' ot
appears in the objective, or we can simply add a constant multiple
of I to each G;.
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The approach starts with a “guess” @ for the optimal value
o* of the SDP (and uses a binary search to find this guess
interleaved with runs of the algorithm). Assuming that this
guess at the optimal value is correct, the algorithm then
attempts to find either a feasible primal (P) or dual assign-
ment such that this guess is achieved.

Algorithm 1 MMWU template [3]

Input: &, primal PY), rounds T, guess @
fortr=1...T do
forward: Compute update to a®) based on constraints, P()
and ")
backward: Compute M(") from constraints and ct(").
Wi+ effz:)zl MO
t+1
P+l %
end for

Output: P

The process starts with some assignment to p( (typ1cally
the identity matrix I). If this assignment is both primal fea-
sible and at most @, the process ends. Else, there must be
some assignment to & (the dual) that “witnesses” this lack
of feasibility or optimality, and it can be found by solving
a linear program using the current primal/dual assignments
and constraints (i.e., is positive, has dual value at least w,
and satisfies constraints (4.1)).

The primal constraints and o are then used to guide the
search for a new primal assignment P(*1) They are com-
bined to form the matrix Q,-(oc(’)) (see (4.1)), and then ad-
justed to form an “event matrix” M) (see Paragraph “the
backward step” for details)>. Exponentiating the sum of all
the observed M(®) so far, the algorithm exponentially re-
weights primal constraints that are more important, and the
process repeats. By minimizing the loss, the assignments
to P and o”) are guaranteed to result in an SDP value
that approximates @©* within a factor of (1+¢).

Our algorithm. We now adapt the above framework to
solve the MKL SDP given by (4.2). As we will explain
below, we can assign @* a priori in most cases and we
can solve our problem with only one round of feasibility
search. We denote the dual update in iteration ¢ by al),
the i event matrix in iteration ¢ by M,@ and the i pri-
mal variable (matrix) in iteration ¢ by Pgt). Pgt) is closely
related to the desired primal kernel coefficients u;. We de-

note o =Y ; al) as the accumulated dual assignment thus
farand M; =Y, M ) as the accumulated i event matrix.
The backward step.

backward step first.

Tt will be convenient to explain the
Given a) and Q; ( ), we define

M) generalizes the loss incurred by experts in traditional

MWU - by deriving M® from the SDP constraints, the duality
gap of the SDP takes the role of the loss.
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Mgt) = i (Qi(a) +pIn+1) where p is a rate parameter to

be set later. Note that M (and M) is “almost-diagonal”,

. al, u .
taking the form [uTn a} . Such matrices can be exponen-

tiated in closed form.

Lemma 4.1. The exponential of a matrix in the form
al, u
u' a)’
. [ cosh|[uflG” sinh|juli n IL,—aa" 0 }
sinh|jufa”  cosh|ul| 0 0/

Lemma 4.1 (proved in Appendix A. 1) implies that we
can exponentiate the event matrix M (see Algorithm 1)
quickly, as promised. In particular, we set PEIH) =
cexp(—&M;) where ¢ normalizes the matrix to have unit
trace®. Note that the structure of P() also allows us to avoid
storing it explicitly, since (al) e (blili " ) = ab. We need only

store the coefficients of the blocks of the P,@.

The forward step. In the forward step, we wish to check
if our primal solution P is feasible and optimal, and if
not find updates to a®. In order to do so, we apply the
MMWU template. Omitting the iteration parameter ¢ for
clarity, the goal now is to find & such that

Y Qi(a)eP; >0, >0, a'y=0,and ot 1=1.
i

The existence of such a a will prove that the current guess
P is either primal infeasible or suboptimal (see Arora &
Kale [3] for details).

We now exploit the structure of PO given by Lemma
4.1. TIn particular, let p!' = p?*> = e“cosh ||ul,p}?> =
—esinh |Ju||. Then the first inequality above distills to

.
(Zzp, g,) al) > -1,

where g; = (1G;a)/(LaTG;a)' /2. If we let g =Y, 2p!%g;
(which can be calculated at the end of the backward step),
then we have simply g" & > —1 which is a simple collec-
tion of linear constraints that can always be satisfied*.

(4.3)

3Since Lemma 4.1 provides a closed-form solution to matrix
exponentiation in this limited case, we need only worry about
whether the individual functions that make up the elements of the

(t+1)

exponentiation are numerically stable. Since P; is normalized
to have unit trace, however, we can add any additive term to a to
adjust the input of ¢“ to a range that won’t overflow. Moreover,
cosh(x) and sinh(x) converge exponentially to exp(x)/2, so if ||ul|
is large, we can adjust a to prevent instability in the first matrix
term.

4The current margin borders a convex combination of points
from each side. If we could not find a point such that the inequal-
ity is satisfied, then no point from the convex combination can be
found on or past the margin, which is impossible.
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Geometrically, g gives us a way to examine the training
points that are farthest away from the margin. The higher a
value g; is, the more it violates the current decision bound-
ary. In order to find a o that satisfies (4.3), we simply
choose the highest elements of g that correspond to both
positive and negative labels, then set each corresponding
entry in @ to 1/2. Algorithm 2 describes the pseudo-code
for this process.

Algorithm 2 FIND-¢

Input: y, g
P {ilyi=1}L N« {ilyi=-1}
ip < argmax;cp g;, [y < argmax;cy g;
a0
o, —1/2, 0, < 1/2
return o
Output: ast.a>0,a'1=1,0"y=0

Avoiding binary search for w. The objective function in
(4.2) is linear, so we can scale s and & and use the fact that
s =a'1= o to transform the problem":

find o s.t.

=0, a'l=1, o>0,

/o> rlaTGia, a'y=
1

where o = wa. The first constraint can be transformed

back into an optimization; that is, min, maxe rliaTGia,

subject to the remaining linear constraints. Because ® does

not figure into the maximization, we can compute ® simply

by maximizing rli(xTGia. Practically, this means that we

simply add the constraint & ' 1 = 1, and the “guess” for @ is
set to 1. We then know the objective, and only one iteration
is needed, so the binary search is eliminated.

4.1 Extracting the solution from the MMWU

We start by observing that };” | Q; e P; = 0 (by complemen-
tary slackness), which can rewritten as

(

Now recall (from section 3) that o' Gor = Y7 ;- o0 ' G,
and we also use the factthat « 'Goo=0o' 1= = 1. Com-
bining the above two we have:

m

)

i=1

2pf?

ri

ri
a'G;a

1/2
) a'Gio=1. (4.4)

Wi-o' Gioo=1 (4.5)
=1

L

5This fact follows from the KKT conditions for the original
problem. The support constraints of the SVM problem can be
written as Ga + by > 1. If we multiply both sides of this in-
equality by o then it becomes an equality (by complementary
slackness): o' Ga = o' 1. s is a substitution for &' Ga in the
MKL problem [18] so s = a’1l= o as well.
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1/2

2
P 1S

I

ri
al Gja

12
i

Matching (4.4) with (4.5) suggests that
the appropriate choice for ;.

()

4.2 Putting it all together

Algorithm 3 summarizes the discussion in this section.
The parameter € is the error in approximating the objec-
tive function, but its connection to classification accuracy
is loose. We set the actual value of € via cross-validation
(see Section 5). The parameter p is the width of the SDP,
a parameter that indicates how much the solution can vary
at each step. p is equal to the maximum absolute value of
the eigenvalues of Qi(a(’)), for any i [3]. We show that
p? < 3/2in Appendix A.3.

Running time. Every iteration of Algorithm 3 will re-
quire a call to FIND-«, a call to EXPONENTIATE-M and
an update to G;a and o' G;o¢. FIND-a requires a linear
search for two maxima in g, so the first is O(n). The latter
are each O(mn), which dominate FIND-c.

Algorithm 3 requires a total of 7 iterations at most, where
2
T = 88% In(n). Since we only require one run of the main

&)
e2 )"

algorithm, the running time is bounded by O (mn In(n)

Algorithm 3 MWUMKL

Input: g(l) =0;
p, the width;
€, the desired approximation error
Set&' = —In(1— %)

Set T =&’
et T =~ In(n)
repeat {7 times}
Get o) from Algorithm 2
if Algorithm 2 failed then
Return
end if
Update a = a + ot¥)

setm” = % (Qi(a(r)) +P1n+1)
Set W) — o—€'x M

i
set P =w! /ir(w)
Compute g“*1) from PU*1), {G;}, and a
untilt =T
Return +a, P7+1)

5 Experiments

In this section we compare the empirical performance
of MWUMKL with other multiple kernel learning algo-
rithms. Our results have two components: (a) qualita-
tive results that compares test accuracies on small scale
datasets, and (b) scalability results that compares training
time on larger datasets.

We compare MWUMKL with the following baselines:
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(a) UNIFORM (uniformly weighted combination of ker-
nels), and (b) LibLinear [11] with Nystrom kernel ap-
proximations for each kernel (hereafter referred to as
LIBLINEAR+). We evaluate these MKL methods on bi-
nary datasets from UCI data repository. They include: (a)
small datasets lono, Breast Cancer, Pima, Sonar, Heart,
Vote, WDBC, WPBC, (b) medium dataset Mushroom, and
(c) comparatively larger datasets Adult, CodRna, and Web.

Classification accuracy and kernel scalability results are
presented on small and medium datasets (with many ker-
nels). Scalability results (with 12 kernels due to memory
constraints) are provided for large datasets. Finally, we
show results for lots of kernels on small data subsets.

Uniform kernel weights. UNIFORM is simply Lib-
SVM [6] run with a kernel weighted equally amongst all
of the input kernels (where the kernel weights are normal-
ized by the trace of their respective Gram matrices first).
The performance of UNIFORM is on par or better than
LIBLINEAR+ on many datasets (see Figure 2) and the time
is similar to MWUMKL. However UNIFORM does not
scale well due to the poor scaling of LibSVM beyond a
few thousand samples (see Figure 3), because of the need
to hold the entire Gram matrix in memory®. We employ
Scikit-learn [23] because it offers efficient access to Lib-
SVM.

LibLinear [11] with Nystrom kernel approxima-
tions [31, 34] (LIBLINEAR+). One important observa-
tion about multiple kernel learning is that UNIFORM per-
forms as well or better than many MKL algorithms with
better efficiency. Along this same line of thought, we
should consider comparison against methods that are as
simple as possible. One of the very simplest algorithms
to consider is to use a linear classifier (in this case, LibLin-
ear [11]), and transform the features of the data with a ker-
nel approximation. For our purposes, we use Nystrom ap-
proximations as described by Williams & Seeger [31] and
discussed further by Yang et al. [34]. Because LibLinear is
a primal method, we don’t need to scale each kernel — each
kernel manifests as a set of features, which the algorithm
weights by definition.

For the Nystrom feature transformations, one only needs to
specify the kernel function and the number of sample points
desired from the data set. We usually use 150 points, unless
memory constraints force us to use fewer. Theoretically,
if s is the number of sample points, n the number of data
points, and m the number of kernels, then we would need
space to store O(snm) double-precision floats. With regard
to time, the training task is very rapid — the transformation

6This is true even when LibSVM is told to use one kernel,
which it can compute on the fly — the scaling of LibSVM is O(n?)
- O(n®) [6], poor compared to MWUMKL and LIBLINEAR+
with increasing sample size.
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is the bottleneck (requiring O(s%>mn) time to transform ev-
ery point with every kernel approximation).

We employ Scikit-learn [23] for implementations of both
the linear classifier and the kernel approximation because
(a) this package offloads linear support-vector classifica-
tion to the natively-coded LibLinear implementation, (b) it
offers a fast kernel transformation using the NumPy pack-
age, and (c) Scikit-learn makes it very easy and efficient
to chain these two implementations together. In practice
this method is very good and very fast for low numbers of
kernels (see Figures 2, 4a, and 4b). For high numbers of
kernels, this scaling breaks down due to time and memory
constraints (see Figure 5).

Legacy MKL implementations. In all cases, we
omit the results for older MKL algorithm implemen-
tations such as (a) SILP [26], (b) SDPMKL [18],
(c) SIMPLEMKL [25], (d) LEVELMKL [32], and (e)
GROUPMKL [33] which take significantly longer to com-
plete, have no significant gain in accuracy, and do not scale
to any datasets larger than a few thousand samples. For
example, on Sonar (one of the smallest sets in our pool),
each iteration of SILP takes about 4500 seconds on aver-
age whereas UNTFORM requires 0.03 seconds on average.

Size Dataset #Points | #Dim
Breast Cancer 683 9
Heart 270 13
Iono 351 33
Small Pima 768 8
Sonar 208 60
Vote 435 16
WDBC 569 30
WPBC 198 33
Medium Mushroom 8124 112
Adult 39073 123
Large CodRna 47628 8
Web 64700 300

Table 1: Datasets used in experiments.

Experimental parameters. Similar to Rakotomamonjy
et al. [25] and Xu et al. [33], we test our algorithms
on a base kernel family of 3 polynomial kernels (of de-
gree 1 to 3) and 9 Gaussian kernels. Contrary to [25,
33], however, we test with Gaussian kernels that have
a tighter range of bandwidths ({2°,2'/2,... 2%}, instead
of {273,272,...,2°}). The reason for this last choice is
that our method actively seeks solutions for each of the
kernels, and kernels that encourage overfitting the train-
ing set (such as low-bandwidth Gaussian kernels) pull
MWUMKL away from a robust solution.

For small datasets, kernels are constructed using each
single feature and are repeated 30 times with different
train/test partitions. For medium and large datasets, due
to memory constraints on LIBLINEAR+, we test only on
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12 kernels constructed using all features, and repeat only 5
times. All kernels are normalized to trace 1. Results from
small datasets are presented with a 95% confidence interval
that the median lies in the range. Results from medium-
large datasets present the median, with the min and max
values as a range around the median. In each iteration,
80% of the examples are randomly selected as the training
data and the remaining 20% are used as test data. Feature
values of all datasets have been scaled to [0,1]. SVM reg-
ularization parameter C is chosen by cross-validation. For
example, in Figure 2 results are presented for the best value
of C for each dataset and algorithm.

For MWUMKL, we choose € by cross-validation. Most
datasets get € = 0.2, but the exceptions are Web (¢ = 0.07),
CodRna (¢ = 0.07), and Adult (¢ = 0.05). Contrary to
existing works we do not compare the number of SVM
calls (as MWUMKL does not explicitly use an underly-
ing SVM) and the number of kernels selected.

Experiments were performed on a machine with an Intel®
Core™ 2 Quad CPU (2.40 GHz) and 2GB RAM. All
methods have an outer test harness written in Python.
MWUMKL also uses a test harness in Python with an in-
ner core written in C++.

method BIMWUMKL H LibLinear+®Uniform
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Figure 2: Median misclassification rate for small datasets.

misclassificatio

Accuracy. On small datasets our goal is to show that
MWUMKL compares favorably with LIBLINEAR+ and
UNIFORM in terms of test accuracies.

In Figure 2 we present the median misclassification rate for
each small dataset over 30 random training/test partitions.
In each case, we train the classifier with 12 kernels for each
feature in the dataset, and each kernel only operates on one
feature. We are able either to beat the other methods or
remain competitive with them.

Data Scalability,. Both MWUMKL and LIBLINEAR+
are much faster as compared with UNIFORM. At this
point, Adult, CodRna, and Web are large enough datasets
that UNIFORM fails to complete because of memory con-
straints. This can be seen in Figure 3, where we plot train-
ing time versus the proportion of the training data used —
the training time taken by UNIFORM rises sharply and we
are unable to train on this dataset past 11907 points. Hence,

method = MWUMKL ® LibLinear+ 4 Uniform

1h-

10 m-

time

1m-

25% 50% 75%  100%
% of examples

Figure 3: CodRna (n = 59535, d = 8) with 12 kernels.

for the remaining experiments on large datasets, we com-
pare MWUMKL with LIBLINEAR+. In Figures 4a and
4b, we choose a random partition of train and test, and
then train with increasing proportions of the training par-
tition (but always test with the whole test partition). With
more data, our algorithm settles in to be competitive with
LIBLINEAR+.

method = MWUMKL ® LibLinear+
30%-

25%-

20%-

misclassification rate

150

25% 50% 75% 100%
% of examples

method = MWUMKL ® LibLinear+

1.75%-

= 1.50%-

1.25%-

misclassification rate

25% 50% 75% 100%
% of examples

Figure 4: Adult (n = 48842, d = 123) and Web (n = 64700, d =
300) with m = 12 kernels

Kernel Scalability. We aim to demonstrate not only that
MWUMKL performs well with the number of examples,
but also that it performs well against the number of kernels.
In fact, for an MKL algorithm to be truly scalable it should
do well against both examples and kernels.
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For kernel scalability, we present the training times for the
best parameters of several of the datasets, divided by the
number of kernels used, versus the size of the dataset (see
Figure 5). We divide time by number of kernels because
time scales very close to linearly with the number of kernels
for all methods. Also presented are log-log models fit to
the data, and the median of each experiment is plotted as a
point.

We report the time for the same experiments that produced
the results in Figure 2, and also train on increasing propor-
tions of Mushroom (1625, 3250, 4875, and 6500 examples)
with 1344 per-feature kernels. With these selections, we
are testing mn in the neighborhood of 8.7 million elements.

method = MWUMKL & LibLinear+ 4 Uniform

10 s-
©
S 1s
Q
X
9]
D_lOO ms-
£
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1ms- ) ) i i |
256 512 1024 2048 4096
training size

Figure 5: Time per kernel vs. data size for small and medium
data sets (log-log).

As expected, UNIFORM scales quadratically or more with
the number of examples, performing very well at the lower
range. The number of examples from Mushroom is not so
high that LibSVM runs out of memory, but we do see the
algorithm’s typical scaling.

LIBLINEAR+ shows slightly superlinear scaling, with a
high multiplier due to the matrix computations required for
the feature transformations. As we run the algorithm on
Mushroom, the number of samples taken for the kernel ap-
proximations is reduced so that the features can fit in ma-
chine memory. Even so, this reduction doesn’t offer any
help to the scaling and at 6500 examples with 1344 ker-
nels, training time is several hours.

Even though we reduced the number of samples for
LIBLINEAR+, MWUMKL outperforms both UNIFORM
and LIBLINEAR+ when both examples and kernels are
greater than about 103

Dynamic Kernels. We also present results for a few
datasets with lots of kernels. By computing columns of
the kernel matrices on demand, we can run with a memory
footprint of O(mn), improving scalability without affecting
solution quality (a technique also used in SMOMKL [30]).
Table 2 shows that we can indeed scale well beyond tens of
thousands of points, as well as many kernels.
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Dataset #Points | #Kernels Time
Adult 39073 3 13 minutes
CodRna 47628 3 147 seconds
Sonar 1M 208 1000000 3.65 hours

Table 2: MWUMKL with on-the-fly kernel computations.

We choose the above datasets to compare against another
work on scalable MKL [13]. Jain et al. [13] indicate the
ability to deal with millions of kernels, but in effect the
technique also has a memory footprint of Q(mn) (the foot-
print of MWUMKL is ®(mn), in contrast). This limits any
such approach to either many kernels or many points, but
not both.

Since the work in Jain et al. [13] does not provide accuracy
numbers, a direct head-to-head comparison is difficult to
make, but we can make a subjective comparison. The above
table shows times for MWUMKL with accuracy similar to
or better than what LIBLINEAR+ can achieve on the same
datasets. The time numbers we achieve are similar in order
of magnitude when scaled to the number of kernels demon-
strated in Jain et al. [13].

6 Conclusions and Future Work

We have presented a simple, fast and easy to implement
algorithm for multiple kernel learning. Our proposed al-
gorithm develops a geometric reinterpretation of kernel
learning and leverages fast MM W U-based routines to yield
an efficient learning algorithm. Detailed empirical re-
sults on data scalability, kernel scalability and with dy-
namic kernels demonstrate that we are significantly faster
than existing legacy MKL implementations and outpeform
LIBLINEAR+ as well as UNIFORM.

Our current results are for a single machine. As mentioned
earlier, one of our future goals is to add parallellization
techniques to improve the scalability of MWUMKL over
data sets that are large and use a large number of kernels.
The MWUMKUL algorithm lends itself easily to the bulk
synchronous parallel (BSP) framework [28], as most of the
work is done in the loop that updates Go (see the last line
of the loop in Algorithm 3). This task can be “sharded”
for either kernels or data points, and scalability of O(mn)
would not suffer under BSP. Since there are many BSP
frameworks and tools in use today, this is a natural direc-
tion to experiment.
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