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Abstract

Variational Bayesian (VB) learning is known
to be a promising approximation to Bayesian
learning with computational efficiency. How-
ever, in some applications, e.g., large-scale
collaborative filtering and tensor factoriza-
tion, VB is still computationally too costly.
In such cases, looser approximations such as
MAP estimation and partially Bayesian (PB)
learning, where a part of the parameters are
point-estimated, seem attractive. In this pa-
per, we theoretically investigate the behavior
of the MAP and the PB solutions of matrix
factorization. A notable finding is that the
global solutions of MAP and PB in the em-
pirical Bayesian scenario, where the hyperpa-
rameters are also estimated from observation,
are trivial and useless, while their local solu-
tions behave similarly to the global solution
of VB. This suggests that empirical MAP and
empirical PB with local search can be alterna-
tives to empirical VB equipped with the use-
ful automatic relevance determination prop-
erty. Experiments support our theory.

1 INTRODUCTION

In probabilistic models where Bayesian learning
is computationally intractable, variational Bayesian
(VB) approximation (Attias, 1999) is a promising al-
ternative equipped with the useful automatic relevance
determination (ARD) property (Neal, 1996). VB has
experimentally shown its good performance in many
applications (Bishop, 1999; Ghahramani and Beal,
2001; Jaakkola and Jordan, 2000; Barber and Chi-
appa, 2006; Lim and Teh, 2007; Ilin and Raiko, 2010),
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and its model selection accuracy has been theoretically
guaranteed (Nakajima et al., 2012) in fully-observed
Bayesian matrix factorization (MF) (Salakhutdinov
and Mnih, 2008) or probabilistic PCA (Tipping and
Bishop, 1999; Roweis and Ghahramani, 1999).

Generally, VB is solved with efficient iterative local
search algorithms. However, in some applications
where even VB is computationally too costly, looser
approximations, where all or a part of the parameters
are point-estimated, with less computation costs are
attractive alternatives. For example, Chu and Ghahra-
mani (2009) applied partially Bayesian (PB) learning,
where the core tensor is integrated out and the fac-
tor matrices are point-estimated, to Tucker factoriza-
tion (Kolda and Bader, 2009; Carroll and Chang, 1970;
Harshman, 1970; Tucker, 1996). Mørup and Hansen
(2009) applied the MAP estimation to Tucker factor-
ization with the empirical Bayesian procedure, i.e., the
hyperparameters are also estimated from observation.
The empirical MAP estimation, with the same order
of computation costs as the ordinary alternating least
squares algorithm (Kolda and Bader, 2009), showed its
model selection capability through the ARD property.

On the other hand, it was shown that, in fully-observed
MF, the objective function for empirical PB and em-
pirical MAP is lower-unbounded at the origin, which
implies that their global solutions are trivial and use-
less (Nakajima and Sugiyama, 2011; Nakajima et al.,
2011). Here, a question arises: Is there any essential
difference between those factorization models?

This paper answers to the question. We theoretically
investigate the behavior of the local solutions of em-
pirical PB and empirical MAP in fully-observed MF.
More specifically, we obtain an analytic-form of the lo-
cal solutions. A notable finding is that, although the
global solutions of empirical PB and empirical MAP
are useless, the local solutions behave similarly to the
global solution of empirical VB. Experiments support
our theory.

We also investigate empirical PB and empirical MAP
in collaborative filtering (or partially observed MF)
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and tensor factorization. We theoretically show that
their global solutions are also trivial and useless, but
experimentally show that, with local search, they work
similarly to empirical VB.

2 BACKGROUND

In this section, we formulate the matrix factorization
model, and introduce the free energy minimization
framework, which contains VB, PB, and MAP.

2.1 Probabilistic Matrix Factorization

Assume that an observed matrix V ∈ RL×M consists
of the sum of a target matrix U ∈ RL×M and a noise
matrix E ∈ RL×M :

V = U + E .

In matrix factorization (MF), the target matrix is as-
sumed to be low rank, and can be factorized as

U = BA⊤,

where A ∈ RM×H , and B ∈ RL×H . Thus, the rank of
U is upper-bounded by H ≤ min(L,M).

In this paper, we consider the probabilistic MF model
(Salakhutdinov and Mnih, 2008), where the observa-
tion noise E and the priors of A and B are assumed to
be Gaussian:

p(V |A,B) ∝ exp
(
− 1

2σ2 ∥V −BA⊤∥2Fro
)
, (1)

p(A) ∝ exp
(
− 1

2 tr
(
AC−1

A A⊤)) , (2)

p(B) ∝ exp
(
− 1

2 tr
(
BC−1

B B⊤)) . (3)

Here, we denote by ⊤ the transpose of a matrix or
vector, by ∥ ·∥Fro the Frobenius norm, and by tr(·) the
trace of a matrix. We assume that the prior covariance
matrices CA and CB are diagonal and positive definite,
i.e.,

CA = diag(c2a1
, . . . , c2aH

), CB = diag(c2b1 , . . . , c
2
bH )

for cah , cbh > 0, h = 1, . . . , H. Without loss of general-
ity, we assume that the diagonal entries of the product
CACB are arranged in the non-increasing order, i.e.,
cahcbh ≥ cah′ cbh′ for any pair h < h′. Throughout
the paper, we denote a column vector of a matrix by
a bold small letter, and a row vector by a bold small
letter with a tilde, namely,

A = (a1, . . . ,aH) = (ã1, . . . , ãM )⊤ ∈ RM×H ,

B = (b1, . . . , bH) =
(
b̃1, . . . , b̃L

)⊤
∈ RL×H .

2.2 Free Energy Minimization Framework
for Approximate Bayesian Inference

The Bayes posterior is given by

p(A,B|V ) = p(V |A,B)p(A)p(B)
p(V ) , (4)

where p(V ) = ⟨p(V |A,B)⟩p(A)p(B). Here, ⟨·⟩p de-
notes the expectation over the distribution p. Since
this expectation is hard to compute, many approxima-
tion methods have been proposed, including sampling
methods (Chen et al., 2001) and deterministic meth-
ods (Attias, 1999; Minka, 2001). This paper focuses
on deterministic approximation methods.

Let r(A,B), or r for short, be a trial distribution. The
following functional with respect to r is called the free
energy:

F (r) =
〈
log r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)
(5)

=
〈
log r(A,B)

p(A,B|V )

〉

r(A,B)
− log p(V ).

In the last equation, the first term is the Kullback-
Leibler (KL) distance from the trial distribution to
the Bayes posterior, and the second term is a constant.
Therefore, minimizing the free energy (5) amounts to
finding a distribution closest to the Bayes posterior
in the sense of the KL distance. A general approach
to approximate Bayesian inference is to find the mini-
mizer of the free energy (5) with respect to r in some
restricted function space. In the following subsections,
we review three types of approximation methods with
different restricted function spaces.

Let r̂ be such a minimizer. We define the MF solution
by the mean of the target matrix U :

Û =
〈
BA⊤〉

r̂(A,B)
. (6)

The hyperparameters (CA, CB) can also be estimated
by minimizing the free energy:

(ĈA, ĈB) = argminCA,CB
(minr F (r;CA, CB)) .

This approach is referred to as the empirical Bayesian
procedure, on which this paper focuses.

Let

V =
∑H

h=1 γhωbhω
⊤
ah

(7)

be the singular value decomposition (SVD) of V . In
the three approximate Bayesian methods discussed in
this paper, the MF solution can be written as trun-
cated shrinkage SVD, i.e,

Û =
H∑

h=1

γ̂hωbhω
⊤
ah
, where γ̂h=

{
γ̆h if γh ≥ γ

h
,

0 otherwise.
(8)

Here, γ
h
is a truncation threshold and γ̆h is a shrinkage

estimator, respectively, both of which depend on the
approximation method.
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2.3 Empirical Variational Bayes

In the VB approximation, the independence between
the entangled parameter matrices A and B is assumed:

rVB(A,B) = rVB
A (A)rVB

B (B). (9)

Under this constraint, a tractable local search al-
gorithm for minimizing the free energy (5) was de-
rived (Bishop, 1999; Lim and Teh, 2007). Further-
more, Nakajima et al. (2012) have recently derived an
analytic-form of the global solution when the observed
matrix V has no missing entry:

Proposition 1 (Nakajima et al., 2012) Let

K = min(L,M), K = max(L,M), α = K/K.

Let κ = κ(α) (> 1) be the zero-cross point of the fol-
lowing decreasing function:

Ξ (κ;α) = Φ (
√
ακ) + Φ

(
κ√
α

)
,

where Φ(x) = log(x+1)
x − 1

2 .

Then, the empirical VB solution is given by Eq.(8)
with the following truncation threshold and shrinkage
estimator:

γEVB
h

= σ

√
M + L+

√
LM

(
κ+ 1

κ

)
, (10)

γ̆EVB
h =γh

2

(
1− (M+L)σ2

γ2
h

+

√(
1− (M+L)σ2

γ2
h

)2
− 4LMσ4

γ4
h

)
.

(11)

2.4 Empirical Partially Bayes

Point-estimation amounts to approximating the distri-
bution with the delta function. PB-A learning point-
estimates B, while PB-B learning point-estimates A,
respectively, i.e.,

rPB-A(A,B) = rPB-A
A (A)δ(B; B̂), (12)

rPB-B(A,B) = δ(A; Â)rPB-B
B (B), (13)

where δ(B; B̂) denotes the (pseudo-)Dirac delta func-
tion of B located at B = B̂.1 PB learning chooses the
one, giving a lower free energy, of the PB-A and the
PB-B solutions (Nakajima et al., 2011).

Analyzing the free energy, Nakajima et al. (2011)
showed that the global solution of empirical PB is use-
less:

1By the pseudo-Dirac delta function, we mean an
extremely localized density function, e.g., δ(B; B̂) ∝
exp

(
− ∥B−B̂∥2Fro

2ε

)
with a very small but strictly positive

variance ε > 0, such that its tail effect can be neglected,
while its negative entropy χB = ⟨log δ(B; B̂)⟩δ(B;B̂) re-
mains finite.

Proposition 2 (Nakajima et al., 2011) The empirical
PB solution is γ̂EPB

h = 0, regardless of observation.

2.5 Empirical MAP

In the maximum a posteriori (MAP) estimation, all
the parameters are point-estimated, i.e.,

rMAP(A,B) = δ(A; Â)δ(B; B̂). (14)

The global solution of empirical MAP is also useless:

Proposition 3 (Nakajima and Sugiyama, 2011) The
empirical MAP solution is γ̂EMAP

h = 0, regardless of
observation.

3 THEORETICAL ANALYSIS

As explained in Section 2, previous theoretical work
proved that the global solutions of empirical PB and
empirical MAP are trivial in fully-observed MF. In
this section, we however show that empirical PB and
empirical MAP have non-trivial local solutions, which
behave like the global solution of empirical VB.

3.1 Analytic-forms of Non-trivial Local
Solutions

Due to the diagonality, proven by Nakajima et al.
(2013), of the VB posterior covariances, the VB pos-
terior can be expressed as

r(A,B) ∝
∏H

h=1 exp

(
−∥ah−âh∥2

2σ2
ah

− ∥bh−b̂h∥2

2σ2
bh

)
, (15)

with âh = ahωah , and b̂h = bhωbh . Then, the free
energy (5) can be explicitly written as follows:

F = 1
2

(
LM log(2πσ2) +

∥V ∥2
Fro

σ2 +
∑H

h=1 2Fh

)
, (16)

where

2Fh = M log
c2ah
σ2
ah

+ L log
c2bh
σ2
bh

+
a2
h+Mσ2

ah
c2ah

+
b2h+Lσ2

bh

c2bh

− (L+M) +
−2ahbhγh+(a2

h+Mσ2
ah
)(b2h+Lσ2

bh
)

σ2 . (17)

The free energy of PB and MAP can also be expressed
by Eq.(16) with some factors in Eq.(17) smashed:
σ2
bh

→ ε for a very small constant ε > 0 in PB-A
and MAP, and σ2

ah
→ ε in PB-B and MAP. Below,

we neglect the large constants related to the entropy,
i.e., −L log σ2

bh
in PB-A and MAP, and −M log σ2

ah
in

PB-B and MAP. We fix the ratio between the hyper-
parameters to cah/cbh = 1, since the ratio does not
affect the estimation of the other parameters.
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We can give an intuition of Proposition 2 and Propo-
sition 3, i.e., why the global solutions of empirical PB
and empirical MAP are useless. Consider the empirical
PB-A solution, which minimizes the PB-A free energy:

2FPB-A
h = M log

c2ah
σ2
ah

+ L log c2bh +
a2
h+Mσ2

ah
c2ah

+ b2h
c2bh

+
−2ahbhγh+(a2

h+Mσ2
ah
)b2h

σ2 + const. (18)

Clearly, Eq.(18) diverges to −∞ as cahcbh → 0 with
ah = bh = 0,σ2

ah
= cahcbh , and therefore,

(ĉah ĉbh)
EPB-A → 0 (19)

is the global solution. The same applies to empirical
PB-B and empirical MAP, which leads to the useless
trivial estimators, i.e.,

γ̂EPB
h = γ̂EMAP

h = 0. (20)

Note that this phenomenon is caused by smashing a
part of the posterior, which makes the infinitely large
entropy constant: In empirical VB without smashing,
the first four terms in Eq.(17) balance the prior and the
posterior variances, and Eq.(17) is lower-bounded.2

Nevertheless, we will show that empirical PB and em-
pirical MAP with local search can work similarly to
empirical VB. We obtain the following theorems:

Theorem 1 The PB free energy has a non-trivial lo-
cal minimum such that

ahbh = γ̆local-EPB
h if and only if γh > γlocal-EPB

h
, (21)

where

γlocal-EPB
h

= σ
√
L+M +

√
2LM +K2, (22)

γ̆local-EPB
h = γh

2

(
1 +

−Kσ2+
√

γ4
h−2(L+M)σ2γ2

h+K
2
σ4

γ2
h

)
.

(23)

(Sketch of proof) The PB-A solution given c2ah
and c2bh

has been obtained by Nakajima et al. (2011). Substi-
tuting it into the free energy (18), we can write the
PB-A free energy as a function of cahcbh . By taking
the first derivative, we obtain the stationary points.
By checking the sign of the second derivative, we pick
up the non-trivial local minimum from those station-
ary points. We can analyze the PB-B free energy in

2Hyperprior on c2ah
and c2bh can make the free energy

in PB and MAP lower-bounded. However, for the purpose
of ARD, it should be almost non-informative. With such
an almost non-informative hyperprior, e.g., the inverge-
Gamma, p(c2ah

, c2bh) ∝ (c2ah
c2bh)

1.001 + 0.001/(c2ah
c2bh), used

in Bishop (1999), a deep valley exists close to the origin,
which makes the global estimator uselessly conservative.
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Figure 1: Free Energy dependence on cahcbh , where
L = 20,M = 50. A cross indicates a non-trivial local
minimum.

the same way, and obtain its local minimum. Choosing
the one of PB-A and PB-B giving a lower free energy
leads to the solution (21), which completes the proof.
✷

Theorem 2 The free energy of empirical MAP has a
non-trivial local minimum such that

ahbh = γ̆local-MAP
h if and only if γh > γlocal-MAP

h
, (24)

where

γlocal-EMAP
h

= σ
√
2(M + L), (25)

γ̆local-EMAP
h =

1

2

(
γh +

√
γ2
h − 2σ2(M + L)

)
. (26)

(Sketch of proof) Similarly to the proof of Theorem 1,
we substitute the MAP solution (Srebro et al., 2005;
Nakajima and Sugiyama, 2011) given c2ah

and c2bh into
the MAP free energy or the negative log likelihood:

2FMAP
h = M log c2ah

+ L log c2bh + a2
h

c2ah

+ b2h
c2bh

+ −2ahbhγh+a2
hb

2
h

σ2 + const. (27)

By taking the first derivative, we find that the sta-
tionary condition is written as a quadratic function of
cahcbh . Analyzing the stationary condition, we obtain
the local minimum (24), which completes the proof. ✷

Figure 1 shows the free energy as a function of cahcbh
(minimized with respect to the other parameters), i.e.,

Fh(cahcbh) = min
(ah,bh,σ2

ah
,σ2

bh
)
Fh. (28)

This exhibits the behavior of local minima of empiri-
cal VB, empirical PB, and empirical MAP. We see that
the free energy around the trivial solution cahcbh → 0
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is different, but the behavior of a non-trivial local min-
imum is similar: it appears when the observed singular
value γh exceeds a threshold.

The boundedness is essential when we stick to the
global solution. The VB free energy is lower-bounded
at the origin, which enables inference consistently
based on the minimum free energy principle. However,
as long as we rely on local search, the unboundedness
at the origin is not essential in practice. Assume that
a non-trivial local minimum exists, and we perform
local search only once. Then, whether local search
for empirical PB (empirical MAP) converges to the
trivial global solution or the non-trivial local solution
simply depends on the initialization. Note that this
also applies to empirical VB, where local search is not
guaranteed to converge to the global solution, because
of the multi-modality of the free energy.

3.2 Behavior of Local Solutions

Let us define, for each singular component, a local em-
pirical PB (local empirical MAP) estimator to be the
estimator equal to the non-trivial local minimum if
it exists, and the trivial global minimum otherwise.
The analytic-form of the non-trivial local minimum is
given by Theorem 1 (Theorem 2). We suppose that
local search for empirical PB (empirical MAP) looks
for this solution.

In the rest of this section, we investigate the local em-
pirical PB and the local empirical MAP estimators
with their analytic-forms. We will also experimentally
investigate the behavior of local search algorithms in
Section 5.

Let us consider the normalized singular values of the
observation and the estimators:

γ′
h = γh√

Kσ2
, γ̂′

h = γ̂h√
Kσ2

, γ′
h
=

γ
h√

Kσ2
, γ̆′

h = γ̆h√
Kσ2

.

Then, the estimators can be written as functions of
α = K/K:

γ′EVB
h

= σ

√
1 + α+

√
α
(
κ+ 1

κ

)
, (29)

γ̆′EVB
h = γ′

h
2

(
1− (1+α)σ2

γ′2
h

+

√(
1− (1+α)σ2

γ′2
h

)2
−4ασ4

γ′4
h

)
, (30)

γ′local-EPB
h

= σ

√
1 + α+

√
2α+ α2, (31)

γ̆′local-EPB
h = γ′

h
2

(
1 +

−σ2+
√

γ′4
h −2(1+α)σ2γ′2

h +σ4

γ′2
h

)
, (32)

γ′local-EMAP
h

= σ
√
2(1 + α), (33)

γ̆′local-EMAP
h =

1

2

(
γ′
h +

√
γ′2
h − 2σ2(1 + α)

)
. (34)
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(a) Empirical Bayes.
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with cah = cbh = 100.

Figure 2: Behavior of empirical and non-empirical
Bayesian estimators for α = K/K = 1/3.
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Figure 3: Truncation thresholds.

Note that κ is also a function of α.

The left graph in Figure 2 compares the behavior of
the empirical VB, the local empirical PB, and the local
empirical MAP estimators. We see the similarity be-
tween those three empirical Bayesian estimators. This
is in contrast to the non-empirical Bayesian estimators,
where the hyperparameters CA, CB are given (see the
right graph in Figure 2). There, VB and PB behave
similarly, but MAP behaves like the maximum likeli-
hood estimator (Nakajima et al., 2011).

Figure 3 compares the truncation thresholds (29), (31),
and (33) of the estimators. We find that the thresh-
olds behave similarly. However, an essential difference
of local empirical PB from empirical VB and local em-
pirical MAP is found: It holds that, for any α,

γ′local-EPB < γ′MPUL ≤ γ′EVB, γ′local-EMAP, (35)

where γ′MPUL = (1 +
√
α)

is the Marčenko-Pastur upper limit (MPUL)
(Marčenko and Pastur, 1967; Nakajima et al.,
2012), which is also shown in Figure 3. MPUL is the
largest singular value of an L × M random matrix
when the matrix consists of zero-mean independent
noise, and its size L and M goes to infinity with fixed
α. Inequalities (35) imply that, with high probability,
empirical VB and local empirical MAP discard the
singular components dominated by noise, while local
empirical PB overestimates the rank when the ratio
ξ = H∗/K between the (unknown) true rank and the
possible largest rank is small, i.e., when most of the
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singular components consist of noise.

4 PRACTICAL APPLICATIONS

In fully-observed MF, the analytic solution of VB
(Proposition 1) is available, and therefore, one takes
no advantage by substituting PB or MAP for VB.
However, in other models, e.g., collaborative filter-
ing (or partially-observed MF) and tensor factoriza-
tion, no analytic-form solution has been derived, and
all the state-of-the-art algorithms are local search. In
such cases, approximating VB by PB or MAP reduces
the memory consumption and calculation time, be-
cause inverse calculations for estimating posterior co-
variances can be skipped. In this section, we show
that, also in collaborative filtering and tensor factor-
ization, the global solutions of empirical PB and em-
pirical MAP are trivial and useless. In Section 5, we
will experimentally show that local search algorithms
however tend to find useful local minima. We also
mention the possibility of noise variance estimation.

4.1 Collaborative Filtering

In the collaborative filtering (CF) setting, the observed
matrix V has missing entries, and the likelihood (1) is
replaced with

p(V |A,B)∝exp
(
− 1

2σ2 ∥PΛ(V )− PΛ(BA⊤)∥2Fro
)
, (36)

where Λ denotes the set of observed indices, and

(PΛ(V ))l,m =

{
Vl,m if (l,m) ∈ Λ,

0 otherwise.

An iterative local search algorithm for empirical VB
has been derived (Lim and Teh, 2007), similarly to
the fully-observed case.

We can show that the global solutions for empirical
PB and empirical MAP are useless also in this case:

Lemma 1 All elements of the global empirical PB and
the global empirical MAP solutions in CF are zero,
regardless of observation.

Nevertheless, we experimentally show in Section 5 that
local search for empirical PB and empirical MAP be-
haves like local search for empirical VB.

4.2 Tensor Factorization

By extending MF to N -mode tensor data, the
Bayesian Tucker factorization (TF) model was pro-
posed (Chu and Ghahramani, 2009; Mørup and
Hansen, 2009):

p(Y|G,{A(n)})∝exp

(
−∥Y−G×1A

(1)···×NA(N)∥2

2σ2

)
, (37)

p(G)∝exp

(
−vec(G)⊤(CG(N)⊗···⊗C

G(1))
−1

vec(G)
2

)
, (38)

p({A(n)}) ∝ exp

(
−

∑N
n=1 tr(A(n)C−1

A(n)
A(n)⊤ )

2

)
, (39)

where Y ∈ R
∏N

n=1 M(n)

, G ∈ R
∏N

n=1 H(n)

, and {A(n) ∈
RM(n)×H(n)} are an observed tensor, a core tensor,
and factor matrices, respectively. Here, ×n, ⊗, and
vec(·) denote the n-mode tensor product, the Kro-
necker product, and the vectorization operator, re-
spectively (Kolda and Bader, 2009). {CG(n)} and
{CA(n)} are the prior covariances restricted to be di-
agonal. We fix the ratio between the prior covari-
ances to CG(n)C−1

A(n) = IH(n) , where Id denotes the
d-dimensional identity matrix.

Chu and Ghahramani (2009) applied non-empirical
PB learning, where the core tensor is integrated out,
and the factor matrices are point-estimated. Their
model corresponds to Eqs.(37)–(39) with CG(n) =
CA(n) = IH(n) . Mørup and Hansen (2009) applied em-
pirical MAP to this model, and experimentally showed
its model selection ability through the ARD property.

However, we can show that the global solutions of em-
pirical PB and empirical MAP are useless also in TF:

Lemma 2 All elements of the global empirical PB and
the global empirical MAP solutions in TF are zero,
regardless of observation.

Nevertheless, our experiments in Section 5, as well as
the experiments in Mørup and Hansen (2009), show
that empirical PB and empirical MAP with local
search are useful alternatives to empirical VB.

4.3 Noise Variance Estimation

Generally, the noise variance, σ2 in Eq.(1), can be
estimated based on free energy minimization. Naka-
jima et al. (2012) obtained a sufficient condition for
the perfect rank recovery by empirical VB with the
noise variance estimated. However, we experimentally
found that, when the noise variance is estimated, lo-
cal search for empirical PB tends to underestimate the
noise variance. Even worse, local search for empirical
MAP tends to result in σ̂2 → 0.

This unreliability was pointed out by Mørup and
Hansen (2009) in empirical MAP for TF. They sug-
gested to set the noise variance under the assumption
that the signal to noise ratio (SNR) is 0 db, i.e., the
signal and the noise have equal energy. In this paper,
we follow their approach in the experiments with real
datasets, where the noise variance is unknown, and
leave further investigation as future work.
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Figure 4: Empirical VB result on Artificial1 (L =
100,M = 300, H∗ = 20).

0 500 1000 1500 2000 2500

1.85

1.9

1.95

Iteration

F
/
(L

M
)

 

 

local−EPB(Analytic)
local−EPB(Iterative)

(a) Free energy

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Iteration

Ĥ
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Figure 5: Local empirical PB result on Artificial1.
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Figure 6: Local empirical MAP result on Artificial1.

5 EXPERIMENT

In this section, we experimentally show that empirical
PB and empirical MAP with local search can be alter-
natives to empirical VB. We start from fully-observed
MF, where we can see how often local search finds the
analytic local empirical solution. After that, we con-
duct experiments in CF and TF.

For local search, efficient algorithms can be imple-
mented based on the gradient descent algorithm (Chu
and Ghahramani, 2009; Mørup and Hansen, 2009).
However, it requires pruning, and we found that the
pruning strategy can significantly affect the result, es-
pecially in the estimated rank. Accordingly, we used
the iterated conditional modes (ICM) algorithm (Be-
sag, 1986; Bishop, 2006) without pruning, which we
found is more stable, for all empirical Bayesian meth-
ods. In all experiments, the entries of the mean
parameters, e.g., Â, B̂, and Ĝ, were initialized with
independent draws from N1(0, 1), while the covari-
ance parameters were initialized to the identity, e.g.,
ΣA = ΣB = CA = CB = IH .

5.1 Fully-observed MF

We first conducted an experiment with an artificial
(Artificial1 ) dataset, following Nakajima et al. (2013).
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Figure 7: Estimated rank in collaborative filtering
with 99% missing ratio.

We randomly created true matrices A∗ ∈ RM×H∗
and

B∗ ∈ RL×H∗
so that each entry of A∗ and B∗ follows

N1(0, 1). An observed matrix V was created by adding
a noise subject to N1(0, 1) to each entry of B∗A∗⊤.
Figures 4–6 show the free energy and the estimated
rank over iterations for the Artificial1 dataset with
the data matrix size L = 100 and M = 300, and the
true rank H∗ = 20. The noise variance was assumed
to be known, σ2 = 1. We performed iterative local
search 10 times, starting from different initial points,
and each trial is plotted by a solid line in the figures.
We see that iterative local search tends to successfully
find the analytic local empirical solution, although it
is not the global solution.

We also conducted experiments on another artificial
dataset and benchmark datasets. The results are sum-
marized in Table 1. Artificial2 was created in the
same way as Artificial1 with L = 400,M = 500, and
H∗ = 5. The benchmark datasets were collected from
the UCI repository (Asuncion and Newman, 2007).
We set the noise variance under the assumption that
the SNR is 0 db, following Mørup and Hansen (2009).

In the table, the estimated ranks by the analytic-
form solution and the ones by iterative local search
are shown. The percentages for iterative local search
indicate the frequencies over 10 trials. We can ob-
serve the following: First, iterative local search tends
to consistently estimate the same rank as the analytic
solution over the trials.3 Second, the estimated rank
tends to be consistent over empirical VB, local em-
pirical PB, and local empirical MAP, and the correct
rank is found on the artificial datasets. Exceptions are
Artificial2, where local empirical PB overestimates the
rank, and Optical Digits and Satellite, where local em-
pirical MAP estimates a smaller rank than the others.
These phenomena can be explained by the theoreti-
cal implications in Section 3.2: In Artificial2, the ratio
ξ = H∗/K = 5/400 between the true rank and the pos-

3The results of empirical VB are different from the ones
reported in Nakajima et al. (2013), where the noise vari-
ance is also estimated from observation. Generally, the 0
db SNR assumption (Mørup and Hansen, 2009) tends to
result in a smaller rank than empirical VB with noise vari-
ance estimation (Nakajima et al., 2013) in our experiments.
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Table 1: Estimated rank in fully-observed MF experiments.
Data set M L H∗ ĤEVB Ĥ local-EPB Ĥ local-EMAP

Analytic Iterative Analytic Iterative Analytic Iterative

Artificial1 200 100 20 2 2(100%) 2 2 (100%) 2 2 (100%)
Artificial2 500 400 5 5 5 (100%) 8 8 (90%) 5 5 (100%)

9 (10%)
Chart 600 60 – 2 2 (100%) 2 2 (100%) 2 2 (100%)
Glass 214 9 – 1 1 (100%) 1 1 (100%) 1 1 (100%)

Optical Digits 5620 64 – 10 10 (100%) 10 10 (100%) 6 6 (100%)
Satellite 6435 36 – 2 2 (100%) 2 2 (100%) 1 1 (100%)

Table 2: Estimated rank (effective size of core tensor) in TF experiments.
Data set M H∗ ĤEVB Ĥ local-EPB Ĥ local-EMAP ĤARD-Tucker

ArtificialTF (30, 40, 50) (3, 4, 5) (3, 4, 5): 100% (3, 4, 5): 100% (3, 4, 5): 90% (3, 4, 4): 80%
(3, 7, 5): 10% (3, 4, 5): 20%

FIA (12, 100, 89) (3, 6, 4) (3, 5, 3): 100% (3, 5, 3): 100% (3, 5, 2): 50% (3, 2, 2): 40%
(4, 5, 2): 20% (2, 1, 2): 20%
(5, 4, 2): 10% (2, 3, 2): 10%
(4, 4, 2): 10% (2, 2, 2): 10%
(8, 5, 2): 10% (1, 1, 1): 10%

(10, 4, 3): 10%

sible largest rank is small, which means that most of
the singular components consist of noise. In this case,
local empirical PB with its lower truncation threshold
than MPUL fails to discard noise components (see Fig-
ure 3). In Optical Digits and Satellite, α(= 64/5620
for Optical Digits and = 36/6435 for Satellite) is ex-
tremely small, and therefore local empirical MAP with
its higher truncation threshold tends to discard more
components than the others, as Figure 3 implies.

5.2 Collaborative Filtering

To investigate the behavior of the estimators in CF,
we conducted experiments with an artificial (Artifi-
cialCF ) and the MovieLens datasets.4 The Artifi-
cialCF dataset was created in the same way as the
fully-observed case for L = 2000,M = 5000, andH∗ =
5, and masked 99% of the entries as missing values. For
the MovieLens dataset (with L = 943,M = 1682), we
randomly selected observed values so that 99% of the
entries are missing.

Figure 7 shows the estimated rank over iterations. We
see that all three methods tend to estimate the same
rank, but empirical PB tends to give a larger rank, as
in the fully-observed case.

5.3 Tensor Factorization

Finally, we conducted experiments on TF. We created
an artificial (ArtificialTF ) dataset, following Mørup
and Hansen (2009): We drew a 3-mode random tensor
of the size of (M (1),M (2),M (3)) = (30, 40, 50) with
the signal components with (H(1)∗, H(2)∗, H(3)∗) =
(3, 4, 5). The noise is added so that the SNR is 0 db.

4http://www.grouplens.org/

As a benchmark, we used the Flow Injection Analy-
sis (FIA) dataset.5 Table 2 shows the estimated rank
with frequencies over 10 trials. Here, we also show the
result by ARD Tucker with the ridge prior (Mørup
and Hansen, 2009), of which the objective function is
exactly the same as our empirical MAP. A slight dif-
ference comes from the iterative algorithm (ICM vs.
gradient descent) and the initialization strategy.

We generally observe that the three empirical Bayesian
methods provide reasonable results, although local em-
pirical MAP is less stable than the others.

6 CONCLUSION

In this paper, we analyzed partially Bayesian (PB)
learning and MAP estimation under the empirical
Bayesian scenario, where the hyperparameters are also
estimated from observation. Our theoretical analysis
in fully-observed matrix factorization (MF) revealed a
notable fact: Although the global solutions of empiri-
cal PB and empirical MAP are trivial and useless, their
local solutions behave similarly to the global solution
of variational Bayesian (VB) learning.

We also conducted experiments in collaborative fil-
tering (or partially observed MF) and tensor factor-
ization, and showed that empirical PB and empirical
MAP solved by local search can be good alternatives
to empirical VB.
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