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Abstract

Laplace random variables are commonly used
to model extreme noise in many fields, while
systems trained to deal with such noises are
often characterized by robustness properties.
We introduce new learning algorithms that
minimize objectives derived directly from
PAC-Bayes bounds, incorporating Laplace
distributions. The resulting algorithms are
regulated by the Huber loss function and
are robust to noise, as the Laplace distri-
bution integrated large deviation of param-
eters. We analyze the convexity properties
of the objective, and propose a few bounds
which are fully convex, two of which jointly
convex in the mean and standard-deviation
under certain conditions. We derive new for-
ward algorithms analogous to recent boost-
ing algorithms, providing novel relations be-
tween boosting and PAC-Bayes analysis. Ex-
periments show that our algorithms outper-
form AdaBoost, L1-LogBoost [10], and Ro-
bustBoost [11] in a wide range of input noise.

1 Introduction

Laplace random variables are commonly used as noise
models in many fields such as signal processing, com-
munication and control. Since the Laplace distribution
decays exponentially from its mean, it is considered
heavy-tailed compared to the Gaussian distribution,
and used to model systems with anomalies such as ex-
treme noise levels or outliers contamination. Systems
trained to deal with these anomalies tend to be ro-
bust to such noise [30]. Robust statistics, pioneered,
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among others, by Peter Huber, is aimed for develop-
ing statistical methods that are not unduly affected by
outliers. One of its key elements is the Huber loss func-
tion [18], extensively used in various applications [31]
including robust filtering of Laplace-noise [2], as it al-
lows the effect of outliers to be reduced while treating
non-outliers in a relatively standard way.

PAC-Bayes bounds, introduced by McAllester [25],
are a specific family of theoretical bounds that re-
lates empirical performance of algorithms to their ex-
pected one. A few years later, Langford and Shawe-
Taylor [23], and Herbirc [16] analyzed SVMs using
PAC-Bayes bounds. Yet, there is still a gap between
the statements emerging from the PAC-Bayes the-
ory and algorithms that are actually analyzed by it.
Specifically, to the best of our knowledge, no robust
algorithms were analyzed nor derived via the PAC-
Bayes framework.

In our work we use PAC-Bayes bounds based on
Laplace-like distributions for developing new learning
algorithms that possess appealing qualities, the fore-
most is outliers robustness. We investigate the key
features of those in Sec. 3 and Sec. 4. We show a new
connection between Laplace-noise and the Huber loss,
paving the way for a better understanding of the rela-
tion between noise and robustness. In sec 5 we manage
to analytically calculate the bound for the Laplace-like
family of distributions, and prove that for separable
training data, after a certain change of variables, the
problem is in fact convex. In Sec. 6 we propose a
function directly bounding the expected empirical er-
ror probability in the general case, and provide a condi-
tion and a modification, each is enough to ensure joint
convexity. In Sec. 7 we first bound the zero-one loss
with the LogLoss and then compute expectation over
models. The result is a boosting-like algorithm simi-
lar to the LogitBoost, only regularized with the Huber
function. The contribution of this result is twofold: it
closes the gap between boosting algorithms and PAC-
Bayes theory; and, develops a new boosting-like algo-
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rithm which emerges from theory and naturally relates
to Huber loss. This is as opposed to most boosting al-
gorithms that are highly susceptible to outliers [24].
Experiments with synthetic and real-world datasets
show that our algorithms outperform several boosting
algorithms including AdaBoost [12], and other robust
variants: L1-LogBoost [10] and RobustBoost [11].

2 Problem Setting and Background

We focus on binary classification, given a vector in-
put z € X C R? | a classifier h(x) outputs a sin-
gle bit y € ¥ = {£1}. We assume the existence of
a joint distribution over the product space X x ),
(z,y) ~ D, and restrict our discussion to linear func-
tions, where h(x) = sign(w - ) for some d dimensional
vector w € H C R A classifier is evaluated using
the expected loss, called risk, E g ) [C20(y(T - w))],
where the zero-one (or error) loss is defined to be
Lo (Yw-x))=1,ify(w-x) <0and £,, (y(w-x)) =0
otherwise. The empirical risk is the average loss over
the training set, i.e, = 3" £, (y;(2;-w)). We focus in
algorithms that receive a set S = {(z;, y;)}{* with m
i.i.d. samples, (x;,y;) ~ D, and output a distribution
over H. We call this distribution posterior and de-
note it by Q. Also, such a distribution P over weights
defined prior to observing the sample S is called prior.

Generalization theory relates or bounds the risk with
the empirical risk. One such family of bounds is called
PAC-Bayes bounds. McAllester [25, 26] introduced
PAC-Bayesian analysis, which was later further re-
fined [22, 29]. These bounds are aiming to analyze
the performance of algorithms that output posterior
distributions @) over functions h € H and often are
quite tight [16]. Our starting point is a theorem by
Catoni [4] and Germain et al [14] which we now quote.

Theorem 1 (Cor. 2.2 [14], Thm. 1.2.1 [4]) For
any distribution D, any set H of classifiers, any
distributions P,Q of support H, any § € [0,1], and
any positive real scalar c, we have:

1

E“’NQa(m»y)ND [gzo(y(w : w))} < mx (1)
1—exp { - ;(CE‘,,NQ ZEZO(yi(‘Ei .w))]

+ Des(QIP) +1nj$> }

with probability of at least 1 — 4.

The bound states that with high probability, the ex-
pected risk of the posterior is bounded by a mono-
tonic function of the sum of the empirical risk and the

Kullback-Leibler (KL) divergence between the poste-
rior and prior distributions over the classifiers space.
Equipped with this bound, we now describe and de-
rive new algorithms that are aiming to minimize the
risk by minimizing the PAC-Bayes bound, similarly to
previous work such as that of Keshet et al [21].

3 A Laplace-like Family of
Distributions

To employ PAC-Bayesian bounds we specify a family
of distributions over elements w € H. Most previous
applications of this bound use the Gaussian distribu-
tion, that decays exponentially with the squared Eu-
clidean norm. This causes the KL divergence in the
bound to have a quadratic penalty in the difference
between the prior mean and the posterior mean, forc-
ing the later to be close to the former.

We thus propose a family of distribution over vectors
w that depends on a generalized ¢; distance of w from
the mean . As we compute shortly in Remark 1, the
KL divergence between two such distributions grows
at most linearly in the difference between these mean
vectors, allowing some elements of the posterior mean
to be far from their respective prior elements.

1
Qw; p, o) = = o lle—kllen
s My od Hi:1 o )
where |[w|, ; = % ¢ ‘i:‘. This is a uni-modal

distribution with peak and mean at wp, and diago-
nal covariance 2 X diag(a%..,afﬂ. Since its entries
are independent Laplace-distributed random variables
(RV), we call this family Laplace-like (LL) distribu-
tions! and denote it by £2. An appealing qual-
ity of the £? family is that for every given mean
vector p and a bounded expected o-weighted /¢;-
norm, E(lw —pll),; < 1, the single continuous d-
dimensional distribution Q(wj; u, o) which maximizes
the information-theoretic entropy maintains @Q € LL
[20], i.e LL is a maximum entropy family of distri-
butions. Computing the KL divergence between L2
family members yields another unique quality.

Lemma 2 Let P(pp,op),Q (1g,00) € L* be two
LL distributions. The KL between these two distribu-
tions is well defined and given by,

d lhQ .k —rpkl

0Q.k kT HPk B e a—

DKL(Q”P):Z [UQ ('MQ - e +e Q.k
— |ork Q.k

o
+ log <Pk> —1f. (2)
0Q.k
'The family of distributions that are based on the £2 dis-

tance from the mean is called multivariate Laplace. Hence
we use the different name: Laplace-like family.
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The calculation appears in the App. A.

Remark 1 We illustrate the properties of (2) in the
1-dimensional case. We denote by go, (1q) the KL di-
vergence when setting jip = 0 and og = op in (2). We
obtain, 9o, (1Q) = |ngl/oq +exp{—|ugl/ogt —1 .
This function 1is roughly linear for large wval-
ues of |ug| since the exponent term wvanishes
then; while for small values we take a second
order approzimation of the exponent function,
resulting in a quadratic function, go(pQ)

nal/oq + (1= lual/oq + 4 (nalf00)*) — 1
uQQ/ (20’Q2) These two properties are shared with
the Huber loss function [18], hq(z) = 322 if |z| < a,
and hq(x) = a(|z| — a/2) if |x| > a. Yet, while the
Huber function can only be differentiated twice and
is convex, our reqularization function is smooth and
strictly-convex. A plot of g, (x) for og = 1,2 and
he(x) for a =1,0.5 is given in Fig. 1(a). Clearly, the
parameter o, similarly to the parameter a of the Huber
function, controls the transition from quadratic to
linear behavior in pg. However, og has a probabilistic
interpretation, strongly related to the bias-variance
tradeoff, and in fact can be optimized as well.

~
~

We note in passing that Huber [19] defined his loss
function from a need to have robust estimator to out-
liers. It is mainly used as a loss (e.g. [3]). To the
best of our knowledge, our derivation is the first that
uses it (or a similar function) as a regularization, in
general, and as a direct outcome of PAC-Bayes analy-
sis, in particular. We expect that a learning algorithm
equipped with such a regularization will perform well
when there is a variance in the importance of weights
associated with different features, as we shall see in
the simulations below. This is because this regular-
ization penalizes large weights linearly only, and not
quadratically, as the squared norm does. We now pro-
ceed to analyze the expected loss with respect to LL
distributions.

4 Expected Loss: Derivation and
Analysis

In this section we restrict, for simplicity, our discussion
to isotropic distributions?, that is, (oq)r = og and
(op)r = op for k = 1,...,d. We next compute the
expected zero-one loss under a £2? distribution.

Lemma 3 Assume the posterior is an isotropic

2@eneralization of the following for an arbitrary vector
o is straightforward by replacing each example & with
ZL',:(O'QJJH, e ,O'Q7dxd).
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Figure 1: (a) Illustrations of regularization compared with
the Huber function. (b) The expected zero-one loss (CDF,
green solid) and 3 upper bounds we develop and analyze.
Laplace-like distribution Q ~ L* (ng,0q). The ex-
pected zero-ome loss (i.e probability for an incorrect
classification) of an example (x,y), with all elements
of x differ from each other (that is xp # x; for all

k #j), is given by,

Ewrq [gzo (y“-’ : :c)] = écdf (yu : 33)

where the first equality defines €c.qr and,

(3

_ yx - K
5(:1371/7/1’@70-@) =& (.’B, o0 )
(= - 1o)

d
= Zak(@") €xp {_y
k=1

3

oqQlzkl

and, define £(x) = sort(|xz|), we have, (3)
d - d .
(@) =t | [T& ] II 1§ &7
j=1 J=1,j#k
d -1 d —1
~ Z (_1)7n+k: (gk—l + g’;]ll) H ‘5.]—1 _ f;][l‘ .
m=1 j=1,j#m

The proof of the lemma appears in App. B. Notice
that if the distribution over inputs x ~ D is continu-
ous, then the set {ay(x)} is well-defined almost surely.
We will deal with this case here for simplicity® . No-
tice also that about half of the coefficients ay(x) are
negative. Thus, it is not clear whether &£(x,y, ug,0q)
for y ([J,Q . a:) > 0 is even non-negative as a sum and
difference of exponential functions. It will be shown
that it is non-negative, and even strictly convex after
we change its arguments below.

Substituting Lemma 2 and Lemma 3 in (1) we con-
clude that the PAC-Bayes bound for isotropic P,Q €

3The CDF is also well-defined and can be calculated for
cases where |z; ;| = |zix|, by taking a limit and getting
a distribution which is a mix of the one above with the
Bilateral-Gamma distribution family.
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£? is monotonic in the following quantity,

> L

k:l

—d+cZ{

lbQ . k—rpP k!

|MQk—MPk| o0

9Q

(5)

In other words, one strategy to obtain low risk is to
minimize the bound, or equivalently (5). A common
practice in machine learning is to derive convex objec-
tive functions, for which a local minima point is also a
global one, often allowing us to better find a minimizer
efficiently. Unfortunately, the objective of (5), as well
as any PAC-Bayes objective in general, is not convex,
since any CDF loss is concave for negative margin val-
ues (i.e. a majority-mistake).

Our goal is therefore to derive convex optimization
problems and respective algorithms which would yield
efficient algorithms to minimize (a surrogate of) the
PAC-Bayes bound. Our first step towards this goal is
a change of variables,

(6)

Conceptually, g is the mean normalized in standard-
deviation units, and o is the normalized standard-
deviation in the units of the prior’s standard-deviation.
Additionally, we set the prior mean to zero, pup = 0.

B =pglog , o=o0q/op.

5 Separable Training Data

We first focus on the realizable case where the training
data is linearly separable. We plug the new variables
of (6) into the objective (5), assuming the margin is
non-negative for all examples, we get the new objective
for which the PAC-Bayes bound is monotonic in,

d

F(w,05¢) = — dlogoe + O'Z [l k| + exp (—| )]
k=1

+ey Lyimi-p) (7)
=1

yi(@i-p)
2Ry

for £ (y;x; - p) = Zzzl Qi €Xp {— } The next
theorem states that under the separability assumption,

the objective of (7) is in fact convex.

Theorem 4 Assume that the set {(x;,y;)}7~, is lin-
early separable. Then, F (p,05¢) is strictly-convex

(separately) in w, o, for
d
C(yii - ) = D j—y Qi k €XP {— }

yi(®i-p)
ETY

> + dlog (UP>
9Q

E(®i, Yirlg 0Q) Yi(mg-®i) >0

wm yivlJ’an—Q) Yi (/JJQ . wz) <0
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The full proof of Theorem 4 appears in App. C. We
now briefly discuss a general scheme for solving the
following optimization problems, which are separately
convex in p and o, using alternate optimization. Fix-
ing o, one can use any algorithm to minimize the con-
vex problem in p. Fixing the minimizing value for u,
the only term of the objective (7) (and also (10) be-
low) depending on o is the regularization, for which
the solution is obtained by setting the derivative to
Zero,

. d
= d . (8)
D k=1 |bk] 4 exp (=)
Note that the solution satisfies o* € (0,1) because
|pex] + exp (—|px|) > 1 holds for all k = 1,...,d. Fur-

thermore, o is related to the standard deviation of the
posterior, while gt —0 is the posterior’s-mean bias from
the prior’s mean. Thus, equation (8) can be thought
of a bias-variance tradeoff. When the optimal solution
of the mean p is far from zero (the prior’s mean), the
optimal posterior is also concentrated about its mean,
and vice versa, if the posterior’s mean is close to the
prior’s mean (low bias), the variance is large, compared
with the prior’s variance.

We conclude this section by stating a bound on the op-
timal parameters norm, providing intuition concerning
the solutions as well as useful for minimization algo-
rithms, as we shall see in the experiments section.

Lemma 5 Let {(z) be a non-negative loss of the mar-
gin z, for which £(z =0)=n for somen > 0. The
minimizer (u*0q*) of (7) satisfies, d ™/ 4> || u*||;
and o* >e—cmn/d,

The proof appears in App. E. According to Lemma
4, one can observe a natural way of determining the
hyper-parameter ¢ for our algorithm to be of the order
= 0 (d/(mn)), in which case ||p*]|; = O(d) and o* =
Q(1). Simulation results in Sec. 8 support this choice.

6 Non-Separable Training Data

As an upper bounded monotone increasing function
over the reals, cumulative distribution functions are
not convex in general, and thus direct minimizations
of PAC-Bayes bounds in general, and our objective of
(5) in particular, are not convex as well.

There are two possible approaches. In this section,
we upper bound the expected zero-one loss, i.e. the
CDF defined in (3), with a convex function, that
is, we bound Ey @ [l0 (yw - @)] = Legr (yw - ) <
Bound; (yw - x). In the next section, we bound
the zero-one loss with convex functions, and then
take the expectation of the bounding loss, that is,
Ew~g [lo (yw - )] < Eung [Bounds (yx - w)]. The
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next theorem holds for the bound introduced in this
section, but is ,in fact, much more general.

Theorem 6 Let ¢ (yx - p) be an arbitrary convex loss.
Denote by F (u,0;¢) the objective of (7). Then,

(1) F(p,o5¢) + $l|pl|? is jointly strictly-convex in
(pn,0).  (2) F(p,o;¢) is jointly strictly-convex in
(. 0) for ||pllec < 1.

The proof appears in App. F. We now derive and an-
alyze a convex bound on the expected loss, which to-
gether with our last analysis ensures convexity of the
objective for the entire range of margins, and not only
for the separable case. This theorem can be applied in
other contexts as there is no restriction about the loss
function, other than being convex.

As mentioned above, the CDF is convex for positive
margin values, and concave otherwise. Therefore we
bound the concave part with the tightest convex upper
bound: a linear function,

122:1 an(@)el 5 o> 0 , (9)
7 — Bl@)yx - p yx - p <0

Ciin (yz - 1) —{

ag(x)

for B(x) = 22:1 el > 0. We also denote f;
B(x;). The bound is illustrated with a dashed-red line
in Fig. 1(b). The function ¢;;,, is convex, as its second
derivative is always non-negative, and by construction
satisfy Ccqr(2) < liin(2). The objective of (5), after
changing variables using (6), can be bounded with,

d
Fiin (m,03¢) = —dlogo + 0 > [|juk] + exp {—|p|}]
k=1
m
+eY by - p) - (10)

i=1
The function F;p (@, 0;¢) is convex in p and o (indi-
vidually): The loss depends only in g and its second
derivative with respect to u is non-negative. The regu-
larization is a function of both and we already showed
in Theorem 4 that it is indeed convex in each indi-
vidually. From the same reason the function is jointly
convex under the conditions of Theorem 6.

This function has an additional appealing property:
the regularization is now equivalent to the loss term
over additional artificial examples, as stated in the
next lemma. A similar property exists in some boost-
ing algorithms [9].

Lemma 7 Define 2d artificial example set, A
{(ex,y) : k=1,...,d,y € YV}, where e, is the kth
standard basis vector ((ey); 1 for k J
and (ey); 0 otherwise).  The regularization

term 375y (el + exp {~luxl}) of Fiin (p.05¢) de-
fined above, equals (up to an additive constant d) to
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twice the linear-loss over the 2d additional-ezamples,
2 Z(m,y)eA Ciin(yzi - ).

The proof appears in App. G. Alternating minimiza-
tion of the linear bound, using (8) for setting o and
coordinate descent for optimizing over p, leads to a
robust and efficient learning algorithm which we call
RobuCoP, for a Robust coordinate PAC-Bayes algo-
rithm (pseudo-code appears in App. H. However, since
the Hessian of (10) is vanishing for weights g with
large values, second order optimization methods may
not work well in practice. This motivates us to employ
the approach presented next.

7 Bounding the Zero-One Loss

Our main quantity of interest is the empirical ex-
pected zero-one loss computed for a single example
in (3). In general, as discussed above, it is not
convex, and thus there is a need to bound it. In
the last section we derived a linear bound of the
expected loss. Here, we take a complementary
approach, and instead of bounding the expected
zero-one loss, we compute an exact exception of
losses, each bounding the zero-one loss. We de-
fine the LogLoss and ExpLoss, {04 (y(w - a))
logy (L+exp(—y(w-x))) and Lleg (y(w-x)) =
exp (—y (w - x)). It is well known that,
ezo (:‘/(w : 513)) < élog (y(w . .’B)) 766.’1/'1) (y(w ' :I))) s there-
fore, Eung [loo(y(w @) < Eung llog (9w 2))]
< logy (1 + Ewng [leap (y(w - x))]), where the last
inequality follows from Jensen inequality.

Let us compute the expected ExpLoss. In this sec-
tion we do assume nothing about the data. Addition-
ally, we return to general distributions with vector pa-
rameter og, and as we shall see shortly, there is no
need to employ the change of variables of (6). Given
an input series, we scale it in order to bound it in
the unit foo-ball, that is max, [|&;|lcc < 1. Let,
Q ~ L? (/,LQ,O'Q), be a distribution with bounded
variances 0 < g < 1lfor k=1,...,d (otherwise, the
expected ExpLoss is not bounded from above). Then,

d
1 —y@-p —y@-p
Eq [e—um w] = H 761 ° 1
i 200k |0 — YTk Yk +og
d 1
= e—ym-uH 2 (11)
k—1 1-— (l'kJQ,k)
We denote for simplicity, D; = D,(oqg) =
szl [1/ (1 - (xiwkaka)Q)} , for each example

(;,y:). It is well defined since both ||oglle < 1 and
|zillc < 1. We use the last equation to provide a
bound of (the loss term of) (5) using the LogLoss. As
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Input: Training set {(z;,y:)}~, , pp € R%
oq € (0,1)% ¢ > 0, No. of iterations 7.
e e Ts s 1
Initialization: u(Q) Up
d .
[T [1— (®ikogw) ] fori=1,...,
Loop Fort=1,...,

D;

m
T do:

e Choose coordinate k € {1,..,d}
Dilzi,nl

S () , )
o Set: vy, = Zi:Lyimi,kzo —

Di|x; k|

D;+ei®iHa
P
i=1,y;®;,, <0

2+

%

Dot ®i )

H(Q)k

O'Qk

e Update: If ('yk exp{

(t+1)

then Bk

1+

1+4cv; |:exp {—

“8)k +
o - +C’Yk

Q,k

0Q,k log

else By k

(t+1)

2¢y,,

(_

1+

1+4cv,j' [exp {

u(0)
Q.k

7Q.k

: oo |

(t)
HQ K

0Q,k log

u
2 [exp 08: +cyy

Output: ,u(T'H)

Figure 2: The BaLaBoost Algorithm.

before, (up,op) = (0,1). The LogLoss bound is,

d
Z (UQ,ke
k=1
m

gl + ¢ logy (1 + Diev@Ha)
i=1

|1q.i
o

]:log (NQv UQ) =

— log (UQ’;C)>
(12)

By computing the second derivatives of Fiog (/,LQ, O'Q)
defined in (12), one can verify that this function is con-
vex separately in g and o , for each k. We now derive
a coordinate-descent, boosting-like algorithm for (12).
A similar algorithm can be also derived when replacing
the LogLoss with the ExpLoss (also convex, omitted
due to lack of space). We focus on the LogLoss as
it is more involved, and was found to be more robust
to outliers [5]. We fix o for now, and optimize over
tg- The remaining part of this section is devoted to
the derivation of an efficient boosting-like algorithm,
minimizing (12) iteratively over coordinates. On each
iteration t, a single coordinate ,ug)k is chosen (others

[5, 10] fixed a subset of coordinates) and modified by
5O Z yt) _ 0
FQe — Q-

The next lemma builds on Sec. 2 of Duchi and
Singer [10], proposing the Ll-LogBoost algorithm,
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Figure 3: (a) Test error of four algorithms vs the frac-
tion p of noisy examples for ¢ = 2 (b) Test error of four
algorithms vs the standard deviation o of noise for p = 0.1.

aiming to minimize a [1-regularized version of the Log-
itBoost algorithm [27]. In addition to the smooth
Huber-like regularization on Sec. 3, a key difference
lies in the incremental change, naturally determined
by 0g i, instead of using a vector from an a-priori fixed
set of templates, supplied as input for the algorithm.

Lemma 8 The difference between (12) evaluated at
time t and time t + 1 is lower bounded,

t t+1
Fiog (1), 0Q) = Fiog (™, 0q) >
1G] Qe
‘N(t) ‘ togue o ‘M(t) + 60| —oore” e
5 5
+ cog .k <7k+ [1—6”6“ + v 1—e°'CM]>
where we denote, 'y,j = Z;Zl,ymykzo q+(7) |i k1,

and . qu(i)

e D it s p<0 9t (0) | Ti k|
gD
D;/ (Di + evimihg ) .

The proof appears in App. H. In order to boost the
rate of convergence to the minimizer of Foe, we wish
to maximize the last incremental lower bound at each
step. Equivalently, omitting terms independent of 6,(:),
we can minimize the following objective,

()

. O)
il L,© 50 g
argmin | [4q T, | toQre
k
50 50
+ _ _k _ —k
+cogk <fyk e "k 4+, e"(;m-) ] . (13)

The next lemma allows us to eliminate the absolute
values in the above terms.

Lemma 9 The optimizer of (13), 5 , satisfies,
O
® 4+ 6(t)) = sign <7k exp < > — 7,3) .

sign (,UQ k UQQ :
The proof appears in App. J. We use this lemma to
solve (13) by considering two cases according to the

sign of ;" exp (2/18?,6/0@,;9) — 7 - We derive here the
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Algorithm TIM1 TIM2 Mgc Wine VJ  VJ2
RobuCop 94.3 92.4 82.2 99.4 92.0 91.6
BaLaBoost 92.6 91.9 79.6 989 91.9 89.0
AdaBoost 81.3 83.9 66.6 95.3 90.5 89.2
RobustBoost | 92.5 92.1 80.6 97.3 90.5 89.2
GentleBoost | 92.5 91.5 77.8 95.3 90.9 87.5
SVM 91.9 91.6 77.6 99.5 91.7 87.3
11-LogBoost | 91.1 90.5 69.2 98.6 91.1 87.0
LogitBoost 91.0 89.9 69.2 985 91.1 86.7

Table 1: Algorithms’ comparison

case where the sign is positive, and omit the case where

it’s negative. We set to zero the derivative of (13) , and

(t) (t+1) _ (@)
k

solve for the incremental change §; " = Bk HQ ks

(t)
1+\/1+4c'yk_ {G”Qt,j/UQkJFC'yI:'
(14)

5](:) =0Q,k 10g 26/}/_
k

After updating p, the optimal value of og can be
found by minimizing (12).

We call our algorithm BaLaBoost For PAC-Bayesian
Laplace Boosting algorithm. Pseudocode is given
in Fig. 2. We note that, as some boosting algo-
rithms [10, 27], BaLaBoost may not enjoy the weak-to-
strong learnability properties of AdaBoost. One can
view this algorithm as a coordinate-optimization algo-
rithm over the weights. We compare (14) to Eq. (4) of
Duchi and Singer [10]: o¢ is analogous to the tem-
plate parameter ag, yet it has a natural interpretation
and withal, can be optimized. The two updates are
similar, as both employ a lower bound technique on
the change of the losses values, yet differ, since not de-
rived from the same regularization. One can view (14)
as having adaptive learning rate, via the optimization
of 0qg i, while their algorithm has fired learning rate.
This may yield better solutions for data with some
features having larger (additive) noise than others.

8 Experiments

We first demonstrate the properties of the algorithms
with synthetic data (see App. K for further details).
Four algorithms are evaluated: AdaBoost [12], L1-
LogBoost [10], RobuCoP of Sec. 6, BalaBoost of Sec. 7.
Parameters for the later three algorithms were set once
after optimizing over additional training and test sets.
Note, the value of ¢ set for RobuCoP is aligned with
the estimated value suggested by Lemma 5, that is %.
We point out that L1-LogBoost is a regularized ver-
sion of LogitBoost, that is considered robust to various
kinds of noises [27].

1 — Fig. 5 shows the gener-
0.9] = = # PAC-Bayes bound| . .
o ; alization error as mea-

................... sured on a test set com-
C ; pared with the PAC-
Bayes bound. Clearly
W the trend of the bound
| [ , follows the trend of the
test error, and addition-
ally, its values are be-
low 1 and the gap be-
tween the bound and
measured test-error is
low compared to other
similar bounds. Thus
the bound provides relatively accurate estimate of the
test error, which supports the approach of PAC-Bayes
bounds optimization. Additionally the value of ¢ min-
imizing the bound is also the minimizer of the test-
error, i.e. it can be used to set the hyperparameter.

Test error fraction
o © o o
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Figure 5: Test error of
RobuCoP (solid green) and
the PAC-Bayes bound (dot-
ted black).

Fig. 3(a) shows the test error for a value of o = 2 with
fraction of noisy examples ranging between p =0...1.
Here AdaBoost performs the worst (it is sensitive to
noise), then L1-LogBoost. Our two algorithms per-
form the best: RobuCoP for low values of noise, while
BalaBoost for high values. Fig. 3(b) shows the test
error for a fixed fraction on noisy training set p = 0.1
with standard deviation ranges from o = 1...10. As
before AdaBoost and 11-LogBoost perform the worst,
where AdaBoost performs better for higher values of
noise. As before, BalaBoost performs better than both
algorithms, and RobuCoP outperforms it (except for
very low noisy values). We emphasize the fact that
RobuCop’s performance is not degrading even for very
high noise levels.

We also evaluated the described algorithms, together
with RobustBoost [11] (five algorithms altogether), on
the task of vowel recognition from a set of 8 possibili-
ties used in the VJ (vocal joystick) project, broken into
28 binary classification problems (one-vs-one). Details
appear in App. K. The results are shown in Fig. 4.
As with the synthetic data, BaLaBoost and RobuCop
achieve better results than the 3 other classifiers when
dealing with lower noise levels, while RobuCop per-
forms significantly better than the other 4 classifiers
for high noise levels over all the data sets. We hypoth-
esize that as other algorithms that maintain a distribu-
tion, RobuCop and BaLaBoost optimize their hyper-
parameters according to the noise levels already in the
tuning phase, absorbing the noise level via the prior
distributions optimization. An empirical evidence sup-
ports this hypothesis is the fact that the optimizers of
the standard deviation of the LL distribution are typ-
ically monotone-increasing with the level noise for all
data sets. We also hypothesize that RobuCop per-
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Figure 4: Three left panels: test error of RobuCoP vs L1-LogBoost, Adaboost and RobustBoost respectively, each
calculated over 28 different data sets and 3 levels of noise. Right panel: classifiers’ average error over 28 data sets for 8

values of noise levels.

forms the best under most noise conditions as it mini-
mizes a tighter bound over the test error. However, it
suffers from a relatively slow training time compared
with BaLaBoost, which achieved the fastest running
time among all the described algorithms. Thus, Bal.-
aBoost balances nicely performance (noisy data) and
training time. RobustBoost also performed relatively
well when high noise levels were presented, but suf-
fered from a major deviation in performance, often
providing poor results compared to the rest. We con-
jecture that this happens because RobustBoost’s po-
tential function is non-convex , while the rest minimize
a convex loss, hence more stable over various scenarios.

9 Related Work

Support vector machines [6] were analyzed using PAC-
Bayes bounds in a few contexts [23, 16]. They used
Gaussian distributions with fixed isotropic covariance
matrices, inducing the Euclidean norm-regularization.
Another approach [1] is to split the training set into
two parts, using the first to learn data-dependent
prior, and the second to learn the posterior. To the
best of our knowledge, our work is among the first to
tie Boosting and PAC-Bayes bounds, and in particular
the ExpLoss was induced naturally from the distribu-
tion we employed (see (4)).

There are few previous approaches that are close
in spirit to our approach of minimizing PAC-Bayes
bounds. Germain et al [15] derived a specialized
loss [13] plugged in a PAC-Bayes bound, and used
quasi-uniform distributions over a finite set of clas-
sifiers. They also proposed to bound the KL between
prior and posterior explicitly using £, norms. In our
work, we induce a regularization term by setting a spe-
cific distribution (LL) over weights, which naturally in-
duces an Huber-like regularization term. Later, Roy et
al [28] used similar quasi-uniform distributions to in-
duce quadratic programs that minimize the variance of
the margin. Crammer et al [7] described the Gaussian
margin machine algorithm, induced from a PAC-Bayes
bound, combined with a Gaussian distribution, where
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the learning algorithm seeks not only for the mean pa-
rameters, but also the covariance matrix. They pro-
posed a hinge-like loss, that was not convex, and a
stochastic optimization procedure. Another approach
proposed recently [8] is to derive an algorithm from a
PAC-Bayes bound, based on uniform distribution over
compact non-finite set of weights. They proposed to
obtain a convex objective by bounding the expectation
of the (uniform) posterior with a maximal value over
all weights with non-zero (and equal) probability. The
resulting problem was solved using stochastic gradient
and proximal algorithms.

10 Summary

We derived novel learning algorithms by plugging a
Laplace-like distribution over weights into a PAC-
Bayes bound, and analyzed the conditions for which
they can be solved efficiently. There is no clear winner
in terms between the algorithms. RobuCop mini-
mizes the tightest convex function bounding the CDF,
and performs the best in our experiments, yet it does
not have an analytic update per coordinate, and it
is convex but not strictly-convex (for each (u,0)).
BaLaBoost is more general in terms of inputs and
choice of o. Experiments demonstrate the merits of
our methods compared to other well established boost-
ing algorithms, and specifically they are more robust
to various input noise: fraction of noisy input or stan-
dard deviation of the noise. Finally, we also derived
a quadratic-bound of (7) (similar to the derivations of
Sec. 6) which is looser but easier to implement, and
an algorithm based on the ExpLoss (rather than the
LogLoss). Both derivations and algorithms are omit-
ted due to lack of space. We plan to further explore
the characteristics of noisy classification and its rela-
tionship to robustness, and investigate the conditions
for which one algorithm outperforms the other.
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