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Abstract

Several methods have recently been devel-
oped for joint structure learning of multi-
ple (related) graphical models or networks.
These methods treat individual networks as
exchangeable, such that each pair of networks
are equally encouraged to have similar struc-
tures. However, in many practical applica-
tions, exchangeability in this sense may not
hold, as some pairs of networks may be more
closely related than others, for example due
to group and sub-group structure in the data.
Here we present a novel Bayesian formula-
tion that generalises joint structure learning
beyond the exchangeable case. In addition
to a general framework for joint learning,
we (i) provide a novel default prior over the
joint structure space that requires no user in-
put; (ii) allow for latent networks; (iii) give
an efficient, exact algorithm for the case of
time series data and dynamic Bayesian net-
works. We present empirical results on non-
exchangeable populations, including a real
data example from biology, where cell-line-
specific networks are related according to ge-
nomic features.

1 Introduction

Structure learning remains an important and challeng-
ing problem. Often we seek to learn multiple graphs or
networks {Gi}i∈I that are expected to be related but
that may be non-identical. For example in biomedi-
cal applications, multivariate data {yi}i∈I pertaining
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to the same biological process (e.g. gene regulation
or protein signaling) may be obtained from multiple,
related samples i ∈ I (e.g. patients or laboratory mod-
els) that are expected to be non-identical with respect
to conditional independence structure (Penfold et al.,
2012; Danaher et al., 2014; Oates et al., 2013). In such
situations, it is natural to consider joint learning that
allows for information sharing between the inference
problems indexed by i ∈ I. Several techniques have
been proposed for such joint structure learning, includ-
ing Bayesian techniques for graphical models (Werhli
and Husmeier, 2008; Penfold et al., 2012; Oates et al.,
2013) and penalised likelihood estimators for Gaussian
graphical models (GMMs; Chiquet et al., 2011; Guo et
al., 2011; Yang et al., 2012; Danaher et al., 2014; Mo-
han et al., 2014). These methods have been shown to
improve estimation of individual graphs (or networks,
we use both terms interchangeably) Gi, especially in
the regime where local sample sizes ni are not large.

Existing joint structure learning methods operate by
shrinking estimated networks towards each other un-
der an exchangeability assumption (i.e. the {Gi}i∈I
are treated as exchangeable random variables). How-
ever, in practice, relationships between datasets
{yi}i∈I (and their underlying networks) may be com-
plex, e.g. hierarchical, with group and sub-group
structure. For example, in biology, datasets from mul-
tiple species may be related according to a complex
evolutionary history (Baumbach et al., 2009), while
cells within a tumour are related according to their
lineage within the tumour (Gerlinger et al., 2012).
Similarly, in a data mining application, networks with
nodes corresponding to products in an inventory (Tay-
lor and Fox, 2011) may be arranged into groups and
sub-groups based on market structure or region.

This paper introduces a richer class of Bayesian joint
estimators known as structure learning trees (SLTs)
that subsume previous exchangeable formulations
whilst permitting more complex, non-exchangeable re-
lationships between networks. An SLT is a rooted
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tree T whose vertices are themselves networks and
whose edges describe relationships between the net-
works (e.g. group and sub-group membership). The
tree T encodes possibly non-exchangeable relation-
ships between networks that are exploited during joint
structure learning. In this paper we restrict attention
to the case where the tree T can be reasonably speci-
fied a priori. For example in biology, depending on the
setting, established taxonomies such as phylogeny, tis-
sue type, disease (sub)-type etc. can be used to specify
T . Such taxonomies are often supported by a wealth
of experimental evidence, and it is therefore natural
to leverage them for improved structure learning. In
the case where T may be uncertain, we provide empir-
ical results that investigate the extent to which SLT
estimators are robust to T misspecification.

This paper is organised as follows: In Section 2.1 we
introduce SLTs, generalising existing work on joint
structure learning to the non-exchangeable setting.
Prior specification for SLTs is achieved by appealing to
the intuitive notion that model constraints should be
inherited along the edges of the tree. This heuristic al-
lows specification of a default structural prior over all
networks jointly that has essentially no user-set hyper-
parameters. Section 2.2 provides an exact belief propa-
gation algorithm for inference of both data-generating
and latent network structures, while Section 2.3 fo-
cuses on time series data and dynamic Bayesian net-
works. Empirical results on simulated data in Section
3.1 assess the performance of SLTs, including cases
where the joint structural prior is misspecified. Sec-
tion 3.2 shows results on proteomic time series data
from multiple cancer cell lines that illustrate the use
of SLTs in a topical application. Finally we close with
a discussion in Section 4.

2 Methods

2.1 A Bayesian hierarchical model

Structure learning trees We consider joint struc-
ture learning of multiple networks Gi = (V,Ei), i ∈ I,
that share the same vertex set V = {1, . . . , P} but may
differ with respect to their edge sets Ei ⊆ V × V . Let
G denote the space of all networks over vertex set V ,
up to restrictions associated with any particular model
class (e.g. acyclicity, undirected edges etc.). We define
a structure learning tree T = (I, ET ) as a rooted tree
whose vertices are used1 to index individual networks
Gi, with all edges e ∈ ET directed away from the root.
Examples of SLTs are displayed in Figs. 1 and 3. The
root network is denoted by G1. Existing methods for
joint estimation (see Introduction) can be regarded as

1It will be convenient to interchange between an index
i ∈ I and its corresponding network Gi.

a special case of the general SLT where T has a star
topology with centre G1.

Latent networks. In classical structure learning,
network structure is latent in the sense that it not di-
rectly observed. SLTs allow for further latency; specif-
ically we consider the situation in which data {yi}i∈ι
are available conditional upon only a subset ι ⊆ I of
the networks of interest. The remaining nodes I \ι are
doubly latent in the sense that neither they, nor data
directly conditional upon them, are observed. Latent
nodes may be used to describe hidden (e.g. group
level) structure (as in our biological example in Sec.
3.2). Learning in an SLT exploits relationships be-
tween networks as encoded in T to allow joint estima-
tion of all networks {Gi}i∈I , whilst respecting non-
exchangeable relationships between these networks.

A default, subset prior. To formulate a joint sta-
tistical model we begin by placing a prior p(G1|G0)
on the root network G1. Henceforth Gi represents the
true (unknown) value of the network corresponding to
i ∈ I whilst Gi will be used to denote a possible struc-
ture for Gi, and G0 is a fixed “prior network” (see
below). Then we define a joint structural prior over
all networks {Gi}i∈I that factorises along the edges of
T :

p({Gi}i∈I |G0, ET ) = p(G1|G0)
∏

(i,j)∈ET

p(Gj |Gi) (1)

Previously proposed structural priors (e.g. Mukherjee
and Speed, 2008; Werhli and Husmeier, 2008) could
in principle be used to specify the conditional density
p(G′|G). Recent work on the joint estimation of multi-
ple exchangeable networks has focused on Boltzmann
priors p(G′|G) ∝ exp(−λd(G,G′)) for some measure
of distance d : G × G → [0,∞) (Werhli and Husmeier,
2008; Penfold et al., 2012; Oates et al., 2013) and anal-
ogous penalised likelihoods (Chiquet et al., 2011; Guo
et al., 2011; Yang et al., 2012; Danaher et al., 2014;
Mohan et al., 2014). However, such priors can be
difficult to specify in the exchangeable case (Werhli
and Husmeier, 2008; Penfold et al., 2012; Oates et al.,
2013) and generalise poorly to the non-exchangeable
case since each edge e ∈ ET in principle introduces an
associated hyperparameter λe ∈ [0,∞).

To control complexity of prior specification, we make
use of the simple heuristic that network structure must
be a subset of the structure of all network ancestors
according to T :

p(Gj |Gi) ∝ I{Ej ⊆ Ei}η(Gj) (2)

Here I is the indicator function and η provides mul-
tiplicity correction for varying Gj ∈ G (see below).
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Under Eqn. 2 the prior p(G1|G0) encodes prior cer-
tainty that particular edges cannot exist, in any net-
work in {Gi}i∈I . If the networks are interpreted as
causal graphical models then G0 describes a set of con-
ditional independence assumptions. Thus in our for-
mulation, inferred causation is explicitly conditional
on prior causal hypotheses G0 (Pearl, 2009).

Multiplicity correction. Multiplicity correction
plays an important role in Bayesian structure learning
beyond the penalty on model complexity provided by
the marginal likelihood. This is clearly illustrated in
the context of variable selection, where a uniform prior
over variable subsets has the undesirable property that
the prior mass on all models with exactly one predictor
goes to zero as the number of predictors grows large;
such a prior cannot make sense in settings where one
expects that a single predictor should have some rea-
sonable prior mass. Following Scott and Berger (2010)
we employ a binomial multiplicity correction

η(G) =
∏
p∈V

(
P

dp(G)

)−1
I{dp(G) ≤ dmax} (3)

where dp(G) is the in-degree of vertex p in G. Here
dmax represents a constraint on in-degree; such con-
straints are widely used to facilitate inference in graph-
ical models (e.g. Hill et al., 2012).

2.2 Exact inference

Marginal belief propagation. In this Section we
describe how marginalisation and belief propaga-
tion combine to facilitate efficient, exact inference in
SLT models. Taken together with a “local” likeli-
hood p(yi|θi, Gi), Eqn. 1 defines a Bayesian net-
work on both discrete (Gi) and possibly continuous
(θi) variables (SFig. 4a). Efficient inference will
require marginalisation of continuous variables; for
data yi we require that the “marginal likelihoods”
p(yi|Gi) =

∫
p(yi|θi, Gi)p(θi|Gi)dθi are pre-computed

and cached for all i ∈ ι. Here p(yi|Gi) is a conve-
nient shorthand for p(yi|Ei), the evidence for a par-
ticular topology Ei = Ei, and θi are parameters re-
quired to specify the local data-generating model. For
many models of interest, including dynamic Bayesian
networks (see Sec. 2.3), marginal likelihood may
be computed in closed form by exploiting conjugate
prior specifications. Otherwise, Monte Carlo and re-
lated numerical techniques may be used to approxi-
mate marginal likelihood in more complex models (e.g.
Calderhead and Girolami (2009)).

The marginalised SLT (SFig. 4b) is then a discrete
Bayesian network with respect to T . A factor graph
representation of the marginal SLT model is shown

in SFig. 4c. Exact inference over factor graphs can
be achieved efficiently using belief propagation (Pearl,
1982), provided the factor graph is acyclic. By re-
stricting attention to tree structures T in Sec. 2.1 we
have guaranteed that the factor graph is acyclic. Be-
lief propagation therefore yields posterior distributions
pi(Gi|y) over structure for each i ∈ I. Pseudocode for
our approach is provided in Supp. Sec. 5.1.

Model averaging. Evidence in favour of an edge
(k, l) in a network Gi is summarised by the posterior
marginal inclusion probability obtained by averaging
over all possible structures Gi for Gi:

p((k, l) ∈ Ei|y) =
∑
Gi∈G

I{(k, l) ∈ Ei}pi(Gi|y). (4)

Here y = {yi}i∈ι contains all data. The subset
constraints of Eqn. 2 manifest in the posterior as
p((k, l) ∈ Ei|y) ≥ p((k, l) ∈ Ej |y) whenever j is a
descendant of i in T .

2.3 Explicit formulae for time series

FFDBN models. For graphical models and time
series data we provide explicit formulae: We follow
previous work by Murphy (2002); Hill et al. (2012),
adopting a “feed-forward” dynamic Bayesian network
(FFDBN) model for time series data. For clarity of no-
tation we consider a specific fixed network G, suppress-
ing dependence upon i ∈ I. FFDBNs prohibit contem-
poraneous edges; this confers computational advan-
tages (see Hill et al. (2012) for full details). Key fea-
tures of FFDBNs include; (i) feedback can be explicitly
modelled through time, (ii) the likelihood factorises
over variables p ∈ V , reducing computational complex-
ity (see below), (iii) conjugate priors and closed form
expressions for marginal likelihood are available, and
(iv) experimental designs involving interventions may
be integrated in line with a causal calculus (Spencer
and Mukherjee, 2012).

In a FFDBN the value Yp(t) of variable p at (dis-
crete) time t is dependent upon covariates Y (t −
1) = [Y1(t− 1), . . . , YP (t− 1)]. When multi-
ple time series are available, the vector Yp =[
Y 1
p (1), . . . , Y 1

p (n) , Y 2
p (1), . . . , Y 2

p (n) . . .
]

denotes the
concatenated time series, with the subscript indexing
a specific variable p ∈ V . We write paG(p) for the
parents of vertex p in the network G. In this paper we
restrict attention to linear models that, for variable
p, may be expressed as Yp = X0α + XpaG(p)β + ε
where ε ∼ N(0n×1, σ

2In×n). The matrix X0 =
[1{t=1} 1{t>1}]n×2 contains a term for the initial time
point in each series. The elements of XpaG(p) corre-
sponding to initial observations (Yp){t=1} are simply
set to zero. Parameters θ = {α,β, σ} are specific to
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variable p and network G. In the linear case the model-
specific component XpaG(p) of the design matrix con-
sists of the predictors YpaG(p)(t−1), where YA denotes
the elements of the vector Y belonging to the set A.

Intervention. In Sec. 3 we consider experimental
designs that involve targeted intervention on vertices
in the data-generating networks. We followed the ap-
proach described in Spencer and Mukherjee (2012) to
integrate interventional data in line with a causal cal-
culus. Specifically, for the type of intervention in the
experimental data (drug inhibition of kinases), using a
“perfect out fixed effects” (POFE) approach (we direct
the interested reader to the reference for full details).
This changes the network structure to model the in-
tervention in line with the do-calculus (Pearl, 2009)
and also includes a fixed effect X1γ in the regression
model for Yp, such that X1 indicates whether or not
intervention(s) were used for each data-point.

Prior specification. We used a standard conjugate
formulation for the linear model. Specifically, we em-
ployed a Jeffreys prior p(α, σ|paG(p)) ∝ 1/σ for σ > 0
over the common parameters. Prior to inference, the
non-interventional components of the design matrix
were orthogonalised (following Deltell et al., 2012) us-
ing the transformation (XpaG(p))ak 7→

∑n
l=1(In×n −

P0)al(XpaG(p))lk, where P0 = X0(XT
0 X0)−1XT

0 . We
then assumed a unit-information g-prior for regression
coefficients (Zellner, 1986), given by β|α, σ,paG(p) ∼
N(0b×1, nσ

2(XT
paG(p)XpaG(p))

−1) where b = dim(β).

(When interventional designs are used, the pair
(β,γ)|α, σ, paG(p) are jointly assigned a g-prior.)

Marginal likelihood. With the above specification,
the evidence in favour of paG(p) can be obtained in
closed-form:

p(yp|paG(p)) ∝ 1

(n+ 1)b/2
(5)

×
(
yTp

(
In×n − P0 −

n

n+ 1
PpaG(p)

)
yp

)−n−a
2

where PpaG(p) = XpaG(p)(X
T
paG(p)XpaG(p))

−1XT
paG(p),

a = dim(α) and b = dim(β). Note that the left hand
side of Eqn. 5 is an abuse of notation since dependence
on covariates YpaG(p)(t − 1) is suppressed (a formal
treatment is presented in Oates et al. (2013)).

Computation. From the factorisation property of
FFDBNs, the total marginal likelihood is simply given
by the product

p(y|G) =
∏
p∈V

p(yp|paG(p)). (6)

For FFDBNs the parent sets paG(p) (1 ≤ p ≤ P )
are Fisher-orthogonal; computational complexity may
therefore be significantly reduced by decomposing the
SLT into P independent SLTs, each targeting one par-
ent set paG(p). MATLAB R2013b code implementing
our procedure is provided in the Supplement.

Although we have focussed on FFDBNs, our proce-
dure applies to other classes of network models, such
as Bayesian networks and Gaussian graphical models.
The availability of explicit formulae for FFDBNs moti-
vates their use for the computational study presented
below.

3 Results

3.1 Simulated data

To probe empirical performance of SLTs, we simulated
data from a known tree T and assessed ability to in-
fer the true data-generating networks {Gi}i∈ι. In all
experiments we placed 2P edges uniformly at random
to generate a root network G1 subject to the in-degree
constraint dp(G1) = 2 for all p ∈ V . Two child net-
works G11, G12 were then generated, each containing
P edges drawn as described below. Finally 10 net-
works G1ij were generated by sampling ρP edges as
described below. We use concatenated subscripts to
uniquely identify nodes in T ; for example G12 corre-
sponds to child 2 of network G1.

Existing joint structure learning methodologies require
exchangeability of networks, while SLT instead im-
poses a tree structure capturing non-exchangeable re-
lationships. We considered 5 data-generating regimes
designed to mimic various applied settings, including
those in which the SLT assumptions are violated:

(1) Disjoint sub-groups. Edges in each (non-root)
network are drawn at random from the parent in
T , conditional upon the networks G11, G12 having
disjoint edge sets. This regime strongly violates
the exchangeability assumption implicit in exist-
ing joint structure learning methodologies.

(2) Weakly exchangable. Here networks G11, G12

are generated independently, conditional upon G1,
such that they are likely to share common edges.
As above, all edges in each (non-root) network are
drawn at random from the parent in T . Whilst
exchangeability is violated, this regime ought to
be more favourable to existing exchangeable esti-
mators than regime (1) above.

(3) Fully exchangeable. The networks G11 = G12

are taken equal, rendering the networks G1ij fully
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Figure 1: Results on data generated from disjoint sub-groups (regime (1), see text), where “doubly latent”
networks G11, G12 share no common edges. Top: Data-generating networks and associated tree structure.
Bottom: Estimates for individual network structure. [Inference methods: “SLT” = structure learning trees,
“JNI” = joint (exchangeable) network inference (Oates et al., 2013), “DBN” = classical network inference
applied to each network separately (see text for details). Data consisted of n = 60 time points; see Supplement
for full details of the data-generating set-up.].

exchangeable. In this regime SLT should lack effi-
ciency relative to exchangeable estimators.

(4) Misspecified tree. This data-generating regime
is equivalent to the disjoint sub-groups regime (1),
however the SLT estimator is based not on the true
data-generating tree, but rather on a tree T ′ uni-
formly sampled from the space of all trees. Thus
while the networks are non-exchangeable, the SLT
is misspecified with high probability. This mimics
the scenario in which an a priori assumed tree is
used that is in fact largely incorrect.

(5) Subset violation. All edges in each (non-root)
network are drawn such that 20% of edges in each
child network are not edges in its parent network
in T . In this regime, sub-groups exist among the
networks, but the key assumption (Eqn. 2) of
the parameter-free structural prior is violated with
high probability.

Time series data y1ij of length n were generated from
each of the 10 networks G1ij according to a linear
autoregressive process with interventions described in
Supp. Sec. 5.2.1. No data were made available on the
networks G1, G11, G12, which are doubly latent. For
all simulation experiments we fixed P = 10. The en-
tire process was repeated 10 times. We compared SLT
to:

(A) Non-joint network inference (“DBN”), the default
approach of carrying out structural inference us-
ing a FFDBN for each dataset y1ij independently.

(B) Joint network inference (“JNI”; Oates et al.,
2013). This Bayesian method is a special (ex-
changeable) case of our proposed SLT methodol-
ogy. Hyperparameters were chosen according to
the heuristics of Oates et al. (2013).

We note that alternative exchangeable estimators to
(B) include Danaher et al. (2014) and Penfold et al.
(2012), but the former has not been adapted for time
series data and heavy computational demands of the
latter preclude systematic empirical comparison. To
ensure fair comparison, the same in-degree restriction
dmax = 2 (which includes the data-generating net-
works) was used for all methods. Moreover, to prevent
confounding by differing formulations of likelihood, we
based each method on the same FFDBN likelihood
(as described in Sec. 2.3). Thus, all methods share
the same basic time series formulation and differ only
with respect to whether and how they share informa-
tion between networks. No specific prior information
was given regarding network topology, except for the
tree structure T (in regimes 1-3,5) which was exploited
by SLT.

We considered the thresholded network estimator,
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(a) Disjoint sub-groups
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(b) Weakly exchangeable
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Figure 2: Results on simulated data generated from SLTs in different regimes, as described in the Main Text.
[Inference methods: “SLT” = structure learning trees, “JNI” = joint network inference (Oates et al., 2013),
“DBN” = classical network inference applied to each network separately. Performance metrics: “L1 Error” =
average `1 distance between true and inferred (weighted) adjacency matrices, “Matthews Correlation Coefficient”
= average MCC for thresholded network estimators. Error bars display standard error computed over 10 data-
generating networks and for each network 10 sampled datasets. We considered both varying n for fixed ρ = 0.5
and varying ρ for fixed n = 60.]

which consists of edges with marginal posterior in-
clusion probability (Eqn. 4) > 0.5. Performance at
sample size n and density ρ was quantified using met-
rics from classifier analysis (see Supp. Sec. 5.2.2),
averaged over all data-generating networks and all
datasets. Here we focus on the Matthews correlation
coefficient (MCC), which is regarded as a balanced
measure, suitable for use when the underlying class
distribution is skewed. To quantify performance of the
posterior inclusion probabilities themselves, we also
considered the `1 distance to the true data-generating
networks. Further details regarding performance mea-
sures (including additionally AUPR and AUROC) ap-
pear in Supp. Sec. 5.2.2.

Intuitively, SLT should provide an advantage over JNI
when the data structure contains distinct sub-groups
with respect to network topology. Fig. 1 displays

typical inferences in the “disjoint sub-group” regime
(1) when n = 60, ρ = 1/2; SLT is noticeably sparser
than JNI and DBN whilst achieving high MCC (Fig.
2a) and essentially perfect precision (SFig. 7). As a
consequence, over all sample sizes n which we consid-
ered, SLT is considerably closer than JNI and DBN
to the true network structures in the `1 norm (Fig.
2a). This ability to generate a clear decision bound-
ary in the posterior is not demonstrated by JNI and
DBN, which produce less sparse matrices of posterior
inclusion probabilities (Fig. 2). This is expected, since
JNI erroneously shares information equally among all
networks, whilst DBN is statistically inefficient and
therefore subject to higher variance.

Next, we relaxed the distinct sub-group architecture
that likely favours SLT by allowing G11, G12 to share
edges (“weakly exchangeable” regime (2); SFig. 5a).
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Results (Fig. 2b and SFig. 8) in this regime closely
mirrored those of the disjoint sub-group regime, sug-
gesting that SLTs offer improved estimation in more
realistic weakly exchangeable settings. However in the
fully exchangeable regime (3) (SFig. 5b) there was a
decrease in performance of SLT with respect to JNI
as quantified by AUPR, AUROC and the misclassifi-
cation rate among top ranked edges (SFig. 9).

In order to probe robustness of SLT to prior mis-
specification we considered two scenarios in which as-
sumptions encoded in the joint structural prior are
violated. Firstly, we investigated whether the perfor-
mance of SLT deteriorates when the tree T itself is mis-
specified (in fact chosen randomly; regime (4), SFig.
6a). These results showed that SLT remains superior
to JNI and DBN terms of MCC, and remains com-
petitive in terms of AUPR and AUROC (SFig. 10).
Secondly, we considered strongly violating the subset
inclusions (regime (5); SFig. 6b). The MCC perfor-
mance of SLT in this regime was competitive with JNI
and DBN (Fig. 2c). However SLT performed worse
than JNI and DBN in terms of AUPR, AUROC and
misclassification rate (SFig. 11). Robustness of SLTs
is therefore dependent upon which aspects of perfor-
mance are being considered.

The above experiments were performed at constant
edge density ρ = 1/2, however SLT tends to pro-
duce sparser networks a priori. We therefore repeated
the above experiments whilst varying the true den-
sity ρ and holding the number of samples constant
at n = 60. Results (Fig. 2, SFigs. 7-11) showed
that, in all regimes, performance of SLT improves in
sparse settings whilst the performance of both JNI
and DBN deteriorate. Examining the density of es-
timated networks relative to the data-generating net-
works (SFigs. 7-11) we found that JNI and DBN dra-
matically over-estimate density in sparse regimes; in
contrast SLT automatically adjusts to the density of
the data-generating networks. This appealing prop-
erty results from our novel subset prior of Eqn. 2.

3.2 Biological data

This work was motivated by the problem of inference
for protein signalling networks (PSNs) over a diverse
panel of breast cancer cell lines. The cell lines un-
der study are expected to differ with respect to PSN
structure but can be grouped into sub-types based on
underlying biology, as described below. Here indepen-
dent estimation is likely to be inefficient, since the cell
lines have a common lineage and share much of their
biology. On there other hand, since sub-types may
be quite different from one another, exchangeability
within sub-type is arguably a more reasonable assump-
tion than exchangeability between sub-type.

Amplification of the HER2 gene (denoted as
“HER2+”) is a key biomarker used to stratify breast
cancer samples and cell lines. HER2 codes for a recep-
tor that is a member of the EGFR family of receptors
and it is believed that signalling related to these re-
ceptors may differ between these two sub-types. How-
ever, it is challenging to study signalling at the group
level per se, since within each sub-type there remains
considerable genetic diversity. We therefore applied
SLT to learn both cell-line-specific and group-level
PSNs, whilst controlling for confounding due to both
HER2 status and line-specific genomic characteristics.
Specifically, we constructed a tree T such that the dou-
bly latent networks G1i define HER2+/- sub-types re-
spectively and the data-generating networks G1ij cor-
respond to PSNs in cell lines j of sub-type i. We used
an informative prior network G0 derived from the sig-
nalling literature (Fig. 3, top left).

Reverse phase protein array data (Hennessy et al.,
2010) were obtained over a panel of 10 breast cancer
cell lines (Neve et al., 2006) of which half were HER2+
and half HER2-. Data consisted of P = 17 protein ex-
pression levels, observed at 0.5,1,2,4,8,24,48,72 hours
following ligand stimulation. A total of 4 time se-
ries were obtained, under treatment with DMSO, a
EGFR/HER2 inhibitor (Lapatinib), an AKT inhibitor
(AKTi) and Lapatinib + AKTi in combination, giving
a total sample size of n = 4 × 8 = 32. From a mod-
elling perspective, the drugs Lapatinib and Akti are
perturbations in the causal sense of intervening upon
a node in the network. We assumed perfect interven-
tions, corresponding to 100% removal of the target’s
activity with 100% specificity. Full experimental pro-
tocol is provided in the Supp. Sec. 5.3. Fig. 3 displays
the inferred root network G1, the sub-type and cell
line networks. It is noticeable that HER2 signalling
plays a more prominent role in the HER2+ sub-type
in line with biological intuition. Interestingly we infer
regulation of BAD by HER2 (via AKT); dephospho-
rylation of BAD initiates apoptosis and this may help
to explain a differential efficacy of HER2 inhibitors
observed between HER2+/- sub-types. These results
illustrate application of SLTs in a topical applied prob-
lem; however, inference of network structure from bio-
logical data remains extremely challenging (Oates and
Mukherjee, 2012) and experimental validation of in-
ferred topology is necessary.

4 Discussion

In this paper we introduced a novel methodology, SLT,
which generalises joint estimation of multiple networks
to the non-exchangeable setting. Our empirical re-
sults support the notion that SLTs can offer improved
estimation relative to existing estimators based on ex-
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Figure 3: Results, experimental data. Sub-type and cell-line-specific protein signalling networks were inferred
from proteomic data obtained from a panel of breast cancer cell lines. [The prior network G0 (top left) may
be used as a key for the vertex labels on smaller networks. Edge shading indicates posterior marginal inclusion
probabilities as shown in the legend.]

changeability. We illustrated the use of the SLT frame-
work using FFDBNs for which joint estimation could
be carried out in a computationally efficient manner.
However the general SLT approach is applicable in
principle to any probabilistic network model for which
marginal likelihoods are available. Thus, in principle
SLT formulations could be developed for Bayesian net-
works, GGMs, or more sophisticated local likelihoods,
for example based on differential equations (Nelander
et al., 2008).

In empirical studies we considered FFDBNs of dimen-
sion P = 10 and 17; in this setting, exact inference
using SLTs was massively faster than (exchangeable)
alternatives based on MCMC (Penfold et al., 2012;
Werhli and Husmeier, 2008). The (serial) computa-
tional complexity of our approach applied to a tree T
is at worst O(h1h2 . . . htc(P )), where hi is the num-
ber of networks that are tree distance i from the root
network G1 and t is the number of tiers in T . Thus
in our cancer example, inclusion of more cancer sub-
types or cell lines is computationally cheap (linear in
both h1 and h2). For FFDBNs, c(P ) = P 1+2dmax so
that SLT has the same computational complexity as
a fully exchangeable formulation (JNI), but requires

O(P dmax) more computation than the classical non-
joint approach.

Extensions of theoretical interest include: (i) The case
where T itself is unknown; here the challenge is to
jointly learn both individual-specific networks and tree
structure. In principle this could be accomplished us-
ing the SLT model described here, but further work
would be needed to render this tractable for non-trivial
applications. (ii) The case of arbitrarily-structured
populations, where T need not be a tree, or where
data may be associated with multiple networks; here
MCMC methods similar to Dondelinger et al. (2012)
or approximate inference algorithms such as loopy be-
lief propagation may prove effective.
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