A Proofs of clustering speedup

Proof of Lemmal[ll Given portions x and y of red
and blue balls, resp., in the left urn, consider the
2 x 2 x 2 possible Gibbs moves: remove red/blue
from left /right urn and replace in left /right urn. For
large data size N, data size changes very little after
a single removal, so the add and remove steps decou-
ple into differentials dx em, dYrem, dTadd, and dyaqd-
Compute the probabilities of each move; then com-
pute the mean and variance in x and, by red-blue
symmetry, y:
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with lower-case intrinsic quantities defined as
r1 = (#red on left)/N 1y = (#red on right)/N
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These moments comprise the N-scaled Fokker-
Planck coefficients
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By inspection these depend only on intrinsic quan-
tities and the scaled hyperparameter 4. O

Proof of Theorem[4 At fixed error bound e, the
continuous dynamics is within e of true dynamics
by data size, say, N.. Thus at large data sizes,
the MCMC dynamics is linear and mixing time is
Teoa = O (N 2 log(e)). In a subsample annealing
schedule §(t) = ¢/T, the subsample annealing dy-
namics at subsamples larger than N, is approxi-
mately time-scaled versions of the dynamics at full
size N, so the effective schedule length is
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Since effective time is inverse in data size, annealing
mixes in time Tapneal = O (IV log(€)). O
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B Proofs of bimodal speedup

Proof of Lemma[3 Consider a two-state system
x = 7,1 —2]T at energy levels [N+, 0]. The steady-
state solution at temperature 3 should be myeta :=
[0(BYN),a(ByN)], where o(t) = to— is the lo-
gistic sigmoid function. In continuous time mixing,
we think of the state briefly jumping on to an en-
ergy barrier of height 3d N then jumping back down
according to mg. If the rate of jumping up to energy
BON is exp(—BIN), then the dynamics is:

e || 70N O] -1«

The first coordinate x determines the state; expand-
ing yields Equation [f} O

Proof of Theorem[j} In this binary system the TVD
of state = from truth is |t —xtyue| = |[z—0(yN)|. Now
we seek asymptotic lower bounds on T' guaranteeing
TVD< €. To prove (a) observe that in cold infer-
ence (8 = 1), the system is linear homogeneous with
eigenvalue exp(—NJ). To prove (b) we transform
from time coordinates t to “natural” coordinates
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where, assuming worst-case initial condition x(0)
0, the final state x is a uniform integral
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involving the transformed annealing schedule
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Using the inequality o(v) — o(87) < exp(—037y), we
can bound error by

log <exp(—N5)
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Since the integrand exp(—pS(7)N+) is bounded in
(0,1), and B(7) is increasing, Equation [2| holds if
T is chosen large enough that exp(—p8(e/2) > 1, for
example if
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or more conservatively, for any K > 1, and suffi-
ciently large N,

T > KNG log (2) (2) |
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whence the asymptotic bound.
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