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Abstract

Latent vector autoregressive models for cat-
egorical time series have a wide range of po-
tential applications from marketing research
to healthcare analytics. However, a brute-
force particle filter implementation of the
Expectation-Maximization (EM) algorithm
often fails to estimate the maximum like-
lihood parameters due to the Monte Carlo
approximation of the E-step and multiple
local optima of the log-likelihood function.
This paper proposes two auxiliary techniques
that help stabilize and calibrate the esti-
mated parameters. These two techniques,
namely asymptotic mean regularization and
low-resolution augmentation, do not require
any additional parameter tuning, and can
be implemented by modifying the brute-force
EM algorithm. Experiments with simulated
data show that the proposed techniques effec-
tively stabilize the parameter estimation pro-
cess. Also, experimental results using Medi-
care and MIMIC-II datasets illustrate various
potential applications of the proposed model
and methods.

1 Introduction

Categorical time series, i.e. temporal sequences of al-
phabets, are pervasive across multiple domains such
as healthcare, bio-medicine, econometrics, and mar-
keting research. For example, in the healthcare do-
main, a patient’s diagnosis history has been an infor-
mative source of information to score the risk of mor-
tality and potential illness (Gadzhanova et al., 2007).
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In the fraud detection community, purchase records
and click streams have been key factors for detect-
ing fraudulent activities in electronic commerce (Kou
et al., 2004). Although categorical time series are rela-
tively less studied than continuous time series, they are
valuable assets for forecasting events, analyzing tem-
poral patterns, and extracting meaningful information
(Fokianos and Kedem, 2003).

Several statistical models have been developed for cat-
egorical time series data. These models fall into two
classes depending on the use of latent variables: fully
observation-based and latent variable models. The
fully observation-based models include Mixture Tran-
sition Distribution Model (MTDM) (Raftery, 1985),
Markovian regression model (Kaufmann, 1987; Zeger
et al., 1988), and Discrete Autoregressive Moving Av-
erage model (DARMA) (Jacobs and Lewis, 1983). On
the other hand, latent variable models have been suc-
cessfully demonstrated in various applications such as
decoding algorithms (Viterbi, 1967) and speech recog-
nition (Juang and Rabiner, 1991). Such latent variable
models can be further grouped into two sub-categories
based on the representation of latent variables; the
class of Hidden Markov Models (HMM) (Zucchini
and MacDonald, 2009) uses discrete latent variables,
whereas the class of State-Space Models (SSM) (Zhen
and Basawa, 2009) adopts continuous latent variables.

This paper focuses on a latent vector autoregressive
(VAR) model for categorical time series. The model
of our interest is a state-space model for a categori-
cal time series that has been less popular than HMM
and SSM. This is partly because such continuous la-
tent variables are notoriously difficult to reconstruct
from categorical observations. However, the use of the
latent VAR process provides two substantial advan-
tages: interpretability and extensibility. Indeed, the
VAR process has a rich history with parsimonious the-
oretical results (Canova and Cicarelli, 2013; Litterman,
1984). The interpretation on stationarity and spectral
analyses (Burg, 1967) can be smoothly applied to the
latent VAR processes. Moreover, the latent VAR pro-
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cess can be easily extended to cover variants of the AR
models such as ARMA (Box et al., 1994), Autoregres-
sive Conditional Heteroskedasticity (ARCH) (Engle,
1982), and Generalized ARCH (GARCH) processes.

The goal of this paper is to estimate the maximum
likelihood parameters, θ = {c,Φ}, of the following
model, Latent Vector-Autoregressive model for Cate-
gorical Time series (LAVA-Cat):

(Latent VAR) xt = c+Φxt−1 + εt (1)

(Observation) p(yt = k | xt) = fk(Akxt) (2)

(Noise model) εt ∼ Normal(0,Σ) (3)

where y = [yt]
T
t=1 with yt ∈ {1, 2, . . . ,K} and p(yt =

k | xt) is the probability that the kth category is ob-
served at time t. The dimensions of the parameters
are c, xt, εt ∈ R

(K−1), Φ, Σ ∈ R
(K−1)×(K−1) where

Σ is a semi-positive definite matrix. The link function
fk(Akxt) connects a real vector to a categorical value
as in the generalized linear model. Some potential ap-
plications of the LAVA-Cat are: modeling (recurring)
purchases of items, tracking a patient’s disease history,
and predicting a customer’s life events. Note that the
model parameters in this paper are fixed but unknown.

Several challenges need to be addressed to estimate the
parameters from a categorical sequence. First, unlike
continuous time series, categorical time series contain
only finite bits of information. Categorical outputs can
be viewed as lossy-compression from an information
theoretic perspective, thus the reconstruction of the
continuous latent variables suffers from a low signal-
to-noise ratio. Furthermore, this noisy reconstruction
increases the uncertainty of the estimated parameters,
especially in the alternating minimization framework.
As a result, classical alternating minimization tech-
niques, such as the Expectation-Maximization algo-
rithm, become susceptible to various factors such as
noisy reconstruction and multiple local optima of the
log-likelihood function.

We have frequently observed that the estimated pa-
rameters from the EM algorithm are inconsistent with
the stationary and spectral properties of a categor-
ical time series. In fact, this research was initially
motivated to calibrate the estimated parameters to be
more consistent with the asymptotic properties. While
searching for theoretically sound calibration methods,
two techniques were found to be easy to apply and ef-
fective in more accurate estimation: asymptotic mean
regularization and low-resolution augmentation. We
summarize the contributions of this paper as follows:
First, we propose a novel regularization technique
that improves the consistency of estimated parame-
ters. Second, we augment the original time series us-
ing a low-resolution time series to reduce the variance

of estimated parameters. These proposed techniques
are efficiently integrated with the EM algorithm using
a Bayesian linear regression update equation.

The rest of this paper is organized as follows: In Sec-
tion 2, we cover the basics of particle methods and pa-
rameter estimation techniques in state-space models.
In Section 3, we introduce the model of our interest,
and then illustrate a brute-force particle filter imple-
mentation of the EM algorithm for the model. The
two auxiliary techniques and their implementation de-
tails are described in Section 4. Empirical results from
simulated and two real-life datasets are illustrated in
Section 5. Finally, we discuss the limitation of the
proposed methods and future work in Section 6.

2 Preliminaries

In this section, we cover related work on particle meth-
ods and parameter estimation techniques in state-
space models.

2.1 Particle Methods

If both observation and latent variables are normally
distributed, the optimal filtering is solved by the
Kalman Filter (KF) (Kalman, 1960). For non-linear
systems, several approximation techniques based on
linearization, such as Extended KF (first-order ap-
proximation) and Unscented KF (second-order ap-
proximation), can be applied. However, such lineariza-
tion usually causes non-diminishing bias, and even
worse, those algorithms are typically difficult to imple-
ment and tune correctly (Julier and Uhlmann, 2004).

Algorithm 1: Bootstrap Particle Filter

Data: y, θ

Result: {x
(i)
t , w

(i)
t }t,i

for t ∈ 1 : T do

{x
(i)
t−1}

P
i=1 to {x̃

(i)
t }Pi=1 via pθ(xt | xt−1);

{x
(i)
t }Pi=1 from {x̃

(i)
t }Pi=1 with w

(i)
t ∝ p(yt | x̃

(i)
t );

end

Particle methods (Gordon et al., 1993) use a different
kind of approximation technique, Monte Carlo simu-
lation. Unlike those variants of KF, the state esti-
mates from particle methods can be made arbitrar-
ily accurate with enough particles. Particle methods
are based on a sequence of importance sampling steps.
Resampling techniques (Liu and Chen, 1998) are typi-
cally adopted to decelerate the degeneracy of particles.
Also, Auxiliary Particle Filter has been developed to
prevent the degeneracy of the Sequential Monte Carlo
mechanism (Pitt and Shephard, 1999). Particle meth-
ods are powerful and general state-space estimation
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techniques that are widely applicable to non-linear
evolution and observation processes (Doucet and Jo-
hansen, 2008). Algorithm 1 illustrates one of the most
popular particle methods, the Bootstrap Particle Fil-
ter (BPF) algorithm.

2.2 Parameter Estimation in SSMs

Parameter estimation techniques for SSMs fall into
three main groups: Bayesian online, maximum-
likelihood offline, and maximum-likelihood online set-
tings (Kantas et al., 2009). In the Bayesian online
setting, model parameters are assumed to be dynamic
over time series, and the model parameters are sequen-
tially estimated. Some of the successful algorithms
are Liu-West filter (Liu and West, 2001), Storvik filter
(Storvik, 2002), and Particle learning (Carvalho et al.,
2010). Recall that the parameters in this paper are
fixed but unknown; our setting is different from the
Bayesian online setting.

In the offline (or batch) maximum-likelihood setting,
two approaches have been popular: Fisher’s scor-
ing and Expectation-Maximization (EM). The Fisher’s
scoring algorithm is a variant of Newton-Raphson algo-
rithm based on the log-likelihood function. However,
obtaining the log-likelihood of a time series is typi-
cally intractable. Doucet and Tadic (2003) proposed a
general approach for approximating the log-likelihood
using particle methods. Although this Fisher’s scoring
algorithm is generally applicable to several settings, it
is difficult to scale the gradients for high dimensional
parameters (Kantas et al., 2009).

The EM algorithm is numerically more stable and usu-
ally computationally cheaper for high dimensional pa-
rameters. For a Gaussian SSM, the EM algorithm can
be implemented using Kalman Filter and Smoother
(Shumway and Stoffer, 1982). For non-linear systems,
the EM-PF (EM using Particle Filter) algorithm was
introduced in (Zia et al., 2008), but many of the as-
sumptions are not applicable in our setting. As will be
seen later in this paper, a generic combination of EM
and PF algorithms fails for a categorical time series.

For the online setting, Andrieu et al. (2005) have
demonstrated an online estimation algorithm using
block time series and pseudo-likelihood. We will dis-
cuss the possibility and limits of extending our meth-
ods to the online estimation setting in Section 6.

3 LAVA-Cat model

In this section, we describe a Latent Vector-
Autoregressive model for Categorical Time series
(LAVA-Cat), and illustrate the formulation of a brute-
force BPF-implementation of the EM algorithm.

Let us consider the LAVA-Cat model defined in Equa-
tion (1), (2), and (3). Although other kinds of link
functions, such as probit, can be applied to this LAVA-
Cat model, we primarily focus on a multinomial logis-
tic (softmax) link function as follows:

fk(xt) =

{

exp(xtk)/h(xt) k ∈ 1, 2, . . . , (K − 1)

1/h(xt) k = K

where h(xt) =
∑K−1

l=1 exp(xtl) + 1, xtk represents the
kth entry of xt. In other words, p(yk = K) is the ref-
erence probability for the other categorical outcomes
.

The log-likelihood of the LAVA-Cat model is decom-
posed as follows:

max
θ

log pθ(y) = max
θ

log

∫

X

pθ(y,X)dX

= max
θ

log

∫

X

∏

t

f(yt | xt)pθ(xt | xt−1)dX

where X = [xt]
T
t=1. As can be seen, the maxi-

mization of the log-likelihood is intractable. Instead,
we derive the lower bound of the log-likelihood, and
then maximize the lower bound i.e. the Expectation-
Maximization algorithm (Neal and Hinton, 1998). The
lower-bound is obtained using Jensen’s inequality as
follows:

log

∫

X

pθ(y,X)dX ≥

∫

X

q(X) log
pθ(y,X)

q(X)
dX

The lower-bound is maximized by iteratively solving
two sub-problems:

q = argmax
q

∫

q log(pθ/q)

θ = argmax
θ

∫

q log(pθ/q)

The first maximization problem has a closed-form so-
lution, q(X) = pθ(X | y). However, obtaining the ex-
act pθ(X | y) is intractable for the LAVA-Cat model.
Instead of having the exact distribution, we approx-
imate the target distribution using particle methods,

{x
(i)
t , w

(i)
t }i=1:P

t=1:T where P is the number of particles.
Then, the second maximization step is derived as:

max
θ

∫

X

q(X) log pθ(y,X)dX

= max
θ

∫

X

q(X) log
∏

t

f(yt | xt)pθ(xt | xt−1)dX

≈ max
θ

∑

i,t

w
(i)
t (log f(yt | x

(i)
t ) + log pθ(x

(i)
t | x

(i)
t−1))

Note that the distribution q(X) is approximated in
the E-step, not the expectation of the latent vectors.
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The mean and variance of the latent vectors, E[X] and
Var[X], are no longer sufficient statistics for the non-
Gaussian distribution q(X).

A Brute-force Particle-filter implementation of the EM
algorithm (BPEM) is illustrated in Algorithm 2. Al-
though the BPEM algorithm is simple, this algorithm
is not applicable in practice because of two issues:
First, the algorithm stores at least 2 × T × P parti-
cles and weights. As an illustrative example, if we use
5000 particles for a time series with T = 100, then one
million particles need to be stored and flushed at ev-
ery iteration. Second, the algorithm relies on the SMC
approximation of the E-step. In other words, this im-
plementation does not fully satisfy the convergence re-
quirements of the EM algorithm, thus the algorithm
may not even converge. These issues are much more
noticeable for categorical time series; for continuous
time series, the BPEM algorithm provides reasonably
accurate estimators.

Algorithm 2: Brute-force Particle EM

Data: y, θinit
Result: θ
while until converge do

(E-step) {x
(i)
t , w

(i)
t } = BPF(y,θ);

(M-step)

θ = maxθ

∑
i,t w

(i)
t (log f(yt | x

(i)
t )+log pθ(x

(i)
t | x

(i)
t−1))

end

4 LAMORE algorithm

In this section, we introduce three novel techniques
to address the scalability and stability issues of the
BPEM algorithm, then combine these three com-
ponents to obtain our Low-resolution augmented
Asymptotic Mean (Moment) Regularized EM (LAM-
ORE) algorithm.

4.1 Asymptotic Mean Regularization

Asymptotic Mean Regularization is a novel regulariza-
tion technique based on the asymptotic property of a
categorical time series. Without loss of generality, we
assume that the LAVA-Cat model in this paper is sta-
ble. In other words, the root z of det(I − Φz) = 0
lies outside the complex unit circle. Given that this
condition is met, the latent VAR process is stationary,
thus the categorical series is also stationary. However,
two problems arise when we enforce the intermediate
parameters in the EM algorithm to satisfy the sta-
tionarity condition. First, as long as the parameters
are properly initialized, the intermediate parameters
usually do not violate the stability condition, but the

converged parameters are still far from the true param-
eters. Second, if the intermediate parameters violate
the stability condition, several iterations are needed
to obtain a solution for the constrained maximization
step.

The asymptotic mean regularization is an auxiliary
condition for the stationarity condition. The station-
arity information can be incorporated through an indi-
cator random variable Is that is one if y is stationary,
and zero otherwise. The joint log-likelihood including
the stationarity indicator can be written as follows:

max
θ

log pθ(y, Is = 1)

= max
θ

log pθ(Is = 1 | y)
︸ ︷︷ ︸

Asymptotic Mean Regularization

+ log pθ(y)

where the additional term log pθ(Is = 1 | y) is the
Asymptotic Mean (Moment) Regularization (AMOR)
term. The AMOR term explains the likelihood of be-
ing stationary given the parameter θ. The stationary
condition is smoothly integrated in the likelihood max-
imization process; we now maximize the likelihood of
parameters as well as the likelihood of being station-
ary. However, the exact AMOR term is not trivial to
obtain, and we approximate it as follows:

log pθ(Is = 1 | y) ∝ −γAMOR‖E[yt]−

∑
yt

T
‖2

∝ −λAMOR‖E[xt]−

∑
xt

T
‖2

where E[xt] and
∑

xt/T denote the true and sample
means of the latent vectors, respectively. This form
was motivated from the fact that the sample mean of
a stationary time series becomes very close to the true
mean with enough samples.

The AMOR term does not need particle methods; the
true and sample means can be directly obtained from
the observations. The theoretical stationary mean of
the latent VAR process can be obtained by taking
expectation on both sides. As E[xt−1] = E[xt] and
E[εt] = 0, we obtain µ = E[xt] = (I − Φ)−1c. The
stationary distribution of the categorical output be-
comes:

fk(µ) = E[I(y = k)] ≈

∑

t I(yt = k)

T
= ŷk

To make notation simple, let us define a variable ŷ =
(
ŷ1 . . . ŷK−1

)⊤
. For the softmax link function, the

empirical stationary mean µ̂ for the latent process can
be obtained as follows:

ŷ =
exp µ̂

1⊤ exp µ̂+ 1
⇒ µ̂ = log((I− ŷ1⊤)−1ŷ)

According to the law of large numbers and the ergodic-
ity of a stable VAR process, we have µ̂→ µ as T →
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∞. Thus, we formulate a practical AMOR term for
the LAVA-Cat model as follows:

log pθ(Is = 1 | y) ∝ −λAMOR‖µ− µ̂‖2

= −λAMOR‖(I−Φ)−1c− µ̂‖2

= −λAMOR(I−Φ)−2‖c− (I−Φ)µ̂‖2

The M-step of the BPEM algorithm is now modified
with this AMOR term:

min
c,Φ

∑

i,t

−w
(i)
t log pθ(x

(i)
t | x

(i)
t−1) + λAMOR‖µ− µ̂‖2

where x
(i)
t represents the ith particle and w

(i)
t is the

corresponding weight at time t, respectively.

The asymptotic mean regularization is a regularization
technique that utilizes additional stationarity informa-
tion. This is, in fact, a natural extension of the like-
lihood function for stationary time series. Of course,
our technique cannot be used for estimating the pa-
rameters for non-stationary time series. The intuition
behind this method is to combine the EM algorithm
with a Method of Moments approach, the Yule-Walker
(YW) approach. Essentially, the asymptotic moment
idea from the YW equation is imposed as a regular-
ization term on the state variables.

4.2 Pseudo-Bayesian Update

The AMOR-appended maximization step presents two
challenges. First, the number of particles can be fairly
large (scalability issue). Second, the solution does not
have a closed form. Our pseudo-Bayesian update ad-
dresses these two issues. In the Bayesian linear re-
gression, a sequence of data is processed by updating
the posterior distribution. The parameters of a linear
regression can be learned sequentially as more data
points are observed. This sequential update can be
used to resolve the scalability issue. Furthermore, the
non-linearity issue also can be addressed by slightly
modifying the form of the sequential update.

The first step of the pseudo-Bayesian update is to in-
troduce two auxiliary variables, dt for c and Ψt for
Φ, respectively. At each t, these auxiliary variables
are sequentially updated by solving the following equa-
tion, namely BAM (Bayesian update with Asymptotic
Mean regularization):

min
dt,Ψt

∑

i

w
(i)
t ‖x

(i)
t −Ψtx

(i)
t−1 − dt‖

2

+ λAMOR(I−Ψt−1)
−2‖dt − (I−Ψt)µ̂‖

2

+ λBayes‖dt − dt−1‖
2 + λBayes‖Ψt −Ψt−1‖

2

where λAMOR and λBayes control the strengths of the
asymptotic mean regularization and the Bayesian se-
quential update. The essence of the pseudo-Bayesian

update is disintegrating the double summations
∑

i,t

to a single summation
∑

i by sequentially updating
the time-indexed auxiliary parameters. The term
(I −Ψt−1)

−2 is now indexed by t − 1, and this is the
key trick for obtaining an approximate closed-form so-
lution. To get a closed form solution, we rearrange the
terms as follows:

min
dt,Ψt

∑

i

w
(i)
t ‖x

(i)
t −

(
dt Ψt

)
(

1

x
(i)
t−1

)

‖
2

+ λAMOR(I − Ψt−1)
−2

︸ ︷︷ ︸

λ′

AMOR

‖µ̂ −
(
dt Ψt

)
(
1
µ̂

)

‖
2

+ λBayes‖dt − dt−1‖
2
+ λBayes‖Ψt − Ψt−1‖

2

Let us define Bt =
(
dt Ψt

)
∈ R

(K−1)×K :

min
Bt

∑

i

‖

√

w
(i)
t x

(i)
t −

√

w
(i)
t Bt

(
1

x
(i)
t−1

)

‖
2

+ λ
′

AMOR‖µ̂ − Bt

(
1
µ̂

)

‖
2
+ λBayes‖Bt − Bt−1‖

2

⇒min
Bt

‖

(
wtXt

µ̂⊤

)

−

(
w

⊤

t wtXt−1

λ′

AMOR λ′

AMORµ̂⊤

)

B
⊤

t ‖
2

+ λBayes‖Bt − Bt−1‖
2

where wt =
(
w1

t · · · wP
t

)
. This form further re-

duces to:

min
Bt

‖





wtXt

µ̂⊤

λBayesB
⊤

t−1





︸ ︷︷ ︸

=S

−







w
⊤

t wtXt−1

λ′

AMOR λ′

AMORµ̂⊤

λBayes 0

0 λBayesI







︸ ︷︷ ︸

=R

B
⊤

t ‖
2

Thus, the solution of this least square problem is given
as follows:

B∗
t = ((R⊤R)−1R⊤S)⊤

where R ∈ R
(P+K+1)×K and S ∈ R

(P+K+1)×(K−1).

4.3 Low-resolution Augmentation

More observations usually help in reducing the vari-
ance of estimated parameters. The structure of the
LAVA-Cat model can be utilized to obtain another set
of observations, a low-resolution time series:

xt = cL +ΦLxt−2 + ξt

where cL = c(I + Φ) and ΦL = Φ2. The trans-
formed parameters cL and ΦL can be estimated by
maximizing log ph(θ)(g(y), Is), where g(y) and h(θ)
are low-resolution transformed time series and param-
eters. If Φ > 0, the estimated parameters from this
low-resolution signal are combined with the original
parameters as follows:

Φ ≈ (

√

Φ̂L + 2× Φ̂)/3

c ≈ (ĉL(I+Φ)−1 + 2× ĉ)/3
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where cL and ΦL are inverse-transformed to match
the original representation. The effects of combining
the low-resolution parameters are two-fold; this pro-
cedure can reduce the Monte-Carlo sampling bias in
the E-step, and the parameters are more consistent
with the low-resolution property. This low-resolution
augmentation is analogous to the multiresolution anal-
ysis that has been widely used in image processing and
computer vision (Willsky, 2002). Although it is pos-
sible to drop the indices that are multiple of, say, 3
or 4, the derived signals would have 3 or 4 times less
observations. For a finite time series that has less than
100 observations, obtaining such low-resolution signals
does not add much to parameter estimation.

4.4 LAMORE Implementation

These three components form one iteration of the
LAMORE algorithm, (see Algorithm 3). Empirical-
AM is a procedure that computes the empirical mean
of the latent variables, and BAM denotes the pseudo-
Bayesian update for Asymptotic Mean Regularization.
As can be seen, auxiliary variables, dt,ψt for the origi-
nal sequence and et, ζt for the low-resolution sequence,
are introduced to distribute the M-step across the par-
ticle filtering (MCMC E-step). Note that et and ζt are
updated every two time steps, then combined with the
other auxiliary parameters to calculate the model pa-
rameters for the next iteration θ.

Algorithm 3: LAMORE algorithm

Data: y, θinit
Result: θ
µ̂ = Empirical-AM(y);
while until converge do

Initialize {d0, ζ0} = θ and {e0, ζ0} = θ;
for t ∈ 1:T do

{x
(i)
t , w

(i)
t }= 1Step-BPF(yt,θ, {x

(i)
t−1, w

(i)
t−1});

dt,ψt = BAM({x
(i)
t , w

(i)
t },dt−1,ψt−1);

if t % 2 == 0 then

et, ζt = BAM({x
(i)
t , w

(i)
t }, et−2, ζt−2);

end

end
Set c = (2dT + eT )/3 and Φ = (2ψT + ζT/2)/3;

Set θ = {c,Φ};
end

5 Empirical Evaluation

In this section, three experimental results are pro-
vided. The first experiment uses simulated data to
verify whether the estimated parameters are more re-
liable than the brute-force EM algorithm. The other
two experiments illustrate potential applications of the
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Figure 1: Run-time vs. Number of Particles. The
BPEM algorithm does not scale with the number of
particles.

LAVA-Cat model and the proposed LAMORE algo-
rithm.

5.1 Simulation Study

Simulated time series data are generated from the
LAVA-Cat model with random parameters c and Φ.
First, we measured the run-times of one EM iteration
from three algorithms that are implemented in the R

programming language: BPEM, AMORE (LAMORE
without low-resolution augmentation), and LAM-
ORE 1. Figure 1 shows the results from the experiment.
As can be seen, the BPEM algorithm scales poorly
with respect to the number of particles, whereas the
other two algorithms maintain almost constant run-
times. In fact, the BPEM algorithm does not run
with a thousand particles, facing memory allocation
issues in a 4GB-memory machine . For the rest of the
paper, the Baseline algorithm refers to a LAMORE
without both asymptotic mean regularization and low-
resolution augmentation.

Next, we check whether AMORE and LAMORE can
stabilize estimated parameters. Figure 2 and 3 show
the estimated parameters over the three different EM
algorithms. The E-step using particle methods is in-
herently noisy, and the baseline algorithm often di-
verges from the true parameter values. On the other
hand, although the estimators fluctuate, those two
asymptotic mean regularized EM algorithms converge
near to the true values. Although we only showed
the result for a binary time series, the stability of the
LAMORE algorithm is more noticeable when a time
series becomes tertiary and more (K > 2) i.e. high-
dimensional parameters.

The (L)AMORE algorithms provide more accurate

1The LAMORE implementation in R is available upon
request. A GitHub URL for the LAMORE code is not
provided to keep anonymity of the authors.
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Figure 2: Estimated Parameters (c, φ) vs. EM itera-
tion on a simulated binary time series. The true values
are shown in purple lines.
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Figure 3: Estimated Parameters (c,Φ) vs. EM itera-
tion on a simulated tertiary time series, where Φ is a
diagonal matrix.

and stable estimators than the baseline algorithm.
Simulated tertiary categorical time series (K = 3)
were generated with random parameter initialization,
and then we measured the Mean Squared Errors be-
tween the estimated parameters and the true parame-
ters. Figure 4 shows the results from 30 different runs
per fixed length categorical time series. As can be seen,
the estimators from (L)AMORE are the closest to the
true value and also exhibit the smallest variances. No-
ticeably, AMORE also provides better estimators than
the baseline.

The proposed two techniques are, in fact, general tech-
niques that can be applied to non-categorical data.
This is now illustrated using a continuous multivariate
time series that is generated as yt = xt+ηt, where xt

is generated by the same latent vector autoregressive
model. As E[yt] = E[xt], the asymptotic mean regu-
larization can be directly applied. Figure 5 shows the
results from 30 different runs per fixed length contin-
uous time series. Note that the optimal EM solution
can be obtained by using KF, not BPF, and the goal
of this example is to show the effectiveness of the two
methods in a different setting.
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Figure 4: Estimation Performance of (L)AMORE vs.
length of finite categorical time series. Box-plots are
drawn based on 30 different simulation trajectories.
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Figure 5: [Continuous Time Series] Estimation Perfor-
mance of (L)AMORE vs. length of finite categorical
time series. .

5.2 Case Study I: Medicare Part-D

The following two subsections show potential appli-
cations of the LAVA-Cat model and the LAMORE
algorithm. We first attempt to measure the inertia
of drug re-purchases in the Medicare part-D program.
The target population of the Medicare part-D program
tends to have at least one chronic condition, and they
regularly purchase drugs with the aid of the insur-
ance program. For this experiment, we use the syn-
thetic Medicare part-D claim records2 that are gener-
ated based on 2007 and 2010 5% US population data.
From our data exploration, we found that two major
pharmaceutical companies are dominant in the Medi-
care drug market; Novartis and Teva. For each ben-
eficiary, we extracted a drug purchase sequence with
three categories: Novartis, Teva, and the others. For
the ease of interpretation, we restricted the form of Φ

to be a diagonal matrix as Φ =

(
φNovartis 0

0 φTeva

)

.

The diagonal component of Φ can be interpreted as
the inertia to re-purchase the same brand drug.

We separately estimated the LAVA-Cat parameters
from each individual. Each individual in the dataset
has a different Φ (re-purchase inertia), and Figure 6
shows the distribution of the estimated parameters Φ

2
http://www.cms.gov/Research-Statistics-Data-and-

Systems/Statistics-Trends-and-Reports/SynPUFs/
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Figure 6: Purchase inertia parameters in the Medicare
part-D program.

using LAMORE. The distributions indicate a mixture
of two groups; one group who are loyal to their previ-
ous purchases (loyal beneficiaries), and the other group
who almost randomly change their choices regardless
of their previous purchases (random-choice beneficia-
ries). As can be seen, Novartis has more loyal benefi-
ciaries than Teva (interestingly, Novartis has a slightly
bigger market share than Teva).

In addition to the interpretability of the LAVA-Cat
model, the model provides better predictive perfor-
mance than traditional lagged variable models. With-
out using latent variables, multinomial logistic regres-
sion can be used to predict future events:

log
p(yt = k)

p(yt = K)
= βk

0 + βk
1 yt−1 + . . .+ βk

Lyt−L

where L is the maximum lagging interval (in our ex-
periment, L = 2). K − 1 binomial logistic regression
models are built to predict future events. As lagged
features are highly correlated, we use an elastic-net
multinomial logistic regression using the glmnet pack-
age (Friedman et al., 2010). Figure 7 shows the perfor-
mance comparison with this regularized multinomial
logistic regression. For a drug purchase time series,
the initial 80 % of the observations are used as a train-
ing set, and the rest as a test set. As can be seen, the
LAVA-Cat model with LAMORE provides reasonable
predictive accuracies, while the logistic regression al-
most fails to predict future drug purchases.

5.3 Case Study II: MIMIC-II

In this example, we attempt cardiac condition predic-
tion using the MIMIC-II dataset (Saeed et al., 2011).
The MIMIC-II is the most extensive publicly avail-
able intensive care unit resource. Our data exploration
found that two cardiac conditions are observed fre-
quently: Sinus Tachycardia (SinusTachy) and Atrial
Fibrillation (AtrialFib). We compare the predictive
performance of the LAVA-Cat model with the baseline
logistic model (see Figure 8). The LAVA-Cat model
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●●●●●●●●

●●●●●

●●●●●

●●●●●

●●

●●●●●●●●

●●●●●●●●

●●●●●●

●

●●

●

●●

●●●●●

●

●●●

●

●●●●●●●●●

●●●●●

●

●●●

●●●●●●●●●

●

●●

●●●

●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●

●●●●●●●●●

●

●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●

●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●

●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●

●

●●●●●

●●●●●

●

●

●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●

●●●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●●●●●

●●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

model

● LAVA−Cat

glmnet

Figure 7: Medicare Drug purchase predictive perfor-
mance of LAVA-Cat using LAMORE. Each cell shows
Area under Receiver Operating Characteristic curves
(AUROC) for one-versus-all settings. The blue dotted-
lines are the performance curves from the glmnet al-
gorithm using lagged features.
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Figure 8: Future cardiac condition predictive perfor-
mance of LAVA-Cat using LAMORE. Each cell shows
AUROCs for one-versus-all settings. The blue dotted-
lines indicate the performance of the glmnet algo-
rithm.

can predict the future cardiac condition more accu-
rately than the logistic regression model.

6 Discussion

This paper introduced two auxiliary parameter esti-
mation techniques for a state-space categorical time
series model: asymptotic mean regularization and low-
resolution augmentation. These two methods have
shown their effectiveness in the simulation experi-
ments. The experiments with the real datasets showed
various potential applications of the proposed meth-
ods.

We assumed that a time series is stationary, and the
model parameters are unknown but fixed over time.
For dynamically changing parameters, Markov switch-
ing models can potentially be applied to the LAVA-Cat
model. Extensions of our approaches to non-stationary
time series are left as future work.
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