
Spoofing Large Probability Mass Functions to Improve Sampling
Times and Reduce Memory Costs

Jon Parker Hans Engler
Georgetown Unversity Georgetown University

Abstract

Sampling from a probability mass function
(PMF) has many applications in modern
computing. This paper presents a novel
lossy compression method intended for large
(O(105)) dense PMFs that speeds up the
sampling process and guarantees high fidelity
sampling. This compression method closely
approximates an input PMF P with another
PMF Q that is easy to store and sample from.
All samples are drawn from Q as opposed to
the original input distribution P. We say that
Q “spoofs” P while this switch is difficult to
detect with a statistical test. The lifetime of
Q is the sample size required to detect the
switch from P to Q. We show how to com-
pute a single PMF’s lifetime and present nu-
meric examples demonstrating compression
rates ranging from 62% to 75% when the
input PMF is not sorted and 88% to 99%
when the input is already sorted. These ex-
amples have speed ups ranging from 1.47 to
2.82 compared to binary search sampling.

1 INTRODUCTION

Sampling from a probability mass function (PMF) has
many applications in modern computing. Unfortu-
nately, PMF sampling can become somewhat cumber-
some when the input distribution is not sparse and
the number of states becomes large (on the order of
105). The problem is that the memory required to
store the PMF increases linearly with respect to the
sample space’s size while the time required to deter-
mine the next sample may also increase (depending on
the sampling implementation). This paper introduces

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

a lossy PMF compression method that simultaneously
compresses a PMF and improves sampling times by re-
placing the input PMF P with a close approximation
Q that is easy to store and sample from. This lossy
compression method has multiple desirable properties:

1. Sampling on the compressed PMF occurs faster
than directly sampling the uncompressed PMF
with a binary search based method.

2. The number of samples required to detect the
lossy compression’s error (i.e., the approxima-
tion’s lifetime) can be estimated.

3. The quality of the approximation is a freely ad-
justable parameter.

4. Compression rates of about 75% are expected
when the input PMF is unsorted while compres-
sion rates as high as 88%-99% can be obtained
when the input PMF is already sorted.

5. Probabilities in the original PMF that were zero
remain zero in the compressed PMF while proba-
bilities that were non-zero remain non-zero.

This paper is an initial step towards a more ambi-
tious goal of creating a similar compression method
that simultaneously compresses a large dense stochas-
tic matrix, enables fast sampling upon it, and guaran-
tees that the Markov chain based on the compressed
matrix is a suitable replacement for the Markov chain
based on the uncompressed matrix. This goal remains
elusive because there are multiple reasonable defini-
tions for “suitable replacement” and each definition
requires a different treatment.

Matlab and Java implementation source code is avail-
able at: //github.com/CenterForAdvancedModeling/

2 RELATED WORK

Quickly sampling from a finite PMF is a well-studied
computational task. One standard solution is to pre-
compute the cumulative mass function (CMF) of the

743



Spoofing Large Probability Mass Functions to Improve Sampling Times and Reduce Memory Costs

input PMF and then execute a binary search in the
CMF table. Generating samples this way is a com-
putationally efficient O(log n) process but requires a
CMF lookup table that is the same size as the in-
put PMF. Chan and Asau (1974) published a method
that speeds up typical binary search based sampling by
storing an additional lookup table of hints beyond the
precomputed CMF table. The alias method proposed
by Walker (1974, 1977) guarantees O(1) performance
but requires two additional lookup tables each equal in
size to the CMF table. These methods improve sam-
pling speed but do nothing to assist, and some actively
hinder, data compression.

Vector compression techniques are also well-studied.
Consequently, there are many compression methods
beyond the obvious one of using a sparse representa-
tion when appropriate. In general, lossless compres-
sion techniques like LZ compression (Ziv and Lempel,
1978) and Huffman encoding (Huffman, 1952) hinder
sampling speed because they do not “unpack” quickly.
On the other hand, faster lossy compression techniques
like the FFT and wavelets are not expressly designed
to compress PMFs so they do not include guidance
about how a PMF may be deformed by the correspond-
ing lossy compression.

To the best of our knowledge no prior work exists that
simultaneously improves sampling speed, compresses a
probability mass function and guarantees high fidelity
sampling.

3 CLOSENESS OF DISTRIBUTION
AND LIFETIME

In this section, we give a formal framework for the
problem of approximating one probability distribution
by another for a finite number of samples. The main
result is the derivation of a distance measure of two
distributions (see eq. (2)). It is then shown that it is
difficult to distinguish the approximating distribution
from the original one if the sample size is proportional
to the reciprocal of this distance measure (Corollary
3.1).

3.1 A Single Distribution

Let P and Q be two discrete probability distributions
on the same finite sample space S = {1, . . . , N}. For
a given positive integer n, consider the set Sn of all
finite sequences {1, . . . , N}n of length n from the sam-
ple space S. We equip Sn with the product probability
measure induced either by P or Q. This is the correct
probability model for drawing n independent samples
from S, according to either distribution P or Q.

Definition 3.1: We say that Q spoofs P for a life-
time of L random samples given an error tolerance
α ∈ (0, 0.25) when:
Given a random sample of size L drawn from Q, any
hypothesis test with significance level 1−α comparing
the null hypothesis “the sample comes from P” against
the alternative hypothesis “the sample comes from Q”
will reject the null hypothesis with probability ≤ 0.5.

In statistical language, this says that L is a sample size
such that any such test with significance level 1 − α
has power at most 1/2. Note, requiring α to be small
(e.g. ≤ 0.25) is typical. Whether or not a probability
distribution Q spoofs another distribution P will de-
pend on the lifetime L, the parameter α, and on some
measure of closeness between P and Q.

The decision problem as it has been set up here is
precisely the situation of the Neyman-Pearson Lemma
(Casella and Berger, 2002). It tells us that the
best way to decide between two simple hypotheses is
based on the likelihood ratio. Suppose the sample is
Y = (y(1), y(2), . . . , y(n)) and each outcome i from
the sample space S is observed xi times. The random
quantity (x1, . . . , xN ) has a multinomial distribution.
The likelihood ratio for this sample is

Λ =
qx1
1 qx2

2 . . . qxN

N

px1
1 p

x2
2 . . . pxN

N

=
N∏
i=1

(
qi
pi

)xi

(1)

We take the logarithm of this ratio for algebraic con-
venience and get the Log Likelihood Ratio (LLR):

LLR =
N∑
i=1

xi log
qi
pi

=
n∑

j=1

log
qy(j)

py(j)
=

n∑
j=1

Zj .

The LLR is therefore a sum of n i.i.d. terms Zj =
log(qy(j)/py(j)). We are interested in the distribution
of the LLR, in the limit of large samples that are drawn
from P or from Q. Define εi as εi = qi/pi − 1, with
the implicit assumption that pi = 0 implies that also
qi = 0. Also define the quantities

λ =
1

2

N∑
i=1

piε
2
i , ε̃ = max

i
|εi| . (2)

Both λ and ε̃ are measures for the distance between the
two distributions P and Q. The quantity λ is a spe-
cial type of f -divergence (Liese-Vajda, 2006) known as
Pearsons χ2-divergence. It is a second order approxi-
mation of the Kullback-Leibler divergence, defined be-
low. The quantity 1+ ε̃ is the maximum of the Radon-
Nikodym derivative dQ/dP .

Proposition 3.1: If samples are obtained from P ,
then for large n and small ε̃,

LLR|P ∼ N(−nλ(1 +O(ε̃)) , 2nλ(1 +O(ε̃)).

744



Jon Parker, Hans Engler

If samples are obtained from Q then in the same limit

LLR|Q ∼ N(nλ(1 +O(ε̃)) , 2nλ(1 +O(ε̃)).

Proof: By the Central Limit Theorem, the LLR has
an approximate normal distribution when samples are
drawn from P or Q. Thus, we need only compute the
mean and variance for each normal distribution. Note
that Zj = log(1 + εy(j)). Then

E(Zj |P ) =
N∑
i=1

pi log
qi
pi

= −DKL(P ||Q) (3)

and similarly E(Zj |Q = DKL(P ||Q), where DKL de-
notes the Kullback-Leibler (1951) divergence of two
discrete probability distributions. Now using Taylor
expansions of the logarithm, it is possible to show that
for sufficiently small ε̃, up to terms of order ε̃λ

E(Zj |P ) ≈ −λ, E(Zj |Q) ≈ λ (4)

E(Z2
j |P ) ≈ 2λ, E(Z2

j |Q) ≈ 2λ . (5)

Therefore var(Zj |P ) ≈ 2λ ≈ var(Zj |Q), since λ =
O(ε̃2). Since the LLR is a sum of n independent real-
izations of the Zj , the statement follows.

Corollary 3.1: Given an error tolerance of α and
two probability distributions P and Q with sufficiently
small ε̃, then Q spoofs P for a lifetime L where

L =

(
Φ−1(1− α)

)2
2λ

(6)

and Φ−1 is the inverse cumulative distribution function
of a standard normal distribution.

This formula is derived by observing that the best test
with significance level 1 − α against the null hypoth-
esis that sampling is done from P rejects the null if
(LLR + nλ)/

√
2nλ > Φ−1(1 − α), due to the asymp-

totic distribution of LLR in this case. Now if sampling
is done from Q, then the probability of rejection turns
out to be approximately

1− Φ
(

Φ−1(1− α)−
√

2nλ
)

due to the asymptotic distribution of LLR in this
case. This quantity is bounded from above by 1/2
if Φ−1(1− α)−

√
2nλ ≥ 0. Solving for n = L leads to

the condition in Eq. (6).

4 FINDING A PIECEWISE LINEAR
APPROXIMATION Q

4.1 Presorting Input

Closely approximating all entries in an arbitrary large
PMF with a small number of lines is not feasible.

However, closely approximating the entries of a PMF
containing a non-increasing sequence of probabilities
with a small number of lines is feasible. The spoofing
method described herein takes advantage of this dif-
ference by requiring that the input distribution P is
first sorted in descending order. All pi terms equal to
zero are removed after this sort. We store the original
order in an array of integers and jetison the pi values
as we now rely on the approximating function instead.
This combination of sorting and approximating saves
about 75% memory when the input PMF is unsorted
(assuming that 64 bit floating point numbers are re-
placed with 16 bit integers). If the PMF is already
sorted, the memory savings are much higher, since no
integers need to be stored. For the remainder of the
paper it will therefore be assumed that the sequence of
probabilities given by P is non-increasing and positive.

4.2 Why Piecewise Linear?

We want an approximation that compresses the input
distribution, introduces little error, and enables speedy
sampling. Building a piecewise linear approximation
enables these three goals to be easily met. Memory
savings are realized because each line in the approx-
imation is defined by just two numbers (slope and
height) but may interpolate many pi values. Reaching
an acceptable approximation error is straight forward
because the approximation can be built from a vari-
able number of lines. And finally, sampling quickly is
enabled by a simple “qi stacking” trick.

4.3 Terminology

An input PMF’s non-increasing sequence of pi terms
is partitioned into one or more mutually exclusive
contiguous subsequences. Each mutually exclusive
contiguous subsequence is placed within a dedicated
“bin”. We use the symbol Bj for a generic bin. All pi
terms within such a bin are approximated by a single
line. A bin’s approximating line is used to compute ex-
actly one qi term for each pi term inside the bin. The
complete approximation Q is formed by combining all
the qi terms from all bins. As equation (2) shows, λ
can be computed by summing over all (pi, qi) pairs.
Bin Bj ’s contribution to λ can then be written as

λj =
1

2

∑
i∈Bj

pi

(
qi
pi
− 1

)2

(7)

and therefore λ =
∑

j λj , where the sum is over all
bins Bj . Notice, bins are indexed by j and outcomes
are indexed by i.

745



Spoofing Large Probability Mass Functions to Improve Sampling Times and Reduce Memory Costs

4.4 Sketch of the Approach

We want to find the “best” set of k bins with linear
approximations leading to a distribution Q such that
λ and k are both “small”. This will allow Q to spoof
P for a lifetime of L where L = O(1/λ) and the bin
storage requirements are O(k). The problem appears
to be intractable in this general form. We therefore
propose a greedy algorithm that increases the number
of bins until λ is below the required λL. In Figure 1, we
give a rough outline of this algorithm. The remaining
subsections contain details of this method that are not
shown in Figure 1.

Figure 1: Simplified Flow Chart

This method starts with a preliminary sorting step and
then cycles through three core steps that are repeated
as necessary.

0. Sort the pi in descending order while maintain-
ing knowledge of the original indices. Create the
initial bin using the sorted data.

1. Compute a linear approximation and λj for each
bin without a previously computed approxima-
tion. Compute λ =

∑
j λj .

2. If λ is too large, choose a bin with λj > 0.

3. Split the selected bin in two and go to step 1.

Step 1 can be carried out rigorously while steps 2 and
3 implement simple but effective heuristics.

4.5 Linear Approximation of a Single Bin

In this section we cover how to find the best possible
(i.e., λj minimizing) linear interpolation of a single
bin Bj . Equation (8) specifies the line on which all qi
within a single bin will fall.

qi = α+ β

(
i− n+ 1

2

)
(8)

Here, we use n to denote the number of entries within
binBj , index bin entries from 1 (largest pi) to n (small-
est pi), and suppress a j index on α and β to simplify
notation.

We make the additional requirement that within any
given bin: ∑

i∈Bj

pi =
∑
i∈Bj

qi (9)

This requirement drastically simplifies finding the α
and β that minimize λj because it makes the prob-
lem completely local to the current bin Bj . Without
this assumption bins are related in a needlessly com-
plicated way.

Finding α is simple because it must be set according
to equation (10) so that equation (9) holds.

α =
1

n

∑
i∈Bj

pi (10)

Directly computing α drastically simplifies finding the
value of β that minimizes λj because (7) can now be
rewritten as:

λj = C0 + C1β + C2β
2 (11)

where each Ci can be written in terms of n, α, and the
pis. The vertex of this parabala gives both the minimal
λj and the optimal β. It is worth noting, that it is
possible to compute these two important quantities
without computing all the pi(qi/pi−1)2 terms for each
entry in the current bin. Note: It is possible that the
qi increase across a bin boundary even if the pi are
non-increasing.

4.5.1 Non-Positive qi Values

Generating negative probability estimates is clearly
not acceptable. However, the methods described above
do not preclude negative qi values. Moreover, these
methods are invalid if a qi is negative. The best way
to handle this problem is to proceed using equations
(10) and (11) to compute α and β. Then compute
qn, the smallest qi. If qn is negative set β to a value
slightly larger than

β0 = − 2α

n− 1
(12)

If β were equal to β0 the smallest qi would be zero.
Slightly increasing β above β0 produces positive qis,
thus correcting the problem and satisfying the require-
ment that all qi are positive. Once β is set, the bin’s λj
is computed and the algorithm proceeds normally. No-
tice, this correction obtains the same result as applying
constrained optimization on β but simplifies finding
the best value because the vertex of the parabala de-
fined by (11) gives the solution the vast majority of
the time.

4.6 Choosing Which Bin Bj to Split

We choose the Bin Bj for which λj is maximal. This
seems to be the reasonable choice.

746



Jon Parker, Hans Engler

4.7 Deciding Where to Split Bin Bj

Suppose bin Bj has been selected for splitting. This
bin’s contribution λj to λ will be replaced by the sum
of two terms λ′j and λ′′j , one for each “child” bin. In
principle, one could split Bj at the index where the
resulting λ′j +λ′′j is minimal. Splitting Bj at this index
provides the smallest possible λ when one split to bin
Bj is allowed. The split location can be found with a
suitable search method that requires O(log n) trials.

Unfortunately, a series of k−1 such optimal splits usu-
ally does not produce an optimal partition of k bins.
This is because, as in any greedy approach, the effi-
ciency of future splits is unaccounted for when opti-
mizing the placement of the current split in isolation.
Since this approach is clearly suboptimal and more so-
phisticated optimizations will be costly to compute we
simply split a bin approximately in half, while ensur-
ing the bin with larger pi terms has an even number of
entries. This ensures the child bin with larger pi terms
can be split again to further reduce λ when necessary.

A moment’s reflection will show that this bin splitting
policy guarantees that: (1) there can only be one bin
that cannot be split again (ignoring perfectly approxi-
mated bins with exactly two entries) and (2) when the
unsplittable bin exists it will contain the 3 smallest pi
terms. This fact is desirable because unsplittable bins
with large pi terms lock in large and unimprovable
λj values. All successful splitting rules must ensure
unsplittable bins have acceptable λj values given the
global target λ.

4.8 A Detailed Example

To illustrate the method, a simple PMF with N = 37
entries was generated and approximated with another
piecewise linear PMF. Figure 2 shows the original
PMF at the top, the sorted PMF together with a two
bin approximation in the middle, and the sorted PMF
together with a three bin approximation at the bot-
tom.

4.9 Sampling from a Piecewise Linear
Approximation

We now give an efficient sampling algorithm for a
piecewise linear probability distribution Q. Sampling
from Q requires a two-step process. The first step se-
lects a random bin from the set of all bins with the
correct probability. The second step returns an entry
from this bin, with probabilities proportional to the qi
for the i in this bin.

Figure 2: Two piecewise linear approximations of a
PMF. Top: Unsorted PMF. Middle: Sorted PMF and
approximating PMF for one bin, λ = .29. Bottom:
Sorted PMF and approximating PMF for three bins,
λ = .045.

4.9.1 Selecting a Random Bin

Selecting a random bin is a problem that plays to the
strengths of Chan and Asau’s technique. Since we ex-
pect to have relatively few bins a Chan and Asau im-
plementation using one hint per bin ensures high-speed
bin sampling and uses little memory. Thus, we begin
by pre-computing the bin specific CMF and hint table
required by Chan and Asau’s method.

4.9.2 Selecting a Random Entry From
Within a Bin

Having selected a random bin using Chan and Asau’s
method, we now have to select and return a random
sample from within that bin. Imagine that the qi terms
within a bin are paired, the first with the last, the sec-
ond with the second to last, and so on. The combined
probabilities result in a set of “stacks” as shown in
the right half of Figure 3. Assuming n is even, all the
stacks have the same probability and a random stack
can be selected easily from the two qi terms forming
this stack.

Here is a formal description, assuming again that the
entries in the bin are labeled from 1 to n. Compute:

col = du · n
2
e (13)

where u is another U(0, 1) random variate. The col
variable identifies which pair of outcomes contains the
final outcome. Finally, pick between the two qi values
in this stack qcol and qn−col by drawing another U(0, 1)

747



Spoofing Large Probability Mass Functions to Improve Sampling Times and Reduce Memory Costs

Figure 3: Stacked probabilities

random variate v or rescaling u into a U(0, 1) random
variate v (given that u fell into the range corresponding
to col) and returning:

sample =

{
col if v < qcol

qcol+qn−col
;

n− col otherwise.
(14)

A quick check shows that eq. (13) also produces a cor-
rectly distributed sample when n is odd because it is
half as likely to select the stack with 2 copies of the
middle qi value as it is to select a stack with 2 distinct
qi values.

4.9.3 Sampling Shortcuts

There are two cases that allow for noteworthy short-
cuts when sampling. A shortcut is available when a
bin has exactly two entries. In this case, there is no
need to select a random stack and we can sample one of
the two entries using a modification of (14). The sec-
ond shortcut is available when a bin has slope β = 0.
This happens when there are many identical pi in the
original distribution. Here, simply return entry dn ·ue.
These shortcuts become significant over the course of
several several million samples (from a suitably shaped
distribution) even though they only eliminate a few
simple numeric operations.

4.10 Possible Improvements and Limitations

If a PMF with an even number of entries is given, our
method can achieve λ = 0, simply by using bins of size
2 (which never contribute error). In this case, there is
no compression. The best approximation for a distri-
butions with an odd number of entries uses all bins of
size 2 except one bin with 3 entries containing the 3
smallest pi values. This bin will be the only source of
approximation error. A user who requires a very small
approximation error may therefore be better served us-
ing one of the exact methods described in Section 2.
Also, a user who submits a PMF with very few entries
may see little to no compression and/or speed benefits
using our method.

It may be possible to improve upon the splitting strat-
egy suggested in section 4.7. In particular, splitting a

bin such that approximately half of the parent bin’s
probability goes to each child bin may require slightly
fewer bins to reach the desired lifetime.

Splitting bins at locations found with an optimal
search produces approximately the same number of
bins as just splitting bins in half, at substantially in-
creased computational cost. We speculate that other
possible splitting rules will also produce roughly the
same number of bins.

5 NUMERICAL EXAMPLES

We first show the effectiveness of the approximation
procedure. Two PMFs on a sample space of size n =
105 were generated and sorted in descending order.
The first one, PL, is piecewise linear, with five linear
pieces including a flat piece (a set of constant pi). The
second one, PJ , has probabilities proportional to 5

i
for i ≤ k0 = 3333 and proportional to 1

i for i > k0.
Table 1 gives the number of bins for the target λ values
10−2, 10−4, and 10−6.

Table 1: Approximation quality for two PMFs.

PMF Num Bins λ
PL 4 .0067
PL 15 7.8 · 10−5

PL 26 8.5 · 10−7

PJ 16 .0034
PJ 35 7.7 · 10−5

PJ 76 9.9 · 10−7

The results show that the method deals very well with
piecewise linear PMFs and less well (but still quite ac-
ceptably) with a PMF with a pronounced jump. The
number of bins required to approximate PJ is higher
because of the jump in the otherwise smooth distri-
bution of pis at i = k0, which requires many binary
splits.

We next compare the time and memory requirements
for four different sampling methods, using two different
PMFs. The two distributions each come from sample
spaces of size n = 25, 000. A curved PMF, PC , has
probabilities pi proportional to 1/ui where ui is U(0, 1)
and a linear PMF PS has probabilities proportional to
n + 20 − i. The first distributions was approximated
with a target λ = 1.35 · 10−8 using 519 bins. The
second distribution is approximated perfectly (λ = 0)
with a single bin. Then N = 107 samples were drawn.
The time and memory required to draw these samples
from each distribution are shown in Table 2.

This table shows the memory savings that are possible
when using a piecewise linear approximation. In ad-

748



Jon Parker, Hans Engler

Table 2: Time (sec) and memory space (kB) required
to draw 107 samples.

Sampling
Method

PC PS

Time Space Time Space
Binary 15.1 200 21.4 200

Chan-Asau 7.2 300 7.9 300
Spoofing
(unsorted)

10.3 76 11.1 50

Spoofing
(sorted)

10.3 24 11.1 0.4

dition, sampling from a spoofed distribution is faster
than using a binary search approach. While the ap-
proach by Chan and Asau (1974) is faster yet, that
method uses more memory. The dramatic memory
savings shown in the last row of Table 2 are possible
because storing the input distribution’s original order-
ing is unnecessary when it is already sorted. Since just
one bin is generated when the PMF is PS , the mem-
ory requirements in that case are minimal. In our
implementation, sampling from PC is slightly faster
than sampling from PS because the approximation of
PC contains several bins with exactly 2 entries, from
which one can sample faster. We also simulated sam-
pling from a PMF where the pi can have only a few
different values (not shown in the table). In that case,
memory requirements for our implementation are sim-
ilar to those for PS , but sampling can be done about
30% faster, since sampling an entry from a given bin
can be done in about half the time (see the discussion
of shortcuts given above).

6 DISCUSSION: OPEN QUESTIONS
AND THE STOCHASTIC
MATRIX CASE

Adapting this spoofing method for large dense Markov
chains, presumably by spoofing each row in the tran-
sition matrix, will enable significant memory savings
and faster compute times for a widely used technique.
We also know this approach will not alter important
properties of a Markov chain such as its reducibility
and the periodicity and recurrence of its component
states. The difficulty involves computing the lifetime
of the slightly altered stochastic matrix. It is unclear
how to define the lifetime of such an approximation be-
cause Markov chains are used in significantly different
ways.

More formally, let P be not just a single PMF, but
the transition matrix of a Markov chain with station-
ary distribution π. Similarly, let Q be a row by row

approximation of P in the spirit of this paper, with
stationary distribution π̃. We would like to determine
the Markov chain’s lifetime, i.e. how long the chain
governed by Q can be used before it can be distin-
guished from a chain governed by P . Unfortunately,
a single definition of lifetime may not suffice because
a Markov chain can be used in a variety of ways. For
example, a chain may always begin at a fixed initial
state. Or the chain’s initial state could be drawn from
a distribution (which may or may not be the station-
ary distribution). A user may also repeatedly restart
the chain from states of his or her choosing. Each of
these use cases has merit and requires a significantly
different approach towards computing the lifetime. We
believe the definition of a Markov chain’s lifetime must
reflect a specific use case and should hopefully be easy
to compute. However, there is merit to defining a
Markov chain’s lifetime such that only the stationary
distributions π and π̃ are reflected in the calculation.

There is prior work on related topics and we refer to
Billingsley (1961) for statistical inference on Markov
chains, where asymptotic null distributions of suitable
test statistics are derived. Further fundamental re-
sults were obtained by Baum and Petrie (1966). Im-
portantly, these prior results require that the Markov
chain has already reached its stationary state. Related
results on the structure of optimal strategies for detect-
ing a switch from P to Q while the Markov chain is
running (even if the chain has not yet reached station-
arity) are given by Yakir (1994). We are interested in
similar cases where the stationary state may not have
been reached yet.

Once the Markov chain has reached stationarity, π̃ is
spoofing π, but with unknown lifetime. The work by
Cho and Meyer (2001) shows that π̃ − π is pointwise
bounded in terms of Q − P , and a number of ways
to estimate this difference are given in that reference.
However, it is an open question how to bound the cru-
cial quantity λ =

∑
j |π̃j−πj |2/πj (or any other diver-

gence of π̃ and π for that matter) effectively in terms
of P and Q.

7 CONCLUSION AND OPEN
QUESTIONS

The spoofing method described here provides a care-
fully considered compromise between sampling per-
formance, sampling accuracy, and memory overhead.
This compromise guarantees the user a requested level
of accuracy while providing good speed and low mem-
ory use.

The overwhelming majority of this method’s memory
footprint is due to retaining the input distribution’s

749



Spoofing Large Probability Mass Functions to Improve Sampling Times and Reduce Memory Costs

original ordering. We made no attempt to compress
this permutation. Therefore, compressing the original
permutation is an obvious next step because compress-
ing it by X% will yield a near X% improvement in
overall memory use.

One last subtle benefit of the spoofing method has
nothing to do with its computer science properties.
The spoofing approach brings important simulation is-
sues into sharp focus. Requiring the user to pick a tol-
erance level and work with samples that deviate in a
controlled way from an exact version encourages him
or her to consider questions such as: How stable is the
output of my simulation? How good are the data this
simulation is based on? How important is the error in
the input data for this simulation? Clearly, it is diffi-
cult to gauge the value of considering these questions.
But, intuitively, taking a moment to look at the big
picture must have merit.

Acknowledgements

This work was partially supported by: the Mod-
els of Infectious Disease Agent Study (MIDAS), un-
der Award Number U01GM070708 from the NIGMS,
The Johns Hopkins Medical School DHS Center
on Preparedness and Catastrophic Event Response
(PACER), under Award Number N00014-06-1-0991
from the Office of Naval Research, and Joshua M.
Epstein’s NIH Director’s Pioneer Award, Number
DP1OD003874 from the Office of the Director, Na-
tional Institutes of Health

References

BAUM, L. E. AND PETRIE, T. 1966. Statisti-
cal inference for probabilistic functions of finite state
Markov chains. Ann. Math. Stat. Vol. 37 No. 6,
1554 - 1563.

BILLINGHSLEY, P. 1961. Statistical methods in
Markov chains. Ann. Math. Stat. Vol. 32 No. 1,
12 - 40.

CASELLA, G. AND BERGER R.L. 2002. Statistical
Inference. Duxbury, Pacific Grove.

CHAN, H. C. AND ASAU, Y. 1974. On generating
random variates from an empirical distribution. IIE
Transactions, Vol. 6 No. 2, 163 - 166.

CHO, G.E. AND MEYER, C.D. 2001. Comparison of
perturbation bounds for the stationary distribution of
a Markov chain. Linear Algebra Appl. Vol. 225, 137
- 150.

HUFFMAN, D.A. 1952. A method for the construc-
tion of minimum-redundancy codes. IRE Proceedings
Vol. 40 No. 9, 1098 - 1101.

KULLBACK, S. AND LEIBLER, R.A. 1951. On in-
formation and sufficiency. Ann. Math. Stat. Vol. 22
No. 1, 79 - 86.

LIESE, F. AND VAJDA, I. 2006. On divergences
and informations in statistics and information theory.
IEEE Transactions on Information Theory Vol. 52,
No. 10, 4394 - 4412.

WALKER, A.J. 1974. New fast method for generat-
ing discrete random numbers with arbitrary frequency
distributions. Electronics Lett. 10, 553 - 554.

WALKER, A.J. 1977. An efficient method for gener-
ating discrete random variables with general distribu-
tions. ACM Transactions Math. Software, Vol. 3, 253
- 256.

ZIV, J. AND LEMPEL, A. 1978. Compression of
individual sequences via variable-rate coding. IEEE
Transactions on Information Theory Vol. 24, No. 5,
530 - 536.

750


