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Abstract

This paper focuses on large—scale unsupervised
feature selection from text. We expand upon the
recently proposed Compressive Feature Learning
(CFL) framework, a method that uses dictionary-
based compression to select a K-gram represen-
tation for a document corpus. We show that CFL
is NP-Complete and provide a novel and efficient
approximation algorithm based on a homotopy
that transforms a convex relaxation of CFL into
the original problem. Our algorithm allows CFL
to scale to corpuses comprised of millions of doc-
uments because each step is linear in the corpus
length and highly parallelizable. We use it to
extract features from the BeerAdvocate dataset,
a corpus of over 1.5 million beer reviews span-
ning 10 years. CFL uses two orders of magni-
tude fewer features than the full trigram space.
It beats a standard unigram model in a number
of prediction tasks and achieves nearly twice the
accuracy on an author identification task.

Introduction

This paper focuses on large—scale learning tasks involving
text: problems involving millions of examples and features,
gigabytes of data, and thousands of classes. Processing
speed and memory restrictions dominate the kinds of mod-
els we can train, and otherwise innocuous limitations, such
as 32-bit memory addressing, become real issues. Of the
many popular algorithms that fail in this regime, Kernel
methods form an important class whose quadratic depen-
dence on the number of training examples renders them
unusable. As a result, many methods rely on simple linear
models that explicitly represent examples as vectors x € R?
and make predictions based on an inner product x” w. The
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main issue, then, is to select an informative yet compact
and sparse feature representation for each data point.
Selecting a good feature representation is a critical to any
learning problem, irrespective of size; the feature set pro-
vides the lens through which a learning algorithm accesses
the data. In the context of text, this problem often boils
down to selecting which K—grams to use when forming
a bag of K—grams representation for a document corpus.
Popular heuristics filter K—grams by document frequency,
chi-squared value, or information gain [19, 8] and are fast,
but treat features independently and fail to account for in-
teractions. More recently, methods based on L regulariza-
tion [17, 20] perform variable selection while learning, but
they also require more processing effort.

Complicating the issue of feature selection is that, while
a document corpus may be available, the particular learn-
ing task it will be used for may be unknown. This occurs
when obtaining labeling information is slow, when a re-
searcher wishes to explore the data without a specific goal
in mind, or simply when the dataset is to be analyzed in
multiple ways. Unsupervised feature selection methods are
particularly attractive in these scenarios because they give
the researcher freedom to decide on the learning task after
features have been extracted. Importantly, features can be
extracted a single time in an offline manner and used for all
subsequent tasks, oftentimes allowing for rapid experimen-
tation.

Dictionary—based compression offers a potential solution
to these problems. It is based on the idea that a good fea-
ture set is given by the K—grams stored while compress-
ing a corpus because they reflect inherent structure in the
text. As the compression algorithm seeks to remove re-
dundancy, K—grams must “win out” to be included in the
dictionary and features are selected jointly. A number of
papers [6, 1, 3, 10] report success when using off—the—shelf
compression algorithms as kernels that compute the simi-
larity of two documents according to their size when con-
catenated together and compressed. Moreover, [16] show
that many of these off-the—shelf algorithms are true ker-
nels and give their implicit feature spaces. Deriving an
explicit representation from these algorithms remains diffi-
cult, however, because we must compress all pairs of doc-
uments or the entire corpus jointly. As discussed in [14],
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these algorithms produce poor features in the latter case
because they are sensitive to the order in which documents
are concatenated before compression.

We focus on the Compressive Feature Learning (CFL) [14]
framework, a recent dictionary—based compression scheme
that is explicitly designed to find a feature space, i.e. set
of K—grams, for a document corpus. Unlike off—the—shelf
compressors, CFL is invariant to document order and pro-
duces features by compressing the entire document corpus.
As shown in [14], CFL can achieve state of the art per-
formance on supervised learning problems even though it
selects features without any knowledge of the labels. It can
also help elucidate structure in unsupervised learning sce-
narios. Importantly, [14] provide an approximation algo-
rithm that can scale to larger datasets because each refine-
ment step is linear in the corpus length and highly paral-
lelizable.

1.1 Contributions

(1) We show that CFL is NP-Complete and that its related
operations of encoding/decoding a document (once the dic-
tionary is fixed) can be performed in O(Kn) time, where
n is the document length and K is the maximum K—gram
length. (2) We introduce a new, approximate algorithm
for CFL that is significantly faster than our previous iter-
ative reweighting (IR) algorithm [14] and that produces so-
lutions of similar quality. We demonstrate our algorithm’s
performance on several datasets. (3) Our algorithm is based
on a novel homotopic approximation scheme for CFL that
solves a sequence of increasingly more difficult optimiza-
tion problems. The problems transform from the linear re-
laxation of CFL into a non—convex problem whose local
optima are always binary. (4) We adapt the linearized Alter-
nating Directions Method of Multipliers (ADMM) frame-
work [13] to solve our homotopy and show how to tune
its parameters. Each step of our algorithm requires ©(Kn)
operations and is faster than the ©(K?n) required for each
ADMM step in the IR algorithm. (5) Finally, we use our al-
gorithm to compress the BeerAdvocate [12] dataset, a large
corpus of approximately 1.5 million beer reviews spanning
10 years. We demonstrate the superiority of CFL’s features
over unigrams in predicting a beer’s ABV and rating (along
various categories) from its review. We also use these fea-
tures to identify authors based on samples of their reviews
and achieve nearly twice the accuracy of unigram and full
trigram models.

2 Compressive Feature Learning

We now describe the Compressive Feature Learning (CFL)
scheme introduced in [14] for extracting features from a
document D = xx; . ..x, comprised of n words. At its core
CFL is a lossless dictionary—based compression algorithm
and is related to the popular LZ77 algorithm [21]. It finds
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an efficient way to represent D via a subset of its substrings,
known as a dictionary, and a set of pointers that indicate
where copies of each dictionary string should be placed in
order to reconstruct D. The dictionary and pointer set are
chosen so as to minimize the cost of storing all pointers and
dictionary strings (in plaintext). We will refer to these costs
as the pointer set and dictionary costs, respectively. Figure
1 demonstrates this representation scheme and associated
storage costs on a toy example for three different pointer
costs.

Min. Dictionary Cost Min. Balanced Cost ~ Min. Pointer Cost

Document | thatthat thatthat thatthat
Pointers W \/

Dictionary | h t a that thatthat
Cost 3+(0x8)=3 4+(1x2)=6 8+(8x1)=16

Figure 1: Three different CFL solutions on a toy exam-
ple. Dictionary cost: number of characters in dictionary.
Pointer set cost: A\ X number of pointers. Left: dictionary
cost only (A = 0). Right: expensive pointer cost (A = 8).
Center: balanced dictionary and pointer costs (A = 1).

More formally, let the set of all unique K—grams ' in D be
S={xi..xiy1]1<t<K,(1<i<n—rt+1}andlet P =
{(s;1)|s =x;...x145-1,s| <K} be the set of all m = |P|
potential pointers. Without loss of generality, we will think
of P as an ordered set so that each unique pointer p; has
a unique index i € {1,...,m} associated with it. Define
J(s) C{1,...,m} to be the set of indices of all pointers that
correspond to the same string s (at different locations in D).

Compressing D can be cast a binary linear minimization
problem over a bit vector w € {0,1}™ that tells us which
pointers to use in the compressed representation of D.
Specifically, w reconstructs word x; if for some w; = 1 the
corresponding pointer p; = (s,/) satisfies I < j <[+|s|. In
this case, p; is used reconstruct part of D by pasting a copy
of string s into location /. We can ensure that w recon-
structs every word in D by requiring that Xw > 1, where
X € {0,1}"™ indicates which words each w; = 1 can re-
construct. The i-th column of X is zero everywhere ex-
cept for a contiguous sequence of ones corresponding to
the words which w; = 1 reconstructs. We can also use w
to implicitly define the dictionary (a subset of S) by noting
that s must be stored in the dictionary if [[w; [l = 1, i.e.,
some pointer using s is used in the compression of D. As-
suming the pointer cost of setting w; = 1 is given by d; > 0
and the cost of storing any s € S is ¢(s), our lossless com-
pression criterion is

. T
minimize  w d—i—Zc(s)HwJ(s)Hm
se€S
subjectto Xw>1, we {0,1}™.

'We use K—gram to mean word sequence up to length K.
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We are particularly interested in the setting where the
pointer cost is the same for all pointers, i.e., d;j = A,
since it forces the dictionary cost to oppose the pointer
set cost. Optimizing the former yields a solution that
only uses unigrams and has many pointers. On the other
hand, the minimal pointer set cost solution stores the
entire document as a single dictionary element. Figure
2 shows how CFL balances the two costs as A varies: it
generates a path of solutions that interpolate between the
two extremes. This path gives CFL additional flexibility to
adapt its solution to the task at hand, something traditional
compression schemes cannot do.

K-gram Usage vs. Pointer Cost

—&—Unigrams
[| —e—Bigrams
|| —+—Trigrams

Pointer Cost

Figure 2: Fraction of pointers that correspond to unigrams,
bigrams, and trigrams in the compressed representation of
the BeerAdvocate dataset. We use the same pointer cost for
all pointers and allow up to trigrams.

We can also compress multiple documents jointly. Given
N documents Dy,D,,...,Dy, we form D by concatenat-
ing them into a long document D = D{D;...Dy so that
n= vazl n; and disallowing any pointers that span docu-
ment boundaries. Finally, we can extract features from a
compressed document(s) by computing a bag of K—grams
representation from the pointers used in its compressed rep-
resentation, for further details see [14].

3 Complexity of Compression and Learning

This section discusses the computational complexity of
CFL and the related operations of encoding and decoding
a document. We give simple, linear—time algorithms for
encoding and decoding a document once the dictionary is
known and show that learning S is NP-Complete.

3.1 Decoding and Encoding

A document D is encoded in terms of dictionary S by find-
ing the cheapest pointer set that reconstructs D. Here we
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assume that every occurrence of an s € S in D is a potential
pointer and that S can reconstruct D entirely. This problem
is a special case of (1) obtained by setting c(s) = 0 (and dis-
allowing all pointers for strings not in &) and is applicable
whenever S is decided upon ahead of time. It is important
because it allows us to compress new documents without
changing the dictionary and because (1) can be expressed
as a nested problem in which the outer minimization se-
lects a dictionary and the inner minimization encodes D.
The inverse operation is decoding where, given a pointer
encoding U C P, we wish to reconstruct D. These oper-
ations can be performed independently for each document
when D represents multiple documents, so we assume that
D is a single document.

Decoding An efficient algorithm for decoding was given
while motivating the CFL objective: for every (s,l) € Uwe
reconstruct a document by placing s in location /. This sim-
ple procedure runs in O(n) time when strings do not over-
lap and requires O(Kn) when strings overlap and at most n
pointers are specified for the document.

Encoding Encoding can be performed in O(Kn) time us-
ing dynamic programming. We assume that S contains all
K—grams in D; we can disallow certain K—grams from be-
ing used by setting their pointers’ costs to oo. Define R(i) to
be the minimal cost of encoding D up to, but not past, posi-
tion i so that R(n) is the cost of the optimal encoding. The
algorithm finds R(n) by computing R(i) from i =1 up to n
using the previous values of R(j) for 1 < j < i to find R(i)
efficiently. In order to formalize this procedure, let d(i,k)
be cost of the the pointer that starts at position i —k + 1
and ends at location i (whose substring is of length k). Us-
ing the convention d(i,k) = oo if k > i or if that pointer’s
substring is not in our dictionary, we can write

R )

; [d(i,k) + min
% J=1see

As such, R(i) can be found in O(K) time given
R(0),...,R(i— 1) by noting that the inner minimization
requires O(1) operations for each value of k because of
nesting. We can also find the set of pointers that opti-
mally encode D by storing, for each i, the values of k and
J that achieve R(i) and working backwards once we com-
pute R(n). The overall running time of our procedure is
therefore O(Kn) and it is inherently online, requiring only
a single pass through D.

3.2 Dictionary Learning

Given the simplicity of the encoding/decoding procedures,
one would hope that an efficient procedure exists for solv-
ing CFL, i.e. learning S in addition to the document en-
coding. However, the addition of the dictionary cost term to
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objective (1) significantly complicates the underlying prob-
lem. In fact, a simpler problem known as the External
Macro Data Compression (EMDC) problem is discussed in
[9] and shown to be NP-Complete via reduction from the
Vertex Cover problem [9]. EMDC represents a compressed
document as an array in which each element is either a un-
igram stored in plaintext or a pointer indicating which dic-
tionary string it should be replaced by. This scheme can be
cast as a special case of CFL by letting the dictionary cost
for unigrams be 0 and setting the pointer cost for all uni-
gram pointers to be the cost of storing a unigram in plain-
text. All other pointer costs are set to the same value \.
Finally, since (1) is itself a binary linear program, we con-
clude that CFL is NP-Complete.

4 Approximation Scheme

This section describes the homotopic scheme we employ to
solve (1) approximately. Our scheme is an instance of an
iterative binarization (IB) procedure that minimizes a se-
quence of interrelated problems until it arrives at a binary
solution. In particular, IB explores the domain of a function
f(x) via a parameterized surrogate f.(x) until it finds a bi-
nary solution. It does this by keeping track of the current
solution x and a state parameter ¢ and alternating between
updating ¢ and (possibly approximately) minimizing f¢ (x)
using x as a warm start. The hope is that if f;(x) and the
update procedure for ( are chosen carefully, IB will arrive
at a nearly optimal binary solution. High level pseudocode
for IB is given below:

while x is not binary do
update ¢
X < argmin f¢(x)
end while

We have left the update rule for { general because it may
simply rely on the iteration count or may use x in a more
sophisticated manner, as in expectation maximization.

4.1 Homotopy

In terms of the IB framework, homotopic methods rely on
a homotopy parameter ¢ € [0, 1] as their state variable and
steadily increase ¢ from O to 1. We use for f¢(x) a function
whose domain x shrinks as ¢ increases so that x C x¢
for ' > (, i.e. the x are nested and become more con-
strained with larger (. When ¢ = 0, fy(x) corresponds to
the convex relaxation of (1). As ( increases, it steadily
transforms into fj(x), a non—convex function whose local
optima are always binary. This transformation relies on
warm starts to provide a good inital solution for each pro-
gressively harder problem. It traces out a solution path that
starts at the continuous minimizer of (1) and ends at a high
quality binary solution nearby.

We define our homotopy by first showing how to express

763

(1) as a (non—convex) continuous problem whose mini-
mizer must always be binary. Define 7'(i) C {1,...,m} for
i=1,...,n to be the index set which picks out all pointers
that can be used to reconstruct position i, i.e. T(i) is the
index of all columns in X that are 1 at row i. Then (1) is
equivalent to

minimize w’d + Zc(s) Wy (s)llee
" sES

)

subject o [[wr(lle =1Vi=1,....n

w>0.

The solution to (2) must be binary because the objective
pushes w towards 0 and any w; < 1 has no impact on the
co—norm constraint.

We use the formulation in (2) to define our homotopy.
Specifically, for ¢ € [0, 1] we consider the problem

minimize  w'd+3 _c(s)|wys -
" seS
Iwrlle > ¢ Vi=1,....,n

Xw>1, w>0.

3

subject to

When ¢ = 0 the co—norm constraint cannot be active and the
problem reduces to the linear relaxation of (1)>. However,
when ¢ = 1 the co—norm constraint is more restrictive than
the linear constraint and the problem reduces to (2). As a
matter of interest, note that (3) is convex even for values
of ¢ > 0. For instance, because Xw > 1 is feasible only if
wrille > % setting ¢ = ﬁ preserves convexity. More-
over, given a unique solution w* to the relaxation of (1),
the largest value of ¢ at which (3) is still convex is given by
(= i:‘?innnw;(i)”w-

3ty

4.2 ADMM Formulation

We use linearized ADMM (LADMM) [13], a variant of
the ADMM framework, to solve (3) approximately. While
ADMM has traditionally been used for convex problems, it
also converges (to a local optimum) for non-convex prob-
lems [2]. It minimizes a function f(w) = h(w) + g(Aw) that
is separable into two or more terms by solving the equiv-
alent problem Hvlvlzn h(w) + g(z) subject to z = Aw. This

minimization is performed by operating on the augmented
Lagrangian

£,(m,2.9) = h(w) +5(@) +3" (Aw—2)+ L Jaw—z[} @)

Here y is a dual variable that enforces the equality con-
straint and serves as a conduit of information between w
and z. At each step ADMM minimizes £, with respect to

ZNote that the linear relaxation requires 1 > w > 0 but the up-
per bound is implied because no local optimum can have w; > 1.
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w while holding all other variables fixed, then z, and finally
updates y according to [2]. This procedure solves for w or
z separately and brings them into agreement as the algo-
rithm progresses; upon convergence £, equals f because
the equality constraint is met and the last two terms are 0.
The key to ADMM is that minimization with respect to w
(or z) be fast: the way in which f is split is essential to the
success of the algorithm. A complicating issue is that the
w—update can become difficult when A # I. LADMM [13]
remedies this by replacing the last term in (4) with its first
order Taylor expansion around the previous value of w, W,
and a regularization term:

Ellaw—z]3 = ptaiv—2) 4w+ w—w3. )

This change is made only during the w—update, i.e., updates
to all other variables remain the same, and it transforms the
w—update into a simpler proximal mapping.

4.2.1 ADMM Split

In what follows, /{e} is the convex indicator function that
is oo if the constraint inside the braces is not met and is 0
otherwise. We apply LADMM to (3) by splitting it into
three distinct terms:

L h(w) =whd+ 3 cse(s)[wys [l +1{w > 0}
2. g1(e) =Hz= 1}

3. 80(0) =1 {07 > CVi=1,....n}.

We also require that the equality constraints z = Xw and
w = 6 hold upon convergence. Thus, / corresponds to the
storage costs in (3), g; to the convex reconstruction con-
straint, and g, to the non-convex constraint that drives the
homotopy. Notice that while the constraints imply z = X0,
we do not enforce this equality constraint. Ignoring this
constraint allows us to simply alternate between solving
for w and (z,0) simultaneously. Moreover, we only need
to linearize the || Xw —z||3 term in £, when solving for w.

4.2.2 Minimization

Solving for w  Simple algebra shows that the linearization
of L, is separable in each s € S. The supplementary ma-
terial shows that each of these subproblems is of the form
5 | wys) — I3 + c(5)|wy(s) |l for appropriately defined
g and can therefore be solved in O(my) time, where m; is
the dimensionality of wyy), using the procedure outlined in
[14].

Solving for z We show in the supplementary mate-
rial that simple thresholding minimizes £,, ie. z =
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max (X w4 p 1y, 1). Here y(®) is the dual variable cor-

responding to the z = Xw constraint and the max operation
is applied elementwise.

Solving for § Minimizing £, with respect to 0 yields a
non-convex problem that can be solved exactly by casting it
as an encoding problem and using the algorithm in section
3.1. Letting v =w+p~ 'y(® where y?) is the dual variable
for w = 0, the relevant parts of £, are

Iy =613 +22(6) ©)
Notice that 6; helps satisfy g»’s constraint only if 6; > ¢
and that this constraint is indifferent between 6; = ¢ and
0; > (. Since we are trying to find the closest point to v
that satisfies g, it follows that §; = v; if v; > ( and that
0; = v; or §; = C otherwise. This is an encoding problem
with pointer cost 7; = max(0, ¢ — v;)> whose solution, 1 €
{0,1}"™, determines 6 via = max (v, (7).

4.2.3 Runtime Analysis

Each pass of LADMM requires ©(Kn) operations. In par-
ticular, finding w and z requires linear—time operations on
vectors of size O(Kn) formed by multiplying X or X7 by
a vector. As discussed in the supplementary material, the
structure and sparsity of X allows us to perform this multi-
plication in ©(m) = ©(Kn) operations, rather than O (nm)
as would be the case with general multiplication. Simi-
larly, the encoding problem to find 6 only requires O(Kn)
operations and so each step of LADMM takes ©(Kn). It is
also important to note that the w—update parallelizes across
individual substrings s € S and that the z and 6—updates,
as well as multiplication by X or X7, all parallelize across
individual documents.

4.2.4 Parameter Tuning

Linearized ADMM relies critically on the parameters p and
p to converge. Roughly speaking, 1 controls how far w de-
viates from w and therefore depends on how well ||Aw —z||3
is approximated linearly. On the other hand, p controls how
much each w—update focuses on minimizing 4 versus sat-
isfying the reconstruction constraints and has a significant
impact on the number of steps necessary for convergence.

Selecting ;v It can be shown [13] that linearized ADMM
converges if u > p||X % with convergence being fastest
when equality holds. The following theorem shows how
to select u for our problem.

Theorem 1. A tight upper bound for || X||3 is given by
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Proof. We assume that N documents are compressed
jointly so that n = Zf\;l n;. We show in the supplementary
material that XX7 is an n x n block diagonal matrix with
block BU) € 7" corresponding to document i and hence

plementary material also shows that the first and last K — 1
rows of B{) have row sum less than o and that the subma-
trix formed by deleting these rows is Toeplitz with row sum
equal to o. Thus, GerSgorin’s disc theorem [18] gives the
bound v; < 0.

To show that this bound is tight, we consider what happens
to ~; as n; increases. Application of a standard result from
eigenvalue perturbation theory [4] reveals that

2K -2

n;

g

N

i = o] < || 77871~ 1H2 <

and so y; approaches o when n; is large relative to K. [

Tuning p Selecting p remains an open problem for gen-
eral ADMM [2] and we found that, for our problem, con-
vergence is fastest when p starts small and is aggressively
increased based upon the progress of the algorithm. Focus-
ing only on variables for the convex part of (4), we measure
convergence based on the quantities

(7

r=[Xw—zlle u=|z—2[

where 7 is the previous value of z. We start with p = 1/K
and update p = 1.5p if the average value of r/u over the last
15 iterations is greater than 5 and p has not been updated in
as many iterations. Compared to traditional schemes which
increase/decrease p if max(%, ‘;‘) > 10, ours is more ag-
gressive but also utilizes a smoother estimate. Finally, our
scheme only increases p because it starts out small and, for
our problem, erroneously decreasing p slows convergence

considerably.

4.3 Comparison with Iterative Reweighting

The IR algorithm in [14] uses an IB scheme where f;(x) is
a weighted linear relaxation of (1), with the state variable
¢ € R} providing weights for each pointer’s indicator vari-
able. It uses ADMM to solve each relaxation and requires
O(K?n) operations per ADMM step. The brunt of the work
is spent projecting the current solution to satisfy the recon-
struction constraint Xw > 1. As ADMM progresses, the
algorithm keeps track of the projection which achieves the
lowest storage cost when all non-zero entries are set to 1.
This “best projection” is used to calculate the weights for
the next weighted problem.

Our homotopic algorithm was designed to address several
drawbacks of the IR algorithm. The latter uses a simple
rounding scheme — it simply sets all non-zero entries to O
— and does not achieve a reasonable binary solution, i.e. a
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compression without redundant pointers, until it has nearly
converged. In contrast, setting the homotopy parameter to
1 in our homotopic method immediately starts generating
binary solutions that have no redundant pointers because of
the encoding algorithm.

More fundamentally, each ADMM step of the IR algorithm
is slower than the homotopic scheme’s because of the pro-
jection step, a procedure that the IR binarization scheme
critically relies on. Indeed tracking is necessary because
the “’best projection” rarely corresponds to the continuous
minimizer of each weighted relaxation and using this point
to calculate weights leads to poor binary solutions. Thus,
even though our fast LADMM algorithm solves the linear
relaxation of (1) when the homotopy parameter is 0, it is
not useful for the IR scheme because its solution does not
satisfy the reconstruction constraint until convergence, so
each step would require the expensive ©(K?n) projection.

5 Experiments

This section demonstrates the performance of our algo-
rithm and CFL on the BeerAdvocate dataset [12], a doc-
ument corpus consisting of 1,586,088 beer reviews from
33,387 users over 10 years. These reviews require over 1
gigabyte of memory to store in plaintext. Included with
each review is a tag identifying its author; individual rat-
ings (between 0 and 5) of the beer’s appearance, aroma,
palate, taste, and overall performance; and a timestamp.

5.1 Predictive Tasks

We compute a bag of trigrams * representation for each
review by running our algorithm on the entire dataset with
K =3 and counting pointer frequencies as described in Sec-
tion 2. We set each K—gram’s dictionary storage cost to be
its word length (between 1 and 3) and use a constant pointer
cost of \. Finally, we vary A over a grid of 10 values rang-
ing from 0.01 to 3; Figure 2 shows the fraction of point-
ers that correspond to unigrams, bigrams, and trigrams for
each \. There are 45,408,597 distinct features in the full
trigram space and CFL produces a feature space two orders
of magnitude smaller.

We use the following criteria when running our algorithm.
The ADMM parameters p and p are tuned as outlined in
Section 4.2.4. We increase ¢ by increments of 0.1 when-
ever both convergence parameters in (7) are below p10~3
or more than 150 steps have gone by since increasing (.
However, when ¢ = 0, we always wait until the parame-
ters in (7) reach our threshold so that the linear program
is solved to reasonable accuracy. This configuration yields
a reasonable balance between running time and finding a

3The original dataset has 1,586,259 reviews but we threw
away all reviews containing fewer than 10 words.
4Recall that this includes unigrams and bigrams.
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good local optimum: each value of A takes about 10 hours
to compute. It is worth noting that the relative duality gap,
the ratio of the objective values of the binary and relaxed
solutions, was always less than 1.01 which indicates that
the algorithm is finding a good local optimum.

5.1.1 Author Identification

Our first task uses the author tags associated with each re-
view as labels for an author identification task. We only
allow authors with 10 or more reviews to participate, leav-
ing 10,702 users. Three posts are randomly selected from
each author and set aside as a testing set; the remainder are
used for training. The reviews in this testing set are further
split by selecting 1,000 authors to act as a validation set
that we use to tune the pointer cost \.

This author identification task is a difficult multiclass clas-
sification problem with 10,702 classes: a random baseline
achieves 0.009% accuracy. There are so many classes that
both, glmnet [7] and liblinear [5], fail because of mem-
ory issues. We therefore use a simple 1-Nearest Neigh-
bor classifier that represents each author as the centroid of
his/her posts. An unknown author is classified by averaging
the three samples of his/her writing and finding the nearest
centroid. We use the validation set to select among our 10
compressed feature representations and normalize all fea-
tures by their inverse document frequency.

Table 1 shows the testing accuracy of this approach when
reviews are represented by their unigrams, (full) trigrams
>, and compressed features. CFL achieves nearly twice the
accuracy of the unigram model, and the full trigram model
performs the worst because it is inundated with spurious
features. In addition, Figure 3 plots the testing and vali-
dation set accuracies for the CFL features as a function of
A. We also include unigrams in this graph since they cor-
respond to A = 0. The curve shows a clear preference for
A =1 and its shape is akin to the regularization paths ob-
tained from L, /L, regularization. A possible explanation
for this is that as A increases, CFL favors larger K—grams
that are more likely to be specific to (related) sets of docu-
ments when compared to their constituent unigrams. How-
ever, when A is too large, CFL uses too many infrequent
trigrams and documents become nearly incomparable be-
cause they have few features in common.

Table 1: Testing Accuracy on Author Identification Task

Baseline Unigrams Trigrams Compressed

0.009% 7.85% 7.13 % 15.1 %

SThis representation took over 12 hours to test.
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Figure 3: Testing and validation set accuracies of CFL
features on author identification task as a function of the
pointer cost. Unigrams correspond to A = 0.

5.1.2 Rating and ABV Prediction

We also use the BeerAdvocate dataset to predict a beer’s
ABV and rating (along various criteria) from the text of
its review. We treat all tasks as regression problems al-
though ratings are always between O and 5. Reviews are
randomly split into testing, training, and validation sets of
sizes 500,000; 986,259; and 100,000, respectively, and the
same splits are used for all tasks. We use glmnet to train an
Elastic Net [7] on the training data and select all regular-
ization parameters and the pointer cost for CFL through a
grid search on the validation set. Table 2 compares using
unigram or CFL features with a simple baseline that uses
the mean of its training labels as a prediction. Text features
clearly improve upon the baseline and CFL features outper-
form unigrams slightly, reducing the testing error between
4-8%.

Table 2: MSE when Predicting Rating or ABV

Task Baseline Unigrams Compressed
Overall 0.52 0.29 0.268
Appearance 0.379 0.233 0.221
Aroma 0.486 0.264 0.252

Palate 0.467 0.263 0.25

Taste 0.536 0.261 0.24

ABV 5.393 2.397 2.294

5.2 Performance

We compare the performance of our algorithm to the IR
scheme of [14] when used to compress subsets of the Beer-
Advocate, 20 Newsgroups [15], and IMDb [11] datasets.
All experiments are done on the same desktop computer®

®Intel Core 1970 processor with 24GB of RAM
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with both algorithms coded in C. The code for the IR algo-
rithm is the original used in [14].

Table 3 shows the running times of both algorithms when
used to find K = 3 and K = 5 grams. In all cases the algo-
rithms found comparable solutions with similar objective
values that were between 1.005 and 1.008 times larger than
the lower bounds given by the solutions of the continuous
relaxations. The homotopic procedure is consistently faster
than the IR algorithm.

Table 3: Time Trials for Homotopic (H) and IR Algorithms

Dataset Homotopy (s) IR (s)
Beer K =3 277 638
Beer K =5 455 766
20 News K =3 70 201
20 News K =5 109 331
IMDb K =3 119 518
IMDbK =5 208 575

Figure 4 shows the performance of both algorithms in more
detail on the BeerAdvocate dataset with K = 3. It plots the
CFL objective value as a function of time for both algo-
rithms and compares them to a lower bound provided by
CFL’s convex relaxation. Since neither algorithm is mono-
tonic, we track the objective value of the current and best
binary solutions. The circles mark the starting and end-
ing points for both algorithms (IR’s starting value runs off
the y—axis) and both algorithms converge to an optimum
that is 1.006 times larger than the relaxation. For refer-
ence, our algorithm requires 1748 iterations until conver-
gence whereas IR necessitates 1729 steps for 8 rounds of
reweighting. The ”X” marks the point at which our algo-
rithm has solved the LP relaxation to sufficient accuracy
and starts increasing (. This transitions occurs at iteration
546 and shows that steps when ¢ > 0 are approximately
twice as expensive as steps when ¢ = 0 — this is expected
because we must encode the document corpus at every step
where ¢ > 0. Nonetheless, our algorithm is twice as fast as
the IR method.

Figure 4 depicts the large fluctuations the IR algorithm ex-
hibits at the beginning of every reweighting round. IR re-
lies critically on solution tracking to provide good weights
for each round; poorly chosen weights cause the fluctua-
tions to increase and prevent convergence. The graph also
demonstrates how long the IR algorithm takes to find a rea-
sonable binary solution. Its method for rounding a contin-
uous solution sets all non—zero indicators to 1 and tends
to create many redundant pointers. In contrast, our homo-
topic scheme relies on the encoding algorithm to round its
solutions so it never creates redundant pointers. Our algo-
rithm finds a good approximate solution in several seconds
and refines it thereafter; it takes the IR algorithm over 350
seconds to find a comparable solution.
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Figure 4: Performance trial comparing our homotopic
method to the IR scheme of [14]. The red line denotes a
lower bound for the objective. Circles indicate the start-
ing/stopping points of the algorithms and the ”X” marks
the point at which we increase ¢ from 0.

6 Conclusion

Feature selection is an essential problem in large and
small-scale learning problems alike. The Compressive
Feature Learning (CFL) framework offers a promising
method for selecting a K—gram representation from a text
corpus using compression. We provide a fast algorithm that
allows this framework to handle large datasets comprised
of millions of documents. While we prove that CFL is NP—
Complete, we show that its related operations of decoding
and encoding a document once the dictionary is fixed can
be done in linear time. Our fast algorithm is based on a
new homotopic scheme that finds an approximate solution
for CFL by solving a sequence of interrelated problems.
This homotopy produces a path of solutions that starts at
the continuous minimizer of CFL and ends at a high qual-
ity binary solution nearby. The linear time encoding proce-
dure plays an important role in this approximation scheme
as it drives the homotopy and provides an effective way to
round continuous solutions. We use the linearized ADMM
framework to solve our homotopy efficiently and require
O(Kn) operations per ADMM step. Finally, we use our al-
gorithm to extract features from the BeerAdvocate dataset,
a large corpus of text comprised of 1.5 million documents.
The features CFL finds allow us to experiment with a va-
riety of learning tasks and achieve nearly twice the accu-
racy of unigrams on a large author identification problem.
This dataset also showcases the speed of our algorithm as
it provides a significant performance improvement over the
iterative reweighting scheme of [14] and finds solutions of
similar quality.
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