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Abstract

We describe how a deterministic Gaussian
posterior approximation can be constructed
using expectation propagation (EP) for mod-
els, where the likelihood function depends on
an inner product of two multivariate random
variables. The family of applicable models
includes a wide variety of important linear
latent variable models used in statistical ma-
chine learning, such as principal component
and factor analysis, their linear extensions,
and errors-in-variables regression. The EP
computations are facilitated by an integral
transformation of the Dirac delta function,
which allows transforming the multidimen-
sional integrals over the two multivariate ran-
dom variables into an analytically tractable
form up to one-dimensional analytically in-
tractable integrals that can be efficiently
computed numerically. We study the result-
ing posterior approximations in sparse prin-
cipal component analysis with Gaussian and
probit likelihoods. Comparisons to Gibbs
sampling and variational inference are pre-
sented.

1 INTRODUCTION

Probability models that contain an inner product of
two multivariate random variables are an essential
building block of a wide variety of models in prob-
abilistic data analysis and machine learning. Such
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models include linear latent variable models: principal
component [1], factor and canonical correlation anal-
ysis [2], which form an important model family, for
example, for analysis of high-dimensional data. Ex-
tensions of these models have also been applied for
biclustering [3], imputation [4] and multi-task learn-
ing [5], among others. A perhaps underutilized family
of models, linear regression models with uncertainty
in the predictors (e.g., measurement error, misclassifi-
cation or missingness) [6] fall also into this category.
More generally, here we consider models, where a like-
lihood term for the ith observation of the jth variable
yij can be written as p(yij |wT

j xi, θij), wherewj and xi
are two multivariate random variables and θij a possi-
ble further parameter of the model. The approach can
be extended to cases, where yij is not observed, but is
a parameter of the model.

A strength of linear models is their interpretability.
Following this, Bayesian sparse versions and other ex-
tensions of linear latent variable models are currently
a much researched topic as they are well suited for
analysis of datasets with a limited number of samples
but a large number of variables. A challenge to the
application of these models is computation of the an-
alytically intractable posterior distribution. Markov
chain Monte Carlo (MCMC) sampling is often ap-
plied, but the convergence can be slow with problems
caused by multimodality arising from symmetries in
the model structure and the sparsity-promoting pri-
ors. Already assessing the convergence can be diffi-
cult. Furthermore, non-Gaussian observation models
and non-conjugate priors for model parameters often
require elaborate sampling algorithms.

Many variational Bayes (VB) approaches have been
proposed to facilitate the inference with the linear la-
tent variable models in the particular setting of this
work (e.g., [2, 4, 7–9]). As an alternative to VB, expec-
tation propagation (EP) [10, 11] has been found to pro-
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vide accurate posterior approximations in sparse lin-
ear models [12–16] and in applications to non-Gaussian
observation models [10, 17, 18]. Rattray et al. [19] have
proposed a hybrid message passing framework (VB-
EP), where a mean-field variational Bayes approxima-
tion is formed for the likelihood terms dependent on
the inner products wT

j xi and EP is used to approx-
imate sparsity-promoting spike and slab prior terms.
The factorized mean-field assumption between wj and
xi results in tractable and computationally convenient
update formulas for the approximate posterior in the
VB setting, but to our knowledge, no computation-
ally efficient EP approximations have been proposed
for the likelihood terms.

The main contribution of this work is to describe how
a deterministic Gaussian posterior approximation can
be constructed using EP for models, where the likeli-
hood terms depend on the inner products wT

j xi. The
challenge in forming an efficient EP algorithm is that
it requires computing analytically intractable multidi-
mensional integrals over probability distributions that
depend on xi and wj . We utilize a transformation
of the Dirac delta function to transform the integrals
into one-dimensional problems that can be solved ef-
ficiently using numerical integration. The presented
experiments demonstrate that EP can provide signif-
icantly more accurate estimates compared to VB in
some cases. A transformation of the Dirac delta func-
tion was also recently applied by Challis and Barber
[20] in variational inference for non-conjugate models,
but for a different purpose.

This article is structured as follows. In Section 2, the
EP algorithm as applied in this work is introduced.
In Section 3, the details of the EP computation are
then presented. We also briefly describe some essential
implementation issues. In Section 4, the proposed ap-
proach is applied in sparse principal component analy-
sis with Gaussian and probit likelihoods. Comparisons
to a message passing algorithm, VB and MCMC are
presented.

1.1 Notation

We write column vectors as bold face lower-case sym-
bols and matrices as bold face upper-case symbols.
xT is the transpose of x. I is the identity ma-
trix. p(a|b) is an unspecified density or mass func-
tion for the random variable a given the parameter b.
N(a|b,C−1) = |2πC−1|− 1

2 exp(− 1
2 (a − b)TC(a − b))

is a Gaussian density with the mean b and preci-
sion matrix C, where | · | denotes the determinant.
t(a|d,C) = exp(− 1

2a
TCa+aTd) ∝ N(a|C−1d,C−1)

is an unnormalized Gaussian density for a with the
precision-adjusted mean d and precision matrix C. ı
is the imaginary unit.

2 EXPECTATION PROPAGATION

This section presents a suitable approximating family
for the linear latent variable models together with a
general EP algorithm for determining the parameters
of the approximation.

2.1 Form of the Models

The posterior distribution for the models considered
here can be written as

p(w,x|y,θ) =
1

Z

∏
j

p(wj)
∏
i

p(xi)
∏
i,j

p(yij |wT
j xi, θj),

(1)
where w is the collection of K-dimensional coefficient
vectors wj with j = 1, . . . ,m, x is the collection of K-
dimensional latent variable vectors xi, i = 1, . . . , n, y
is the collection of observations yij for n samples and
m variables. θ are possible parameters of the observa-
tion model (e.g., residual variance), which are for now
assumed given. Z is the normalization constant.

2.2 Form of the Approximation

The EP approximation has approximate terms for each
of the factors in Equation 1. For example, p(wj) is

replaced by the site term tj(wj |µ̃w,j , Γ̃w,j) in the ap-
proximation. The full EP approximation is written as

q(w,x) =
∏
j

N(wj |mw,j ,Γ
−1
w,j)

∏
i

N(xi|mx,i,Γ
−1
x,i),

where the factor for wj decomposes as

N(wj |mw,j ,Γ
−1
w,j) ∝ tj(wj |µ̃w,j , Γ̃w,j)

∏
i

tij(wj |µ̃w,ij , Γ̃w,ij)

for j = 1, . . . ,m. Consequently,

Γw,j = Γ̃w,j +
∑
i

Γ̃w,ij

mw,j = Γ−1w,j(µ̃w,j +
∑
i

µ̃w,ij).

The equations for xi are similar.

The EP algorithm is used to determine the parame-
ters µ̃ and Γ̃ of the site terms and, thus, of the full
approximation.

2.3 EP Algorithm

The EP algorithm iteratively refines the approxima-
tion by minimizing the Kullback–Leibler divergence
between a tilted distribution and the approximation,
which can be shown to correspond to matching their
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moments for approximating distributions in the expo-
nential family. The tilted distribution is formed by
replacing a single site term of the approximation with
the corresponding term in the posterior distribution.
The EP algorithm cycles through the site term updates
until convergence.

An update of a single site term can be divided into
three steps: 1) removal of the site term from the ap-
proximation, which results in a cavity distribution, 2)
computation of the moments of the tilted distribution
(cavity times the corresponding factor of the poste-
rior), and 3) update of the site term parameters. The
individual steps are described below for the likelihood
term updates, with details of the moment matching
given in the next section. The overall EP scheme used
in this work is a form of the parallel EP algorithm
(see, e.g., [13]), where multiple site updates are done
in parallel before updating the full approximation, and
is given in Algorithm 1. Prior site updates follow the
same pattern as the likelihood site updates (sites with
the same form in the approximation and the posterior
need not be updated, if initialized appropriately).

Algorithm 1: EP algorithm scheme

initialize site parameters;
compute full approximation;
repeat

for i← 1 to n and j ← 1 to m do
update ijth likelihood site term:
1) compute cavity;
2) compute tilted distribution moments;
3) update site parameters;

end
compute full approximation;
update prior site terms;
compute full approximation;

until convergence;

1) Cavity distribution The cavity distribution q\ij

for the likelihood term p(yij |wT
j xi, θj) is formed as

q\ij(wj ,xi) ∝ q(wj ,xi)tij(wj)−1tij(xi)−1.

As the full approximation factorizes between wj and
xi, so does the cavity distribution. Focusing on wj ,

the cavity q\ij(wj) = N(wj |m\ijw,ij , (Γ
\ij
w,ij)

−1) as it is
formed as a division of two unnormalized Gaussian
densities. The parameters can be identified as

Γ
\ij
w,ij = Γw,j − Γ̃w,ij

m
\ij
w,ij = (Γ

\ij
w,ij)

−1(Γw,jmw,j − µ̃w,ij).

Form and parameters of q\ij(xi) are found similarly.
The joint cavity q\ij(wj ,xi) is thus a Gaussian distri-
bution.

2) Moments of the tilted distribution The tilted
distribution is

p̂(wj ,xi) ∝ p(yij |wT
j xi, θj)q

\ij(wj ,xi).

Computation of the moments, that is the means and
the covariance matrices

m̂w,ij = Ep̂[wj ]

m̂x,ij = Ep̂[xi]

Γ̂−1w,ij = Ep̂[(wj − m̂w,ij)(wj − m̂w,ij)
T]

Γ̂−1x,ij = Ep̂[(xi − m̂x,ij)(xi − m̂x,ij)
T]

(2)

required for the EP approximation update seems an-
alytically intractable even for a Gaussian likelihood.
We show in the next section how the required 2K-
dimensional integrals can be evaluated using only one-
dimensional numerical integrals.

3) Site parameter updates The site parameters of
the site terms corresponding to the likelihood term are
updated such that the moments of the approximation
and the tilted distribution match. This can be seen
as a reversion of the cavity computation (now with
the approximation q having the moments of the tilted
distribution) and leads to the updates:

Γ̃w,ij = Γ̂w,ij − Γ
\ij
w,ij

µ̃w,ij = Γ̂w,ijm̂w,ij − Γ
\ij
w,ijm

\ij
w,ij

and similarly for the xi part.

We use two stabilizing procedures in the site param-
eter updates. First, the site precision matrix updates
are restricted to produce positive definite matrices (see
[10] for discussion of site precision restrictions). This
is effected, when needed, by modifying the tilted dis-
tribution precision matrix such that the eigenvalues of
the new site precision matrix remain positive, and car-
rying out the site update with this modified precision
matrix so that the exact mean of the tilted distribution
is preserved in the update. Second, the parameter up-
dates are damped, that is, the parameters are updated
to a convex combination of the old and new value [21].

3 MOMENTS OF TILTED
DISTRIBUTIONS DEPENDING
ON AN INNER PRODUCT OF
RANDOM VARIABLES

Computation of the tilted distribution moments in
Equation 2 seems intractable already for a Gaussian
likelihood p(yij |wT

j xi, θj), because of the inner prod-
uct. Our proposal is to use an integral transforma-
tion of the Dirac delta function δ(ξ) = 1

2π

∫
exp(ıtξ)dt
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[22, p. 37–38] to rewrite the integrals. For example,
for the normalization of the tilted distribution (where
φ = (wj ,xi) to shorten the notation):∫

p(yij |wT
j xi, θj)q

\ij(φ)dφ

=

∫∫
p(yij |f, θj)δ(f −wT

j xi)dfq
\ij(φ)dφ

=

∫∫
p(yij |f, θj)

1

2π

∫
exp(ıt(f −wT

j xi))dtdfq
\ij(φ)dφ

=
1

2π

∫∫
p(yij |f, θj) exp(ıtf)df

×
∫

exp(−ıtwT
j xi))q

\ij(φ)dφdt

=
1

2π

∫∫
L(t, f)df

∫
C(t,φ)dφdt,

(3)
where L(t, f) is the integrand over f and C(t,φ) =
C(t,wj ,xi) is the integrand over (wj ,xi). We note
that the change of integration order is not always valid
and deal with such a case below for probit likelihood.
Extended derivations of Equation 3 and the following
moment integrals are given in the supplementary ma-
terial.

On studying the 2K-dimensional integral∫
C(t,wj ,xi)d(wj ,xi) the integrand can be seen

to be of unnormalized Gaussian form, with complex-
valued mean and covariance. In particular, the
mean and covariance for the concatenated variable
[wT

j x
T
i ]T are[

m̄w

m̄x

]
=

[
Γ
\ij
x,ijΓ

\ij
w,ijΣ

T(m
\ij
w,ij − ıt(Γ

\ij
w,ij)

−1m
\ij
x,ij)

Γ
\ij
w,ijΓ

\ij
x,ijΣ(m

\ij
x,ij − ıt(Γ

\ij
x,ij)

−1m
\ij
w,ij)

]
,

(4)

where Σ = (Γ
\ij
w,ijΓ

\ij
x,ij + t2I)−1, and

V̄ =

[
Γ
\ij
w,ij ıtI

ıtI Γ
\ij
x,ij

]−1
. (5)

While not perhaps immediately clear, such Gaussian
integral can be computed analytically when the real
part of V̄ is positive definite and behaves similarly
to the common real-valued version [23, p. 10]. With
this result, the normalization constant of the Gaussian
form C(t,wj ,xi) can be seen to be

D(t) = (|Γ\ijw,ij ||Γ
\ij
x,ij ||V̄ |)

1
2 exp(−1

2
d(t)),

where

d(t) = t2((m
\ij
w,ij)

TΣΓ
\ij
w,ijm

\ij
w,ij

+ (m
\ij
x,ij)

TΣTΓ
\ij
x,ijm

\ij
x,ij)

+ 2ıt(m
\ij
w,ij)

TΣΓ
\ij
w,ijΓ

\ij
x,ijm

\ij
x,ij ,

and the mean and covariance are given in Equations 4
and 5. Note that m̄w, m̄x, V̄ and Σ are functions of
t, although we don’t explicitly write the dependency.

Assuming L(t, f) can be integrated over f either ana-
lytically or numerically, we are left with integration
over t in Equation 3, which seems analytically in-
tractable. However, since the problem has been re-
duced from 2K-dimensional integration to only one-
dimensional, it can now be efficiently implemented
numerically. Computing the normalization constant
Ẑ = 1

2π

∫
L(t)D(t)dt of the tilted distribution requires

evaluation of one one-dimensional integral. The mean
m̂w,ij is evaluated as 1

2π
1
Ẑ

∫
m̄wL(t)D(t)dt and re-

quires K one-dimensional integrals. m̂x,ij is com-

puted similarly. The covariance Γ̂−1w,ij can be evaluated

as 1
2π

1
Ẑ

∫
(m̄wm̄

T
w + Γ

\ij
x,ijΣ)L(t)D(t)dt − m̂w,ijm̂

T
w,ij

and requires K(K+1)
2 one-dimensional integrals. Γ̂−1x,ij

is computed similarly.

In total, one iteration of the EP algorithm requires
evaluating O(nmK2) one-dimensional numerical inte-
grals. To decrease the computational burden, one can
consider restricting the site precision matrices Γ̃w,ij
and Γ̃x,ij to diagonal. Only the diagonal elements of
the tilted distribution covariance matrices would then
be needed for the site updates, which would require
in total only 2K one-dimensional integrals for the co-
variances in one likelihood site update and O(nmK)
integrals for one EP iteration. However, we did not
test this in the current work.

3.1 Gaussian Likelihood

For the Gaussian likelihood p(yij |f) = N(yij |f, θj),
L(t, f) = N(yij |f, θj) exp(ıtf) and integration over f
gives L(t) ∝ exp(yijıt− 1

2θjt
2).

3.2 Probit Likelihood

For the probit likelihood p(yij |f) = Φ(yijf), where
Φ is the cumulative distribution function of the stan-
dard normal distribution and yij ∈ {−1,+1}, the
integration of L(t, f) = Φ(yijf) exp(ıtf) over f di-
verges. Our proposed solution is to add the term
exp(s(wT

j xi − wT
j xi)) to the tilted distribution and

take the part exp(−sf) to the L(t, f) integral, leav-
ing exp(swT

j xi) to C(t,wj ,xi) when using the Dirac
delta trick. Choosing s > 0 for yij = +1 and s < 0 for
yij = −1 makes the integral of L(t, f) over f conver-
gent, giving L(t) ∝ yij

s−ıt exp(− 1
2 (t2 + 2stı)). Addition-

ally, s needs to be selected such that the real part of
V̄ is positive definite for the integration of C(t,wj ,xi)
over (wj ,xi).
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3.3 Other Likelihoods

Generally, a likelihood function p(yij |f, θ) may require
numerical integration of the corresponding L(t, f) over
f . Furthermore, θ can also be assumed unknown and
given a prior distribution. The EP algorithm can then
be extended to approximate the posterior of θ (see
[24]). In this case L = L(t, f, θ) depends also on θ
and the moments of the tilted distribution with regard
to θ need to be computed. In general, this requires
numerical integration, but in some cases a convenient
representation of Ll(t) =

∫
θlL(t, f, θ)dfdθ, for l =

0, 1, 2, may be available.

3.4 Implementation Details

We note some implementation details here. Firstly, as
the determinant |V̄ | = |Σ−1|−1 is a function of t, we
need to be able to compute it efficiently for various

values of t. The eigendecomposition of Γ
\ij
w,ijΓ

\ij
x,ij (the

eigenvalues and -vectors of which can be shown to be

real-valued and the eigenvalues positive, when Γ
\ij
w,ij

and Γ
\ij
x,ij are positive definitive) can be used for this.

The value of the determinant at t is the inverse of the
product of the eigenvalues λl, which have been shifted
by t2:

∏
l(λl+t

2)−1. The eigendecomposition can also
be used in other computations involving Σ.

Secondly, the real part of the integrand in the tilted
distribution moments can be seen to be an even func-
tion of t. Thus, the numerical integration can be per-
formed from 0 to ∞ instead of the full real axis. Sim-
ilarly, the imaginary part can be seen to be an odd
function of t and will always vanish.

We implement the numerical integration over t using
Simpson’s composite rule. Some care is needed in the
selection of the number of evaluation points as the in-
tegrand can be oscillatory. Writing the integrand for
the computation of the normalization constant Ẑ as
exp(a(t)+ ıb(t)), one can see using the Euler’s formula
that a(t) defines the decay of the integrand as t in-
creases and b(t) defines the oscillatory behavior. We
use second order Taylor expansions of a(t) and b(t)
around t = 0 to efficiently determine a suitable end
point of the integration and the number of required
evaluation points.

4 EXPERIMENTS

In this section, we study the accuracy of the EP ap-
proximation in sparse principal component analysis
(SPCA) models with Gaussian and probit likelihoods
and compare to alternative inference methods.

4.1 Sparse PCA – Gaussian Likelihood

The SPCA model with Gaussian likelihood is

p(yij |wT
j xi) = N(yij |wT

j xi, 1)

p(xik) = N(xik|0, 1)

p(wjk|τ2, γjk) = N(wjk|0, τ2)γjkδ(wjk)1−γjk

p(γjk|ω) = Bernoulli(γjk|ω),

(6)

where i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . ,K for
n samples, m observed variables, and K latent vari-
ables. The binary parameter γjk indicates whether
wjk is allowed to be non-zero, with the prior prob-
ability ω governing the sparsity. For simplicity, the
residual variance and the prior parameters τ2 and ω
are here assumed given.

Following Sharp and Rattray [25] we generate 50 repli-
cate datasets from the SPCA model in each of the
four configurations: n = 200, K = 1, ω = 0.1, m =
800, 1000, 1333, 2000 with τ2 = 0.125, 0.1, 0.075, 0.05
respectively. Data generation was done using the Mat-
lab code of Sharp and Rattray [25]1.

We compare four inference methods for the model: 1)
EP as proposed here, 2) VB-EP hybrid [19], where
the likelihood terms are updated using a mean-field
variational Bayes algorithm and the prior using EP,
3) dense message passing (DMP) [25] and 4) collapsed
Gibbs sampling [19]. EP updates for the sparse prior
of wj can be found in [15, 19]. Matlab code of Sharp
and Rattray [25] was used for DMP1. Gibbs sampling
was run for 10000 iterations, of which 1000 were dis-
carded as burn-in. It was initialized using the VB-EP
hybrid. PCA was used to initialize the other methods.
Each computation method was run for seven different
settings of the prior parameter ω (while τ2 was set to
its true value).

Assuming Gibbs sampling provides the best character-
ization of the posterior distribution, the deterministic
approximations are compared against it using three
statistics: mean squared error (w.r.t. the Gibbs result)
in the posterior mean of w and x, denoted MSE(w)
and MSE(x), respectively, and mean absolute error in
the posterior probabilities p(γ = 1), MAE(p(γ = 1)).
We also compare the area under the ROC-curve (AUC)
for the identification of true non-zero wj and the co-
sine angle ρ between the true, data generating w and
its posterior mean estimate. The latter is suggested by
Rattray et al. [19], Sharp and Rattray [25] and they
also provide formulas and code1 for computing the the-
oretical optimal performance with regard to it. Robust
statistics (median, quartiles) are used to summarize
the results over the 50 replicate datasets to diminish
the effect of possible occasional poor convergence.

1Available at http://www.cs.man.ac.uk/~sharpk/.
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Figure 1: Boxplot of MSE(w) over the 50 replicate
datasets with m = 2000 for Gaussian SPCA.

Table 1: Performance statistics over the 50 replicate
datasets for Gaussian SPCA for m = 2000 and ω =
0.1. IQR is the inter-quartile range. DMP gives only
posterior mean estimate forw and statistics depending
on other parameters are not available for it.

median IQR
MSE(w) (×10−4)

EP 0.09 0.07 – 0.11
VB-EP 0.22 0.19 – 0.24
DMP 0.04 0.02 – 0.09

MSE(x) (×10−2)
EP 0.66 0.51 – 0.80
VB-EP 1.21 1.04 – 1.42

MAE(p(γ = 1)) (×10−2)
EP 0.40 0.34 – 0.47
VB-EP 0.95 0.86 – 1.10

AUC
Gibbs 0.80 0.79 – 0.81
EP 0.80 0.79 – 0.81
VB-EP 0.80 0.79 – 0.81
ρ

Gibbs 0.87 0.86 – 0.89
EP 0.87 0.86 – 0.89
VB-EP 0.87 0.86 – 0.89
DMP 0.87 0.86 – 0.89

Figure 1 shows the MSE(w) form = 2000 as a function
of the prior parameter ω and Table 1 lists the perfor-
mance statistics for m = 2000 and ω = 0.1. The errors
in mean w are practically small, except for DMP when
ω is not set to the data-generating value. This is be-
cause DMP strongly constrains the length of w in the
algorithm according to the prior. The differences be-
tween EP and VB-EP are small, but EP agrees better
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1
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M
S
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(w

)
(×
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−
3
)

m = 2000

EP

VB-EP

Figure 2: Boxplot of MSE(w) over the 50 replicate
datasets with m = 2000 for probit SPCA.

with Gibbs sampling in this case. The same is true for
the MSE(x) and MAE(p(γ) = 1) values presented in
Table 1. There are no differences between the methods
with regard to AUC or ρ. The theoretically optimal
performance with regard to ρ is 0.88, which confirms
that all of the methods perform well in this respect.
Similar conclusions hold for all data-generating values
of m. Boxplots of the statistics in each simulation set-
ting are shown in the supplementary material.

4.2 Sparse PCA – Probit Likelihood

The above analysis was replicated using the same
model (Equation 6), but with the probit likelihood:

p(yij |wT
j xi) = Φ(yijw

T
j xi),

where yij ∈ {−1,+1}. The same datasets were also
used, but the observations were made binary-valued
by a cutoff at zero. Three methods are compared: 1)
EP, 2) VB-EP hybrid and 3) collapsed Gibbs sampling.
The latter two were adapted for probit likelihood using
the auxiliary variable representation of probit [26].

Figure 2 summarizes the MSE(w) for m = 2000 as a
function of the prior parameter ω and Table 2 lists the
performance statistics for m = 2000 and ω = 0.1. The
differences between the Gibbs sampling result and the
deterministic approximations are now mostly larger
than in the Gaussian likelihood case. EP agrees bet-
ter with Gibbs with regard to MSE(w), MSE(x) and
MAE(p(γ = 1)). AUC and ρ show little difference be-
tween the methods. Similar conclusions hold generally
for all the simulation settings (boxplots of the perfor-
mance statistics are presented in the supplementary
material).
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Figure 3: Left panel: Posterior mean of w for the Gibbs sampling (x-axis) and EP and VB-EP (y-axis) for a
dataset with m = 2000 and the prior parameter ω set at 0.1. Middle panel: similar to left panel but showing
posterior probabilities p(γ = 1). Right panel: Marginal posterior histogram and densities of wj for the variable
marked with star in the other panels. Histogram is based on the Gibbs samples, Gibbs N is a normal distribution
with mean and variance taken from the Gibbs samples. Densities are scaled to have the same maximum value.

Table 2: Performance statistics over the 50 replicate
datasets for probit SPCA for m = 2000 and ω = 0.1.

median IQR
MSE(w) (×10−4)

EP 0.07 0.05 – 0.09
VB-EP 2.28 2.01 – 2.59

MSE(x) (×10−2)
EP 0.91 0.79 – 1.11
VB-EP 2.00 1.39 – 2.63

MAE(p(γ = 1)) (×10−2)
EP 0.55 0.48 – 0.60
VB-EP 3.49 3.36 – 3.66

AUC
Gibbs 0.75 0.73 – 0.77
EP 0.75 0.73 – 0.77
VB-EP 0.75 0.73 – 0.77
ρ

Gibbs 0.77 0.73 – 0.80
EP 0.77 0.73 – 0.80
VB-EP 0.74 0.68 – 0.78

The difference between the Gibbs sampling and the de-
terministic approximations can now be seen to be also
of more practical interest. A common case is shown in
Figure 3 for one of the datasets with m = 2000. EP
gives accurate posterior mean estimates of w. How-
ever, VB-EP markedly underestimates wj sizes for
small-sized coefficients. EP is also accurate for the
posterior probabilities p(γ = 1), while VB-EP clearly
pushes the estimates towards extremes. The right-

most panel in Figure 3 shows the marginal posterior
approximations of wj for a variable with p(γj = 1) =
0.29 given by Gibbs sampling (0.28 and 0.10 by EP
and VB-EP, respectively). The VB-EP posterior ap-
proximation is drawn close to the mode at zero, while
EP covers better the whole posterior mass. This kind
of difference in the behavior of EP and VB has been
observed previously (see, e.g., [17, 18]).

We also tested how the inference methods perform,
when the latent dimensionality K is misspecified in
the model. We set K = 5 and ω = 0.02 (i.e., the
true sparsity with the misspecified latent dimension-
ality) and computed the posterior approximations for
the same dataset as analyzed above. Table 3 shows
the number of coefficients with posterior probability
p(γjk = 1) > 0.05 (an arbitrary threshold2) for each
inferred latent dimension k. All of the methods cor-
rectly find that only one latent dimension is active and
shut off the other four dimensions.

We also reproduced the middle panel of Figure 3 using
the first, active latent dimension of the approximations
for the misspecified model. This is shown in Figure 4.
The result is very similar to the one with the correctly
specified model.

2The reason that the threshold produces a lower number
in the first latent dimension for VB-EP than for Gibbs
sampling and EP is that VB-EP underestimates posterior
probabilities at the low end. However, VB-EP is not worse
than EP in separating the true data-generating coefficients
as evidenced by the presented AUC comparisons.
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Table 3: Comparison between the inference methods
of the number of coefficients with posterior probability
p(γjk = 1) > 0.05 for each of the latent dimensions k
for a dataset withm = 2000 and true latent dimension-
ality of 1 and true sparsity ω = 0.1 (i.e., 200 non-zero
data-generating coefficients wjk). The parameters of
the fitted model were K = 5 and ω = 0.02.

k Gibbs EP VB-EP
1 143 141 62
2 3 3 0
3 1 0 1
4 0 0 0
5 2 0 0

5 CONCLUSIONS

In this work, we have shown how expectation propa-
gation can be applied to Bayesian models, where the
likelihood depends on an inner product of two mul-
tivariate random variables. This expands the appli-
cability of EP to a wide variety of important linear
models in statistical machine learning. The presented
experiments show that the EP posterior approxima-
tion can be markedly better than a variational Bayes
approximation in some cases. A trade-off is that the
EP algorithm is slower and requires numerical integra-
tion. However, the algorithm is easily parallelizable.

The sparse principal component analysis is only one
example of a model, where the proposed EP algorithm
is applicable. An important future research direction
is a more extensive and detailed characterization of
the properties of the approximation in different types
of prior models for the parameters w and x and as
a building block in more complex probability models.
Notably, the presented EP algorithm is applicable with
any prior model as long as the posterior distributions
of w and x can be approximated as Gaussian. The
integrals over the auxiliary variable t and the EP up-
date scheme should also be more carefully analyzed to
optimize the speed and stability of the algorithm.

Matlab code implementing the SPCA model using
EP, VB-EP hybrid and Gibbs sampling is available at
http://becs.aalto.fi/en/research/bayes/epwx/.
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dictor subspace models for multitask learning.
In JMLR Workshop and Conference Proceedings:
AISTATS 2010, volume 9, pages 613–620, 2010.

[6] Paul Gustafson. Measurement Error and Mis-
classification in Statistical Epidemiology: Impacts
and Bayesian Adjustments. Interdisciplinary
Statistics Series. Chapman & Hall/CRC, 2004.

776



Tomi Peltola, Pasi Jylänki, Aki Vehtari

[7] Christopher M Bishop. Variational principal com-
ponents. In Proceedings of the Ninth Interna-
tional Conference on Artificial Neural Networks,
ICANN’99, volume 1, pages 509–514, 1999.

[8] Zoubin Ghahramani and Matthew J Beal. Varia-
tional inference for Bayesian mixtures of factor
analysers. In Advances in Neural Information
Processing Systems, volume 12, pages 449–455,
2000.

[9] Hagai Attias. Independent factor analysis. Neural
Computation, 11(4):803–851, 1999.

[10] Thomas Minka. A Family of Algorithms for Ap-
proximate Bayesian Inference. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

[11] Thomas P Minka. Expectation propagation for
approximate Bayesian inference. In Proceedings
of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, pages 362–369, 2001.

[12] Matthias Seeger. Bayesian inference and optimal
design for the sparse linear model. Journal of
Machine Learning Research, 9:759–813, 2008.

[13] Marcel van Gerven, Botond Cseke, Robert Oost-
enveld, and Tom Heskes. Bayesian source local-
ization with the multivariate Laplace prior. In
Advances in Neural Information Processing Sys-
tems, volume 22, pages 1901–1909, 2009.

[14] Marcel van Gerven, Botond Cseke, Floris
de Lange, and Tom Heskes. Efficient Bayesian
multivariate fMRI analysis using a sparsifying
spatio-temporal prior. NeuroImage, 50:150–161,
2010.

[15] Daniel Hernández-Lobato, José M Hernández-
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[18] Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari.
Nested expectation propagation for Gaussian pro-
cess classification with a multinomial probit like-
lihood. Journal of Machine Learning Research,
14:75–109, 2013.

[19] Magnus Rattray, Oliver Stegle, Kevin Sharp, and
John Winn. Inference algorithms and learning

theory for Bayesian sparse factor analysis. Jour-
nal of Physics: Conference Series, 197(1), 2009.

[20] Edward Challis and David Barber. Affine in-
dependent variational inference. In Advances
in Neural Information Processing Systems, vol-
ume 25, pages 2195–2203. 2012.

[21] Thomas Minka and John Lafferty. Expectation-
propagation for the generative aspect model. In
Proceedings of the Eighteenth Conference on Un-
certainty in Artificial Intelligence, pages 352–359,
2002.

[22] Frank WJ Olver, Daniel W Lozier, Ronald F
Boisvert, and Charles W Clark. NIST Handbook
of Mathematical Functions. Cambridge Univer-
sity Press, 2010.

[23] Yu A Neretin. Lectures on Gaussian Integral Op-
erators and Classical Groups. European Mathe-
matical Society, 2011.

[24] Pasi Jylänki, Aapo Nummenmaa, and Aki Ve-
htari. Expectation propagation for neural net-
works with sparsity-promoting priors. arXiv
preprint arXiv:1303.6938, 2013.

[25] Kevin Sharp and Magnus Rattray. Dense message
passing for sparse principal component analysis.
In JMLR Workshop and Conference Proceedings:
AISTATS 2010, volume 9, pages 725–732, 2010.

[26] Mark Girolami and Simon Rogers. Varia-
tional Bayesian multinomial probit regression
with Gaussian process priors. Neural Computa-
tion, 18(8):1790–1817, 2006.

777


