
Appendix of “An inclusion optimal algorithm for chain graph
structure learning”

Jose M. Peña Dag Sonntag Jens D. Nielsen
ADIT, IDA, Linköping University

Sweden
ADIT, IDA, Linköping University

Sweden
CLC bio, a Quiagen company

Denmark

APPENDIX A: EXAMPLE RUN

We show below an example run of the operation
Fbsplit(K, L, G) presented in Figure 1 of the main
text. Let G be the CG below, K = {1, 2, 3, 4, 6, 7},
and L = {3, 4, 7}.

1 2

3 4

5

6

7

According to line 1, L1 = {3, 4} and L2 = {7}. After
having executed lines 2-4 for i = 1, G looks like the
CG below.

1 2

3 4

5

6

7

After having executed lines 2-4 for i = 2, G looks like
the CG below.

1 2

3 4

5

6

7

After having executed lines 5-8 for i = 1, G looks like
the CG below. Note that according to line 6, Kj =
{1, 2, 3, 4}.

1 2

3 4

5

6

7

After having executed lines 5-8 for i = 2, G looks like
the CG below. Note that according to line 6, Kj =
{6, 7}.

1 2

3 4

5

6

7

We show below an example run of the operation
Fbmerge(L, R, G) presented in Figure 1 of the main
text. Let G be the CG below, and L = {1, 2, 6}, and
R = {3, 4, 7}.

1 2

3 4

5

6

7

According to line 1, R1 = {3, 4} and R2 = {7}. After
having executed lines 2-4 for i = 1, G looks like the
CG below.

1 2

3 4

5

6

7

After having executed lines 2-4 for i = 2, G looks like
the CG below.

1 2

3 4

5

6

7

Appendix of “An inclusion optimal algorithm for chain graph structure learning”

After having executed lines 5-8 for i = 1, G looks like
the CG below. Note that according to line 6, Lj =
{1, 2}.

1 2

3 4

5

6

7

After having executed lines 5-8 for i = 2, G looks like
the CG below. Note that according to line 6, Lj = {6}.

1 2

3 4

5

6

7

We show below an example run of the operation
Construct β(G, α, β) presented in Figure 2 of the
main text. Let G be the CG below and α =
({1}, {5, 6}, {3, 4}, {2}).

1

2

3

4

5

6

Initially, H = G. In the first iteration of the algorithm,
C = {5, 6}, β = ({5, 6}), and the nodes {5, 6} get re-
moved from H. The algorithm jumps to line 3. In the
second iteration, C = {3, 4}, β = ({3, 4}, {5, 6}), and
the nodes {3, 4} get removed from H. The algorithm
jumps to line 3. In the third iteration, C = {1, 2},
β = ({1, 2}, {3, 4}, {5, 6}), and the nodes {1, 2} get re-
moved from H. The algorithm halts because H = ∅.

We finally show below an example run of the al-
gorithm Method B3(G, α, β) presented in Figure
2 of the main text. Let G be the CG above and
α = ({1}, {5, 6}, {3, 4}, {2}). As shown above, β =
({1, 2}, {3, 4}, {5, 6}) after having executed line 1. In
the first iteration of the algorithm, C = {2}, K =
{1, 2}, G gets modified into the CG below by line 6
with L = {2}

1

2

3

4

5

6

and β = ({1}, {2}, {3, 4}, {5, 6}) by line 7, G does not
get modified by line 10 but β = ({1}, {2, 3, 4}, {5, 6})
by line 11. The algorithm jumps to line 3. In the

second iteration, C = {2}, K = {2, 3, 4}, G does not
get modified by line 6 but β = ({1}, {3, 4}, {2}, {5, 6})
by line 7, G does not get modified by line 10 but
β = ({1}, {3, 4}, {2, 5, 6}) by line 11. The algorithm
jumps to line 3. In the third iteration, C = {2},
K = {2, 5, 6}, G does not get modified by line 6 but
β = ({1}, {3, 4}, {5, 6}, {2}) by line 7. The algorithm
jumps to line 2. In the fourth iteration, C = {3, 4},
K = {3, 4}, G gets modified into the CG below by line
10 with L = {3, 4} and R = {5, 6}

1

2

3

4

5

6

and β = ({1}, {3, 4, 5, 6}, {2}) by line 11. The algo-
rithm jumps to line 3. In the fifth iteration, C = {3, 4},
K = {3, 4, 5, 6}, G gets modified into the CG below by
line 6 with L = {3, 4}

1

2

3

4

5

6

and β = ({1}, {5, 6}, {3, 4}, {2}) by line 7. The algo-
rithm halts because β = α.

APPENDIX B: PROOFS

Lemma 1. Let M denote an independence model, and
α a chain C1, . . . , Cn. If M is a graphoid, then there
exits a unique CG Gα that is a MI map of M relative
to α. Specifically, for each node X of each block Ck of
α, BdGα(X) is the smallest subset B of ∪kj=1Cj \ {X}
s.t. X⊥M ∪kj=1 Cj \ {X} \B|B.1

Proof. Let X and Y denote any two non-adjacent
nodes of Gα. Let k∗ denote the smallest k s.t.
X,Y ∈ ∪kj=1Cj . Assume without loss of general-

ity that X ∈ Ck∗ . Then, X ⊥ M ∪k
∗

j=1 Cj \ {X} \
BdGα(X)|BdGα(X) by construction of Gα and, thus,
X⊥MY | ∪k

∗

j=1 Cj \ {X,Y } by weak union. Then, Gα
satisfies the pairwise block-recursive Markov property
w.r.t. M and, thus, Gα is an I map of M . In fact, Gα
is a MI map of M by construction of BdGα(X).

Assume to the contrary that there exists another CG
Hα that is a MI map of M relative to α. Let X denote
any node s.t. BdGα(X) 6= BdHα(X). Let X ∈ Ck.
Then, X⊥M ∪kj=1 Cj \ {X} \BdGα(X)|BdGα(X) and

X ⊥ M ∪kj=1 Cj \ {X} \ BdHα(X)|BdHα(X) because

Gα and Hα are MI maps of M . Then, X ⊥ M ∪kj=1

1By convention, X⊥M∅| ∪k
j=1 Cj \ {X}.

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

Cj \{X}\BdGα(X)∩BdHα(X)|BdGα(X)∩BdHα(X)
by intersection. However, this contradicts the con-
struction of BdGα(X), because BdGα(X) ∩ BdHα(X)
is smaller than BdGα(X).

Lemma 2. Let G and H denote two CGs s.t. I(H) ⊆
I(G). For any component C of G, there exists a unique
component of H that is maximal in H from the set of
components of H that contain a descendant of C in G.

Proof. By definition of CG, there exists at least one
such component of H. Assume to the contrary that
there exist two such components of H, say K and K ′.
Note that PaH(K) ∩ K ′ = ∅ and PaH(K ′) ∩ K = ∅
by definition of K and K ′. Note also that no node of
K or PaH(K) is a descendant of K ′ in H by defini-
tion of K. This implies that K ′ ⊥ HK ∪ PaH(K) \
PaH(K ′)|PaH(K ′) and, thus, K ⊥ HK

′|PaH(K) ∪
PaH(K ′) by weak union and symmetry.

That K and K ′ contain some descendants k and k′ of
C in G implies that there are descending routes from
C to k and k′ in G s.t. the nodes in the routes are
descendant of C in G. Thus, there is a route between
k and k′ in G s.t. the nodes in the route are descen-
dant of C in G. Note that no node in this route is in
PaH(K) or PaH(K ′) by definition ofK andK ′. Then,
K 6⊥G K ′|PaH(K) ∪ PaH(K ′). However, this contra-
dicts the fact that I(H) ⊆ I(G) because, as shown,
K⊥H K ′|PaH(K) ∪ PaH(K ′).

Lemma 3. Let G and H denote two CGs s.t. I(H) ⊆
I(G). Let α denote a chain that is consistent with H.
If no descendant of a node X in G is to the left of X
in α, then the descendants of X in G are descendant
of X in H too.

Proof. Let D denote the descendants of X in G. Let
C denote the component of G that contains X. Note
that the descendants of C in G are exactly the set D.
Then, there exists a unique component of H that is
maximal in H from the set of components of H that
contain a node from D, by Lemma 2.

Let K denote the component of H that contains X.
Note that K is a component of H that is maximal in H
from the set of components of H that contain a node
from D, since no node of D is to the left of X in α. It
follows from the paragraph above that K is the only
such component of H.

Lemma 4. Let Gα denote the MI map of the inde-
pendence model induced by a CG G relative to a chain
α. Then, Method B3(G, α) returns Gα.

Proof. We start by proving that Method B3 halts at
some point. When Method B3 is done with the right-
most block of α, the rightmost block of β contains all
and only the nodes of the rightmost block of α. When
Method B3 is done with the second rightmost block of
α, the rightmost block of β contains all and only the
nodes of the rightmost block of α, whereas the second
rightmost block of β contains all and only the nodes of
the second rightmost block of α. Continuing with this
reasoning, one can see that when Method B3 is done
with all the blocks of α, β coincides with α and thus
Method B3 halts.

That Method B3 halts at some point implies that it
performs a finite sequence of m modifications to G due
to the fbsplit and fbmerging in lines 6 and 10. Let Gt
denote the CG resulting from the first t modifications
to G, and let G0 = G. Specifically, Method B3 con-
structs Gt+1 from Gt by either

• adding an edge X − Y due to line 3 of Fbsplit or
Fbmerge,

• adding an edge X → Y due to line 4 of Fbsplit or
Fbmerge,

• performing all the component splits due to lines
5-8 of Fbsplit, or

• performing all the component mergings due to
lines 5-8 of Fbmerge.

Note that none of the modifications above introduces
new separation statements. This is trivial to see for
the first and second modification. To see it for the
third and fourth modification, recall that the splits
and the mergings are part of a fbsplit and a fbmerging
respectively and, thus, they are feasible. Therefore,
I(Gt+1) ⊆ I(Gt) for all 0 ≤ t < m and, thus, I(Gm) ⊆
I(G0).

We continue by proving that Gt is consistent with β
for all 0 ≤ t ≤ m. Since this is true for G0 due to line
1, it suffices to prove that if it is true for Gt then it
is true for Gt+1 for all 0 ≤ t < m. We consider the
following four cases.

Case 1 Method B3 constructs Gt+1 from Gt by
adding an edge X − Y due to line 3 of Fbsplit
or Fbmerge. It suffices to note that X and Y are
in the same block of Gt and β.

Case 2 Method B3 constructs Gt+1 from Gt by
adding an edge X → Y due to line 4 of Fbsplit.

Appendix of “An inclusion optimal algorithm for chain graph structure learning”

It suffices to note that X is to the left of Y in β,
because Gt is consistent with β.

Case 3 Method B3 constructs Gt+1 from Gt by
adding an edge X → Y due to line 4 of Fbmerge.
Note that X is to the left of R in β, because β
is consistent with Gt. Then, X is to the left of L
in β, because L is the left neighbor of R in β and
X /∈ L. Then, X is to the left of Y in β, because
Y ∈ L.

Case 4 Method B3 constructs Gt+1 from Gt by either
performing all the component splits due to lines
5-8 of Fbsplit or performing all the component
mergings due to lines 5-8 of Fbmerge. Note that
the splits and the mergings are feasible, since they
are part of a fbsplit and a fbmerging respectively.
Therefore, Gt+1 is a CG. Moreover, note that β
is modified immediately after the fbsplit and the
fbmerging so that it is consistent with Gt+1.

Note that Gm is not only consistent with β but also
with α because, as shown, β coincides with α when
Method B3 halts. In order to prove the lemma, i.e.
that Gm = Gα, all that remains to prove is that
I(Gα) ⊆ I(Gm). To see it, note that Gm = Gα fol-
lows from I(Gα) ⊆ I(Gm), I(Gm) ⊆ I(G0), the fact
that Gm is consistent with α, and the fact that Gα is
the unique MI map of I(G0) relative to α. Recall that
Gα is guaranteed to be unique by Lemma 1, because
I(G0) is a graphoid.

The rest of the proof is devoted to prove that I(Gα) ⊆
I(Gm). Specifically, we prove that if I(Gα) ⊆ I(Gt)
then I(Gα) ⊆ I(Gt+1) for all 0 ≤ t < m. Note that
this implies that I(Gα) ⊆ I(Gm) because I(Gα) ⊆
I(G0) by definition of MI map. First, we prove it
when Method B3 constructs Gt+1 from Gt by either
performing all the component splits due to lines 5-
8 of Fbsplit or performing all the component merg-
ings due to lines 5-8 of Fbmerge. Note that the splits
and the mergings are feasible, since they are part of
a fbsplit and a fbmerging respectively. Therefore,
I(Gt+1) = I(Gt). Thus, I(Gα) ⊆ I(Gt+1) because
I(Gα) ⊆ I(Gt).

Now, we prove that if I(Gα) ⊆ I(Gt) then I(Gα) ⊆
I(Gt+1) when Method B3 constructs Gt+1 from Gt by
adding a directed or undirected edge due to lines 3 and
4 of Fbsplit and Fbmerge. Specifically, we prove that
if there is an S-active route ρABt+1 between two nodes A
and B in Gt+1, then there is an S-active route between
A and B in Gα. We prove this result by induction on
the number of occurrences of the added edge in ρABt+1.
We assume without loss of generality that the added
edge occurs in ρABt+1 as few or fewer times than in any
other S-active route between A and B in Gt+1. We call

this the minimality property of ρABt+1. If the number of
occurrences of the added edge in ρABt+1 is zero, then
ρABt+1 is an S-active route between A and B in Gt too
and, thus, there is an S-active route between A and
B in Gα since I(Gα) ⊆ I(Gt). Assume as induction
hypothesis that the result holds for up to n occurrences
of the added edge in ρABt+1. We now prove it for n + 1
occurrences. We consider the following four cases.

Case 1 Method B3 constructs Gt+1 from Gt by
adding an edge X − Y due to line 3 of Fb-
split. Note that X − Y occurs in ρABt+1.2 Assume
that X − Y occurs in a collider section of ρABt+1.
Note that X and Y must be in the same compo-
nent of Gt for line 3 of Fbsplit to add an edge
X − Y . This component also contains a node
Z that is in S because, otherwise, ρABt+1 would
not be S-active in Gt+1.3 Note that there is a
route X − . . . − Z − . . . − Y in Gt. Then, we
can replace any occurrence of X − Y in a col-
lider section of ρABt+1 with X − . . . − Z − . . . − Y ,
and thus construct an S-active route between A
and B in Gt+1 that violates the minimality prop-
erty of ρABt+1. Since this is a contradiction, X − Y
only occurs in non-collider sections of ρABt+1. Let
ρABt+1 = ρAXt+1 ∪X − Y ∪ ρY Bt+1. Note that X,Y /∈ S
because, otherwise, ρABt+1 would not be S-active in
Gt+1. For the same reason, ρAXt+1 and ρY Bt+1 are S-
active in Gt+1. Then, there are S-active routes
ρAXα and ρY Bα between A and X and between Y
and B in Gα by the induction hypothesis.

Let X − X ′ − . . . − Y ′ − Y be a route in Gt s.t.
the nodes in X ′ − . . . − Y ′ are in L.4 Such a
route must exist for line 3 of Fbsplit to add an
edge X − Y . Note that X and X ′ are adjacent in
Gα since I(Gα) ⊆ I(Gt). In fact, X → X ′ is in
Gα. To see it, recall that Method B3 is currently
considering the block C of α, and that it has pre-
viously considered all the blocks of α to the right
of C in α. Then, K only contains nodes from C
or from blocks to the left of C in α. However,
X /∈ C because X ∈ K \L and L = K ∩C. Then,
X is to the left of C in α. Thus, X → X ′ is in
Gα because X ′ ∈ L ⊆ C. Likewise, Y → Y ′ is in
Gα. Note also that X ′− . . .−Y ′ is in Gα. To see
it, note that the adjacencies in X ′ − . . . − Y ′ are
preserved in Gα since I(Gα) ⊆ I(Gt). Moreover,
these adjacencies correspond to undirected edges
in Gα, because the nodes in X ′ − . . . − Y ′ are in
L and thus in the same block of Gα, since L ⊆ C.
Furthermore, a node in X ′ − . . . − Y ′ is in S be-
cause, otherwise, ρAXt+1∪X−X ′−. . .−Y ′−Y ∪ρY Bt+1

2Note that maybe A = X and/or Y = B.
3Note that maybe Z = X or Z = Y .
4Note that maybe X ′ = Y ′.

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

would be an S-active route between A and B in
Gt+1 that would violate the minimality property
of ρABt+1. Then, ρAXα ∪X → X ′−. . .−Y ′ ← Y ∪ρY Bα
is an S-active route between A and B in Gα.

Case 2 Method B3 constructs Gt+1 from Gt by
adding an edge X → Y due to line 4 of Fb-
split. Note that X → Y occurs in ρABt+1.5 As-
sume that X → Y occurs as a collider edge in
ρABt+1, i.e. X → Y occurs in a subroute of ρABt+1

of the form X → Y − . . . − Z ← W .6 Note that
a node in Y − . . . − Z is in S because, other-
wise, ρABt+1 would not be S-active in Gt+1. Let
X → X ′ − . . .− Y ′ − Y be a route in Gt s.t. the
nodes in X ′−. . .−Y ′ are in L.7 Such a route must
exist for line 4 of Fbsplit to add an edge X → Y .
Then, we can replace X → Y − . . . − Z ← W
with X → X ′ − . . . − Y ′ − Y − . . . − Z ← W
in ρABt+1, and thus construct an S-active route be-
tween A and B in Gt+1 that violates the mini-
mality property of ρABt+1. Since this is a contra-
diction, X → Y never occurs as a collider edge
in ρABt+1. Let ρABt+1 = ρAXt+1 ∪X → Y ∪ ρY Bt+1. Note
that X,Y /∈ S because, otherwise, ρABt+1 would not
be S-active in Gt+1. For the same reason, ρAXt+1

and ρY Bt+1 are S-active in Gt+1. Then, there are
S-active routes ρAXα and ρY Bα between A and X
and between Y and B in Gα by the induction hy-
pothesis.

Let X → X ′ − . . .− Y ′ − Y denote a route in Gt
s.t. the nodes in X ′ − . . . − Y ′ are in L.8 Such
a route must exist for line 4 of Fbsplit to add an
edge X → Y . Note that X ′− . . .−Y ′ is in Gα. To
see it, note that the adjacencies in X ′−. . .−Y ′ are
preserved in Gα since I(Gα) ⊆ I(Gt). Moreover,
these adjacencies correspond to undirected edges
in Gα, because the nodes in X ′ − . . . − Y ′ are in
L and thus in the same block of Gα, since L ⊆
C. Furthermore, a node in X ′ − . . . − Y ′ is in S
because, otherwise, ρAXt+1 ∪ X → X ′ − . . . − Y ′ −
Y ∪ ρY Bt+1 would be an S-active route between A
and B in Gt+1 that would violate the minimality
property of ρABt+1. Moreover, note that X and X ′

are adjacent in Gα since I(Gα) ⊆ I(Gt). In fact,
X → X ′ is in Gα. To see it, recall that Method
B3 is currently considering the block C of α, and
that it has previously considered all the blocks of
α to the right of C in α. Then, no block to the left
of K in β has a node from C or from a block to the
right of C in α. Note that X is to the left of K in
β, because β is consistent with Gt. Thus, X → X ′

5Note that maybe A = X and/or Y = B.
6Note that maybe Y = Z and/or W = X.
7Note that maybe X ′ = Y ′.
8Note that maybe X ′ = Y ′.

is in Gα since X ′ ∈ L ⊆ C. Likewise, note that Y ′

and Y are adjacent in Gα since I(Gα) ⊆ I(Gt).
In fact, Y ′ ← Y is in Gα. To see it, note that K
only contains nodes from C or from blocks to the
left of C in α. However, Y /∈ C because Y ∈ K \L
and L = K ∩ C. Then, Y is to the left of C in
α. Thus, Y ′ ← Y is in Gα because Y ′ ∈ L ⊆ C.
Then, ρAXα ∪X → X ′− . . .− Y ′ ← Y ∪ ρY Bα is an
S-active route between A and B in Gα.

Case 3 Method B3 constructs Gt+1 from Gt by
adding an edge X − Y due to line 3 of Fbmerge.
Note that X−Y occurs in ρABt+1. We consider two
cases.

Case 3.1 Assume that X − Y occurs in a col-
lider section of ρABt+1. Let ρABt+1 = ρAZt+1 ∪ Z →
X ′ − . . . − X − Y − . . . − Y ′ ← W ∪ ρWB

t+1 .9

Note that Z,W /∈ S because, otherwise, ρABt+1

would not be S-active in Gt+1. For the same
reason, ρAZt+1 and ρWB

t+1 are S-active in Gt+1.
Then, there are S-active routes ρAZα and ρWB

α

between A and Z and between W and B in
Gα by the induction hypothesis.

Let Ri denote the component of Gt in R that
Fbmerge is processing when the edge X − Y
gets added. Recall that Method B3 is cur-
rently considering the block C of α, and that
it has previously considered all the blocks of
α to the right of C in α. Then, Ri only con-
tains nodes from C or from blocks to the left
of C in α. In other words, Ri ⊆ ∪k

∗

j=1Cj \
{X,Y } where Ck∗ = C (recall that X,Y ∈
L ⊆ C). Therefore, X 6⊥GtY |∪k

∗

j=1Cj\{X,Y }
because X and Y must be in PaGt(Ri) for
line 3 of Fbmerge to add an edge X − Y .
Then, X and Y are adjacent in Gα because,
otherwise, X⊥GαY | ∪k

∗

j=1 Cj \ {X,Y } which
would contradict that I(Gα) ⊆ I(Gt). In
fact, X −Y is in Gα because X and Y are in
the same block of α, since X,Y ∈ L ⊆ C.

Note that X ′ − . . .−X and Y − . . .− Y ′ are
in Gα. To see it, note that the adjacencies in
X ′ − . . .−X and Y − . . .− Y ′ are preserved
in Gα since I(Gα) ⊆ I(Gt). Moreover, these
adjacencies correspond to undirected edges in
Gα, because the nodes in X ′ − . . . − X and
Y − . . . − Y ′ are in L since X,Y ∈ L and,
thus, they are in the same block of Gα since
L ⊆ C. Then, X ′ − . . . − X − Y − . . . − Y ′
is in Gα. Furthermore, a node in X ′ − . . .−
X − Y − . . .− Y ′ is in S because, otherwise,
ρABt+1 would not be S-active in Gt+1. Note
also that Z and X ′ are adjacent in Gα since

9Note that maybe A = Z, X ′ = X, Y ′ = Y , W = Z
and/or W = B.

Appendix of “An inclusion optimal algorithm for chain graph structure learning”

I(Gα) ⊆ I(Gt). In fact, Z → X ′ is in Gα.
To see it, recall that Method B3 is currently
considering the block C of α, and that it has
previously considered all the blocks of α to
the right of C in α. Then, no block to the left
of L in β has a node from C or from a block
to the right of C in α. Note that Z is to the
left of L in β, because β is consistent with Gt.
Thus, Z → X ′ is in Gα since X ′ ∈ L ⊆ C.
Likewise, Y ′ ←W is inGα. Then, ρAZα ∪Z →
X ′ − . . . −X − Y − . . . − Y ′ ← W ∪ ρWB

α is
an S-active route between A and B in Gα.

Case 3.2 Assume that X − Y occurs in a non-
collider section of ρABt+1. Note that this implies
that Gt has a descending route from X to A
or to a node in S, or from Y to B or to a
node in S. Assume without loss of generality
that Gt has a descending route from Y to B
or to a node in S.

Let Ri denote the component of Gt in R that
Fbmerge is processing when the edge X − Y
gets added. Let LY denote the component of
Gt that contains the node Y . Let D denote
the component of Gα that is maximal in Gα
from the set of components of Gα that con-
tain a descendant of LY in Gt. Recall that
D is guaranteed to be unique by Lemma 2,
because I(Gα) ⊆ I(Gt). We now show that
some d ∈ D is a descendant of Ri in Gt. We
consider four cases.

Case 3.2.1 Assume that D ∩ LY 6= ∅. It
suffices to consider any d ∈ Ri. To see it,
recall that Method B3 is currently con-
sidering the block C of α, and that it has
previously considered all the blocks of α
to the right of C in α. Then, Ri only
contains nodes from C or from blocks to
the left of C in α. Thus, d is not to the
right of the nodes of D ∩ LY in α, since
LY ⊆ L ⊆ C. Moreover, d is not to the
left of the nodes of D ∩ LY in α because,
otherwise, there would be a contradiction
with the definition of D. Then, d ∈ D.

Case 3.2.2 Assume that D ∩ LY = ∅ and
D ∩ Ri 6= ∅. It suffices to consider any
d ∈ D ∩Ri.

Case 3.2.3 Assume that D ∩ LY = ∅, D ∩
Ri = ∅, and some d ∈ D was a descendant
of some r ∈ Ri in G0. Recall that Method
B3 is currently considering the block C of
α, and that it has previously considered
all the blocks of α to the right of C in α.
Then, Ri only contains nodes from C or
from blocks to the left of C in α. Then,
r was not in the blocks of α previously

considered, since r ∈ Ri. Therefore, no
descendant of r in G0 is currently to the
left of r in β and, thus, the descendants
of r in G0 are descendant of r in Gt by
Lemma 3, because I(Gt) ⊆ I(G0) and β
is consistent with Gt. Then, d is a descen-
dant of r and thus of Ri in Gt.

Case 3.2.4 Assume that D ∩ LY = ∅, D ∩
Ri = ∅, and no node of D was a descen-
dant of a node of Ri in G0. As shown in
Case 3.2.3, the descendants of any node
r ∈ Ri in G0 are descendant of r in Gt
too. Therefore, no descendant of r in G0

was to the left of the nodes of D in α
because, otherwise, a descendant of r and
thus of LY inGt would be to the left of the
nodes of D in α, which would contradict
the definition of D. Recall that no descen-
dant of r in G0 was in D either. Note also
that the nodes of D are to the left of the
nodes of Ri in α, by definition of D and
the fact that D ∩ Ri = ∅. These obser-
vations have two consequences. First, the
components of G containing a node from
D were still in H when any component
of G containing a node from Ri became
a terminal component of H in Construct
β. Thus, Construct β added the compo-
nents of G containing a node from D to
β after having added the components of
G containing a node from Ri. Second,
Construct β did not interchange in β any
component of G containing a node from
D with any component of G containing a
node from Ri.
Recall that Method B3 is currently con-
sidering the block C of α, and that it has
previously considered all the blocks of α
to the right of C in α. Note that the
nodes of D were not in the blocks of α
previously considered because, otherwise,
C and thus the nodes of LY (recall that
LY ⊆ L ⊆ C) would be to the left of
D in α, which would contradict the def-
inition of D. Therefore, the nodes of D
are currently still to the left of Ri in β.
Note that the only component to the left
of Ri in β that contains a descendant of
LY in Gt is precisely LY , because L is the
left neighbor of R in β, LY ⊆ L, and β is
consistent with Gt. However, D∩LY = ∅.
Thus, D contains no descendant of LY in
Gt, which contradicts the definition of D.
Thus, this case never occurs.

We continue with the proof of Case 3.2. Let

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

ρABt+1 = ρAXt+1 ∪ X − Y ∪ ρY Bt+1.10 Note that
X,Y /∈ S because, otherwise, ρABt+1 would not
be S-active in Gt+1. For the same reason,
ρAXt+1 and ρY Bt+1 are S-active in Gt+1. Note
that X and Y must be in PaGt(Ri) for line
3 of Fbmerge to add an edge X − Y . Then,
no descendant of Ri in Gt is in S because,
otherwise, there would be an S-active route
ρXYt between X and Y in Gt and, thus,
ρAXt+1∪ρXYt ∪ρY Bt+1 would be an S-active route
between A and B in Gt+1 that would vio-
late the minimality property of ρABt+1. Then,
there is an S-active descending route ρrdt from
some r ∈ Ri to some d ∈ D in Gt because,
as shown, D contains a descendant of Ri in
Gt. Then, ρAXt+1∪X → X ′− . . .−r∪ρrdt is an
S-active route between A and d in Gt+1.11

Likewise, ρBYt+1 ∪ Y → Y ′ − . . . − r ∪ ρrdt is
an S-active route between B and d in Gt+1,
where ρBYt+1 denotes the route resulting from
reversing ρY Bt+1.12 Therefore, there are S-
active routes ρAdα and ρBdα between A and d
and between B and d in Gα by the induction
hypothesis.

Recall that we assumed without loss of gener-
ality that Gt has a descending route from Y
to a node E s.t. E = B or E ∈ S. Note that
E is a descendant of LY in Gt and, thus, E
is a descendant of d in Gα by definition of D
and the fact that d ∈ D. Let ρdEα denote the
descending route from d to E in Gα. Assume
without loss of generality that Gα has no de-
scending route from d to B or to a node of
S that is shorter than ρdEα . We now consider
two cases.

Case 3.2.5 Assume that E = B. Note that
ρdEα is S-active inGα by definition and the
fact that d /∈ S. To see the latter, recall
that no descendant of Ri in Gt (among
which is d) is in S. Thus, ρAdα ∪ ρdEα is an
S-active route between A and B in Gα.

Case 3.2.6 Assume that E ∈ S. Let ρdBα
and ρEdα denote the routes resulting from
reversing ρBdα and ρdEα . Consider the
route ρAdα ∪ ρdBα between A and B in Gα.
If this route is S-active, then we are done.
If it is not S-active in Gα, then d occurs
in a collider section of ρAdα ∪ ρdBα that has
no node in S. Then, we can replace each
such occurrence of d with ρdEα ∪ ρEdα and,
thus construct an S-active route between
A and B in Gα.

10Note that maybe A = X and/or Y = B.
11Note that maybe X ′ = r.
12Note that maybe Y ′ = r.

Case 4 Method B3 constructs Gt+1 from Gt by
adding an edge X → Y due to line 4 of Fbmerge.
Note that X → Y occurs in ρABt+1. We consider
two cases.

Case 4.1 Assume that X → Y occurs as a col-
lider edge in ρABt+1. Let ρABt+1 = ρAXt+1 ∪ X →
Y ∪ ρY Bt+1.13 Note that X /∈ S because, oth-
erwise, ρABt+1 would not be S-active in Gt+1.
For the same reason, ρAXt+1 is S-active in Gt+1.
Then, there is an S-active route ρAXα between
A and X in Gα by the induction hypothesis.

Let Ri denote the component of Gt in R
that Fbmerge is processing when the edge
X → Y gets added. Recall that Method
B3 is currently considering the block C of α,
and that it has previously considered all the
blocks of α to the right of C in α. Then, Ri
only contains nodes from C or from blocks
to the left of C in α. In other words, Ri ⊆
∪k∗j=1Cj \ {X,Y } where k∗ is the smallest k

s.t. X,Y ∈ ∪kj=1Cj (recall that Y ∈ L ⊆ C).

Therefore, X 6⊥GtY |∪k
∗

j=1Cj \{X,Y } because
X and Y must be in PaGt(Ri) for line 4 of
Fbmerge to add an edge X → Y . Then, X
and Y are adjacent in Gα because, otherwise,
X⊥GαY | ∪k

∗

j=1Cj \ {X,Y } which would con-
tradict that I(Gα) ⊆ I(Gt). In fact, X → Y
is in Gα. To see it, recall that Method B3
is currently considering the block C of α,
and that it has previously considered all the
blocks of α to the right of C in α. Then, no
block to the left of L in β has a node from C
or from a block to the right of C in α. Note
that X is to the left of R in β, because β is
consistent with Gt. Then, X is to the left of
L in β, because L is the left neighbor of R in
β and X /∈ L. Thus, X → Y is in Gα because
Y ∈ L ⊆ C. We now consider two cases.

Case 4.1.1 Assume that ρY Bt+1 = Y − . . . −
Y ← X ∪ ρXBt+1 . Note that a node in
Y − . . . − Y is in S because, otherwise,
ρABt+1 would not be S-active in Gt+1. For
the same reason, ρXBt+1 is S-active in Gt+1.
Then, there is an S-active route ρXBα be-
tween X and B in Gα by the induction
hypothesis. Note that Y − . . . − Y is in
Gα. To see it, note that the adjacencies
in Y − . . . − Y are preserved in Gα since
I(Gα) ⊆ I(Gt). Moreover, these adja-
cencies correspond to undirected edges in
Gα, because the nodes in Y − . . .− Y are
in L since Y ∈ L and, thus, they are in
the same block of Gα since L ⊆ C. Then,

13Note that maybe A = X and/or Y = B.

Appendix of “An inclusion optimal algorithm for chain graph structure learning”

ρAXα ∪X → Y − . . .−Y ← X ∪ ρXBα is an
S-active route between A and B in Gα.

Case 4.1.2 Assume that ρY Bt+1 = Y − . . . −
Z ←W ∪ρWB

t+1 .14 Note that W /∈ S and a
node in Y − . . .−Z is in S because, other-
wise, ρABt+1 would not be S-active in Gt+1.
For the same reason, ρWB

t+1 is S-active in
Gt+1. Then, there is an S-active route
ρWB
α between W and B in Gα by the in-

duction hypothesis. Note that Y − . . .−Z
is in Gα. To see it, note that the adjacen-
cies in Y − . . . − Z are preserved in Gα
since I(Gα) ⊆ I(Gt). Moreover, these ad-
jacencies correspond to undirected edges
in Gα, because the nodes in Y − . . . − Z
are in L since Y ∈ L and, thus, they are
in the same block of Gα since L ⊆ C.
Moreover, note that Z and W are adja-
cent in Gα since I(Gα) ⊆ I(Gt). In fact,
Z ← W is in Gα. To see it, recall that
no block to the left of L in β has a node
from C or from a block to the right of C
in α. Note that W is to the left of L in
β, because β is consistent with Gt. Thus,
Z ←W is in Gα since Z ∈ L ⊆ C. Then,
ρAXα ∪X → Y − . . .−Z ←W ∪ρWB

α is an
S-active route between A and B in Gα.

Case 4.2 Assume that X → Y occurs as a non-
collider edge in ρABt+1. The proof of this case
is the same as that of Case 3.2, with the only
exception that X − Y should be replaced by
X → Y .

Theorem 1. Given two CGs G and H s.t. I(H) ⊆
I(G), Method G2H(G, H) transforms G into H by a
sequence of directed and undirected edge additions and
feasible splits and mergings s.t. after each operation in
the sequence G is a CG and I(H) ⊆ I(G).

Proof. Note from line 1 that α denotes a chain that
is consistent with H. Let Gα denote the MI map of
I(G) relative to α. Recall that Gα is guaranteed to
be unique by Lemma 1, because I(G) is a graphoid.
Note that I(H) ⊆ I(G) implies that Gα is a subgraph
of H. To see it, note that I(H) ⊆ I(G) implies that
we can obtain a MI map of I(G) relative to α by just
removing edges from H. However, Gα is the only MI
map of I(G) relative to α.

Then, it follows from the proof of Lemma 4 that line
2 transforms G into Gα by a sequence of directed and

14Note that maybe Y = Z, W = X and/or W = B.
Note that Y 6= Z or W 6= X, because the case where
Y = Z and W = X is covered by Case 4.1.1.

undirected edge additions and feasible splits and merg-
ings, and that after each operation in the sequence G
is a CG and I(Gα) ⊆ I(G). Thus, after each operation
in the sequence I(H) ⊆ I(G) because I(H) ⊆ I(Gα)
since, as shown, Gα is a subgraph of H. Finally, line
3 transforms G from Gα to H by a sequence of edge
additions. Of course, after each edge addition G is a
CG and I(H) ⊆ I(G) because Gα is a subgraph of H.

Theorem 2. For any probability distribution p for
which the composition property holds, the CKES al-
gorithm finds a CG that is inclusion optimal w.r.t. p.

Proof. Let R, S and T be three random variables.
Let H(R|S) denote the conditional entropy of R given
S. Then, H(R|S, T) ≤ H(R|S) and, moreover,
H(R|S, T) = H(R|S) iff R⊥pT |S (Cover and Thomas,
1991, Chapter 2). Therefore, H(Y |BdG(Y)) stays the
same when removing the edge X → Y from G in
line 4. Likewise, H(X|BdG(X)) and H(Y |BdG(Y))
stay the same when removing X − Y from G in line
5. On the other hand, H(Y |BdG(Y)) decreases when
adding the edge X → Y to G in line 6. Like-
wise, H(X|BdG(X)) or H(Y |BdG(Y)) decreases when
adding the edge X − Y to G in line 7. Let us define
the score of a CG G as

∑
X∈V H(X|BdG(X)). Now,

note that the algorithm cannot enter an endless loop,
i.e. it cannot perform a sequence of edge additions
and removals so that the CGs before and after the se-
quence coincide. To see it, assume the contrary and
note that such a sequence must contain both edge ad-
ditions and removals. However, such a sequence would
imply that the score of the CG after the sequence is
smaller than the score of the CG before the sequence,
which is a contradiction. If the algorithm cannot enter
an endless loop, then the algorithm must reach a CG
G such that no edge can be added or removed from
it in lines 3-7, because the number of CGs is finite.
Moreover, I(G) ⊆ I(p). To see it, assume the con-
trary. Then, according to the local Markov property
and the composition property, there must exist two
nodes X and Y such that X /∈ SdG(Y) ∪ BdG(Y),
X 6⊥ pY |BdG(Y) but X ⊥ GY |BdG(Y). Then, a new
edge can be added to G in line 6 or 7, which is a con-
tradiction. Obviously, I(G) ⊆ I(p) still holds after G
has been updated in line 8. Therefore, the next execu-
tion of lines 3-7 may remove edges from G but it never
adds edges to G. Consequently, the algorithm must
reach a CG G such that no edge can be removed from
it, because the number of edges that can be removed is
finite. At this point, the algorithm executes line 8 re-
peatedly. This implies that the algorithm terminates
at some point, because any CG can be transformed
in any other equivalent CG via a sequence of feasible

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

A B

C D

H

A B

C D

A B

C D

A B

C D

A B

C D

The w-structure CG
(a)

Inclusion optimal CGs

(b)

CGs learnt by the LCD algorithm

(c)

Figure 1: CGs In The Experiment.

Table 1: Average Results For Gaussian Data.

CG structure Recall Precision
CKES LCD CKES LCD

n=100 0.54 0.61 0.75 0.44
n=30000 0.57 0.57 1.00 0.57

merges and splits (Studený et al., 2009, Corollary 7).

Finally, we show that there is no model G′ such
that I(G) ⊂ I(G′) ⊆ I(p) when the algorithm has
terminated in G. Assume the contrary. Theorem
1 says that there must exist a model H such that
I(G) = I(F) ⊂ I(H) ⊆ . . . ⊆ I(G′) ⊆ I(p) and H
can be reached by a single edge removal from a CG F
which is in the equivalence class of G.15 However this
edge must be between two nodes X and Y in F such
that X ∈ BdF (Y) and X ⊥ pY |BdF (Y) \ X because
I(H) ⊆ I(p). This now contradicts the assumption
since we know that the algorithm only can terminate
if there exists no such edge for any CG in the equiva-
lence class of G. Hence, we have a contradiction.

APPENDIX C: ADDITIONAL
EXPERIMENT

In this experiment, we want to show how the algo-
rithms handle an unfaithful probability distribution
that satisfies the composition property. Chickering
and Meek (2002) performed a similar experiment and
we used the same setup. Specifically, we used the w-
structure seen in Figure 1a as CG structure. From this
structure, 10 Gaussian probability distributions were
generated and sampled into sample sets in the same
way as we did for the experiment in our paper. We
then removed the H variable from the sample sets.
This meant that the algorithms tried to model the
(in)dependencies in Figure 1a with only A, B, C andD
as nodes. It can be shown that this is impossible (i.e.

15Note that H might be equal to G′ and F might be
equal to G.

that there exists no faithful CG for this probability
distribution) and that the inclusion optimal CGs are
those seen in Figure 1b (Chickering and Meek, 2002).
As performance measures, we computed the recall of
the separations over {A,B,C,D} in the 5-node CG
sampled, and the precision of the separations in the
4-node CGs learnt. This meant that it was impossible
to find a CG with perfect precision and recall, but that
the best inclusion optimal CG had precision 1 and re-
call 0.57. The results obtained are shown in Figure 1.
The table show average results over the 10 sample sets
in the experiment. The results for categorical data are
similar and, thus, they are not included here.

Running the example above by hand with perfect in-
formation, it can be seen that the CKES algorithm
will end up in one of the CGs seen in Figure 1b. The
LCD algorithm on the other hand ends up in one of
the CGs shown in Figure 1c, which do not include the
original independence model. The experimental re-
sults obtained with large sample sets (30000 samples)
are shown in Figure 1 and coincide with the theoretical
results just described. For the smaller sample sets (100
samples), the same trend observed in the experiment
in our paper can be seen here (i.e. the CKES algorithm
learning a CG with higher precision and the LCD algo-
rithm learning a CG with higher recall). Therefore, we
reach here the same conclusion as we did previously:
Since the goal of structural learning is to find a model
representing an I map of the probability distribution
at hand, the CKES algorithm achieves better results
than the LCD algorithm.

References

Chickering, D. M. and Meek, C. Finding Optimal
Bayesian Networks. In Proceedings of the 18th Con-

Appendix of “An inclusion optimal algorithm for chain graph structure learning”

ference on Uncertainty in Artificial Intelligence, 94-
102, 2002.

Cover, T. M. and Thomas, J. A. Elements of Informa-
tion Theory. Wiley, 1991.

Studený, M., Roverato, A. and Štěpánová, S. Two Op-
erations of Merging and Splitting Components in a
Chain Graph. Kybernetika, 45:208-248, 2009.

