
An inclusion optimal algorithm for chain graph structure learning

Jose M. Peña Dag Sonntag Jens D. Nielsen
ADIT, IDA, Linköping University

Sweden
ADIT, IDA, Linköping University

Sweden
CLC bio, a Quiagen company

Denmark

Abstract

This paper presents and proves an extension
of Meek’s conjecture to chain graphs under
the Lauritzen-Wermuth-Frydenberg interpre-
tation. The proof of the conjecture leads to
the development of a structure learning algo-
rithm that finds an inclusion optimal chain
graph for any given probability distribution
satisfying the composition property. Finally,
the new algorithm is experimentally evalu-
ated.

1 INTRODUCTION

This paper deals with chain graphs under the
Lauritzen-Wermuth-Frydenberg interpretation. Al-
though these chain graphs were introduced to model
independencies fairly early (Lauritzen and Wermuth,
1989), there has been relatively little research on them
compared to, for example, Bayesian networks. This
has mainly to do with the additional complexity that
follows from the fact that chain graphs may have both
directed and undirected edges, compared to Bayesian
networks that only have directed edges. Lately, how-
ever, chain graphs have got renewed interest due to
their ability to represent more independence models
than Bayesian networks (Drton, 2009; Ma et al., 2008;
Peña, 2009, 2011; Studený, 1997; Studený, 2005; Stu-
dený and Bouckaert, 1998; Studený et al., 2009; Volf
and Studený, 1999).

A key component that chain graphs still lack compared
to Bayesian networks is an inclusion optimal struc-
ture learning algorithm. This has mainly to do with
that Meek’s conjecture has been proven for Bayesian
networks (Chickering, 2002) but not for chain graphs.
We will in this article prove it and, then, use it to

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

develop an algorithm that finds an inclusion optimal
chain graph for any probability distribution satisfy-
ing the composition property. We will also provide an
implementation of the algorithm, and experimentally
compare it with the earlier published LCD algorithm
(Ma et al., 2008). This comparison may seem unfair
because the LCD algorithm finds a chain graph a given
probability distribution is faithful to and, thus, it im-
poses a stronger requirement on the input compared
to our algorithm. However, this is the best we can
do given that we are the first to weaken the faithful-
ness requirement. To avoid biasing the results in our
favour, the experiments only involve faithful probabil-
ity distributions.

The rest of the article organized as follows. In Section
2, we introduce the notation used in the paper. In Sec-
tion 3, we prove Meek’s conjecture for chain graphs.
In section 4, we describe an inclusion optimal learning
algorithm. We implement and evaluate the algorithm
in Section 5. We close in Section 6 with some conclu-
sions.

2 PRELIMINARIES

In this section, we review some concepts from proba-
bilistic graphical models that are used later in this pa-
per. See, for instance, Lauritzen (1996) and Studený
(2005) for further information. All the graphs, inde-
pendence models, and probability distributions in this
paper are defined over a finite set V . All the graphs
in this paper are hybrid graphs, i.e. they have (possi-
bly) both directed and undirected edges. We assume
throughout the paper that the union and the intersec-
tion of sets precede the set difference when evaluating
an expression.

If a graph G has a directed (resp. undirected) edge
between two nodes X1 and X2, then we write that
X1 → X2 (resp. X1 − X2) is in G. When there is
a directed or undirected edge between two nodes of
G, we say that the two nodes are adjacent in G. The
parents of a set of nodes Y of G is the set PaG(Y) =
{X1|X1 → X2 is in G and X2 ∈ Y }. The neighbors of

778

An inclusion optimal algorithm for chain graph structure learning

a set of nodes Y of G is the set NeG(Y) = {X1|X1−X2

is in G and X2 ∈ Y }. The boundary of a node X2 of G
is the set BdG(X2) = PaG(X2) ∪ NeG(X2). A route
between two nodes X1 and Xn of G is a sequence of
nodes X1, . . . , Xn s.t. Xi and Xi+1 are adjacent in G
for all 1 ≤ i < n. The length of a route is the number
of (not necessarily distinct) edges in the route. We
treat all singletons as routes of length zero. A route
in G is called undirected if Xi − Xi+1 is in G for all
1 ≤ i < n. A route in G is called descending from
X1 to Xn if Xi − Xi+1 or Xi → Xi+1 is in G for all
1 ≤ i < n. If there is a descending route from X1 to
Xn in G, then Xn is called a descendant of X1. Note
that X1 is a descendant of itself, since we allow routes
of length zero. The descendants of a set of nodes Y of
G is the union of the descendants of each node of Y
in G and are denoted DeG(Y). If Xn is a descendant
of X1 in G but X1 is not a descendant of Xn in G,
then Xn is called a strict descendant of X1. The strict
descendants of a set of nodes Y of G is the union of
the strict descendants of each node of Y in G and are
denoted SdG(Y). Given a route ρ between X1 and Xn

in G and a route ρ′ between Xn and Xm in G, ρ ∪ ρ′
denotes the route between X1 and Xm in G resulting
from appending ρ′ to ρ.

A chain is a partition of V into ordered subsets, which
we call the blocks of the chain. We say that an element
X ∈ V is to the left of another element Y ∈ V in a
chain α if the block of α containing X precedes the
block of α containing Y in α. Equivalently, we can
say that Y is to the right of X in α. We say that
a graph G and a chain α are consistent when (i) for
every edge X → Y in G, X is to the left of Y in α,
and (ii) for every edge X − Y in G, X and Y are in
the same block of α. A chain graph (CG) is a graph
that is consistent with a chain. A set of nodes of a
CG is connected if there exists an undirected route
in the CG between every pair of nodes of the set. A
component of a CG is a maximal (wrt set inclusion)
connected set of its nodes. A block of a CG is a set of
components of the CG s.t. there is no directed edge
between their nodes in the CG. Note that a component
of a CG is connected, whereas a block of a CG or a
block of a chain that is consistent with a CG is not
necessarily connected. Given a set K of components
of G, a component C ∈ K is called maximal in G if
none of its nodes is a descendant of K \ {C} in G.
A component C of G is called terminal in G if its
descendants in G are exactly C. Let a component
C of G be partitioned into two non-empty connected
subsets C \ L and L. By splitting C into C \ L and L
in G, we mean replacing every edge X − Y in G s.t.
X ∈ C \L and Y ∈ L with an edge X → Y . Moreover,
we say that the split is feasible if (i) X −Y is in G for
all X,Y ∈ NeG(L)∩(C\L), and (ii) X → Y is in G for

all X ∈ PaG(L) and Y ∈ NeG(L)∩(C \L). Let L and
R denote two components of G s.t. PaG(R) ∩ L 6= ∅.
By merging L and R in G, we mean replacing every
edge X → Y in G s.t. X ∈ L and Y ∈ R with an
edge X − Y . Moreover, we say that the merging is
feasible if (i) X−Y is in G for all X,Y ∈ PaG(R)∩L,
and (ii) X → Y is in G for all X ∈ PaG(R) \ L and
Y ∈ PaG(R) ∩ L.

A section of a route ρ in a CG is a maximal undirected
subroute of ρ. A section X2 − . . . − Xn−1 of ρ is a
collider section of ρ if X1 → X2 − . . . − Xn−1 ← Xn

is a subroute of ρ. Moreover, the edges X1 → X2 and
Xn−1 ← Xn are called collider edges. Let X, Y and Z
denote three disjoint subsets of V . A route ρ in a CG
is said to be Z-active when (i) every collider section of
ρ has a node in Z, and (ii) every non-collider section of
ρ has no node in Z. When there is no route in a CG G
between a node of X and a node of Y that is Z-active,
we say that X is separated from Y given Z in G and
denote it as X⊥GY |Z. We denote by X 6⊥GY |Z that
X⊥GY |Z does not hold.

Let X, Y , Z and W denote four disjoint subsets of V .
An independence model M is a set of statements of the
form X⊥MY |Z, meaning that X is independent of Y
given Z. Given two independence models M and N ,
we denote by M ⊆ N that if X ⊥MY |Z then X ⊥N

Y |Z. We say that M is a graphoid if it satisfies the
following properties: Symmetry X ⊥MY |Z ⇒ Y ⊥M

X|Z, decomposition X ⊥ MY ∪W |Z ⇒ X ⊥ MY |Z,
weak unionX⊥MY ∪W |Z ⇒ X⊥MY |Z∪W , contrac-
tion X⊥MY |Z ∪W ∧X⊥MW |Z ⇒ X⊥MY ∪W |Z,
and intersection X⊥MY |Z ∪W ∧X⊥MW |Z ∪ Y ⇒
X ⊥ MY ∪ W |Z. An independence model M is
also said to satisfy the composition property when
X ⊥MY |Z ∧X ⊥MW |Z ⇒ X ⊥MYW |Z. The inde-
pendence model induced by a CG G, denoted as I(G),
is the set of separation statements X ⊥ GY |Z that
holds in G. It is known that I(G) is a graphoid (Stu-
dený and Bouckaert, 1998, Lemma 3.1). Let H denote
the graph resulting from a feasible split or merging in
a CG G. Then, H is a CG and I(H) = I(G) (Studený
et al., 2009, Lemma 5 and Corollary 9). Two CGs H
and G are said to be in the same equivalence class if
I(H) = I(G).

A CG G is an independence (I) map of an indepen-
dence model M if I(G) ⊆ M . Moreover, G is a
minimal independence (MI) map of M if removing
any edge from G makes it cease to be an I map of
M . An independence model M is said to be faith-
ful w.r.t. a CG G if I(G) = M . We also say that
an independence model M is faithful if it is faithful
to some CG G. A CG G is said to satisfy the local
Markov property w.r.t. an independence model M iff
X⊥MV \X\SdG(X)\BdG(X)|BdG(X) for all X ∈ V .

779

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

Given any chain C1, . . . , Cn that is consistent with G,
we say that G satisfies the pairwise block-recursive
Markov property w.r.t. M if X⊥MY |∪k

∗

j=1Cj \{X,Y }
for all non-adjacent nodes X and Y of G and where
k∗ is the smallest k s.t. X,Y ∈ ∪kj=1Cj . If M is
a graphoid and G satisfies the local Markov property
or the pairwise block-recursive Markov property w.r.t.
M , then G is an I map of M (Lauritzen, 1996, The-
orem 3.34). We say that a CG Gα is a MI map of
an independence model M relative to a chain α if Gα
is a MI map of M and Gα is consistent with α. A
CG G is said to include an independence model M iff
I(G) ⊆M . G is also said to be inclusion optimal w.r.t.
M iff I(G) ⊆M and there exists no other CG H such
that I(G) ⊂ I(H) ⊆M .

3 MEEK’S CONJECTURE FOR
CHAIN GRAPHS

In this section we extend Meek’s conjecture to chain
graphs. This will later be used to prove that the CG
structure learning algorithm provided in the next sec-
tion is inclusion optimal for those probability distribu-
tions that satisfy the composition property.

Given two directed and acyclic graphs G and H s.t.
I(H) ⊆ I(G), Meek’s conjecture states that we can
transform G into H by a sequence of directed edge
additions and covered edge reversals s.t. after each
operation in the sequence G is a directed and acyclic
graph and I(H) ⊆ I(G) (Meek, 1997). Meek’s conjec-
ture was proven to be true in (Chickering, 2002, The-
orem 4) by developing an algorithm that constructs a
valid sequence of operations. In this section, we extend
Meek’s conjecture from directed and acyclic graphs to
CGs, and prove that the extended conjecture is true.
Specifically, given two CGs G and H s.t. I(H) ⊆ I(G),
we prove that G can be transformed into H by a se-
quence of directed and undirected edge additions and
feasible splits and mergings s.t. after each operation
in the sequence G is a CG and I(H) ⊆ I(G). The
proof is constructive in the sense that we give an algo-
rithm that constructs a valid sequence of operations.
See Appendix A for an example run of the algorithm.

We start by introducing two new operations on CGs.
It is worth mentioning that all the algorithms in this
paper use a ”by reference” calling convention, meaning
that the algorithms can modify the arguments passed
to them. Let K denote a block of a CG G. Let L ⊆ K.
By feasible block splitting (fbsplitting) K into K \ L
and L in G, we mean running the algorithm at the top
of Figure 1. The algorithm repeatedly splits a compo-
nent of G until L becomes a block of G. Before the
splits, the algorithm adds to G the smallest set of edges
so that the splits are feasible. Let L and R denote two

Fbsplit(K, L, G)

1 Let L1, . . . , Ln denote the maximal connected
subsets of L in G

2 For i = 1 to n do
3 Add an edge X − Y to G for all

X,Y ∈ NeG(Li) ∩ (K \ L)
4 Add an edge X → Y to G for all

X ∈ PaG(Li) and Y ∈ NeG(Li) ∩ (K \ L)
5 For i = 1 to n do
6 Let Kj denote the component of G s.t. Li ⊆ Kj

7 If Kj \ Li 6= ∅ then
8 Split Kj into Kj \ Li and Li in G

Fbmerge(L, R, G)

1 Let R1, . . . , Rn denote the components of G that
are in R

2 For i = 1 to n do
3 Add an edge X − Y to G for all

X,Y ∈ PaG(Ri) ∩ L
4 Add an edge X → Y to G for all

X ∈ PaG(Ri) \ L and Y ∈ PaG(Ri) ∩ L
5 For i = 1 to n do
6 Let Lj denote the component of G st

Lj ⊆ L ∪R and PaG(Ri) ∩ Lj 6= ∅
7 If Lj 6= ∅ then
8 Merge Lj and Ri in G

Figure 1: Fbsplit And Fbmerge.

blocks of a CG G. By feasible block merging (fbmerg-
ing) L and R in G, we mean running the algorithm
at the bottom of Figure 1. The algorithm repeatedly
merges two components of G until L ∪ R becomes a
block of G. Before the mergings, the algorithm adds
to G the smallest set of edges so that the mergings are
feasible. It is worth mentioning that the component
Lj in line 6 is guaranteed to be unique by the edges
added in lines 3 and 4.

Our proof of the extension of Meek’s conjecture to CGs
builds upon an algorithm for efficiently deriving the MI
map Gα of the independence model induced by a given
CG G relative to a given chain α. The pseudocode of
the algorithm, called Method B3, can be seen in Fig-
ure 2. Method B3 works iteratively by fbsplitting and
fbmerging some blocks of G until the resulting CG is
consistent with α. It is not difficult to see that such
a way of working results in a CG that is an I map of
I(G). However, in order to arrive at Gα, the blocks of
G to modify in each iteration must be carefully cho-
sen. For this purpose, Method B3 starts by calling
Construct β to derive a chain β that is consistent with
G and as close to α as possible (see lines 5-8). By β
being as close to α as possible, we mean that the num-
ber of blocks Method B3 will later fbsplit and fbmerge
is kept at a minimum, because Method B3 will use β

780

An inclusion optimal algorithm for chain graph structure learning

Construct β(G, α, β)

1 Set β = ∅
2 Set H = G
3 Let C denote any terminal component of H

whose leftmost node in α is rightmost in α
4 Add C as the leftmost block of β
5 Let R denote the right neighbor of C in β
6 If R 6= ∅, PaG(R) ∩ C = ∅, and the nodes of C

are to the right of the nodes of R in α then
7 Replace C,R with R,C in β
8 Go to line 5
9 Remove C and all its incoming edges from H

10 If H 6= ∅ then
11 Go to line 3

Method B3(G, α)

1 Construct β(G, α, β)
2 Let C denote the rightmost block of α that has

not been considered before
3 Let K be the leftmost block of β s.t. K ∩ C 6= ∅
4 Set L = K ∩ C
5 If K \ L 6= ∅ then
6 Fbsplit(K, L, G)
7 Replace K with K \ L,L in β
8 Let R denote the right neighbor of L in β
9 If R 6= ∅ and some node of R is not to the right

of the nodes of L in α
10 Fbmerge(L, R, G)
11 Replace L,R with L ∪R in β
12 Go to line 3
13 If β 6= α then
14 Go to line 2

Figure 2: Method B3.

to choose the blocks to modify in each iteration. A
line of Construct β that is worth explaining is line 3,
because it is crucial for the correctness of Method B3
(see Case 3.2.4 in the proof of Lemma 2). This line
determines the order in which the components of H
(initially H = G) are added to β (initially β = ∅).
In principle, a component of H may have nodes from
several blocks of α. Line 3 labels each terminal com-
ponent of H with its leftmost node in α and, then,
chooses any terminal component whose label node is
rightmost in α. This is the next component to add to
β.

Once β has been constructed, Method B3 proceeds
to transform G into Gα. In particular, Method B3
considers the blocks of α one by one in the reverse
order in which they appear in α. For each block C
of α, Method B3 iterates through the following steps.
First, it finds the leftmost block K of β that has some
nodes from C. These nodes, denoted as L, are then
moved to the right in β by fbsplittingK to create a new
block L of G and β. If the nodes of the right neighbor

Method G2H(G, H)

1 Let α denote a chain that is consistent with H
2 Method B3(G, α)
3 Add to G the edges that are in H but not in G

Figure 3: Method G2H.

R of L in β are to the right of the nodes of L in α,
then Method B3 is done with C. Otherwise, Method
B3 moves L further to the right in β by fbmerging L
and R in G and β.

The proof of the following important intermediate re-
sult can be found in Appendix B.

Lemma 1. Let M denote an independence model, and
α a chain C1, . . . , Cn. If M is a graphoid, then there
exits a unique CG Gα that is a MI map of M relative
to α. Specifically, for each node X of each block Ck of
α, BdGα(X) is the smallest subset B of ∪kj=1Cj \ {X}
s.t. X⊥M ∪kj=1 Cj \ {X} \B|B.1

The proof of the following lemma, which guarantees
the correctness of Method B3, can be found in Ap-
pendix B.

Lemma 2. Let Gα denote the MI map of the inde-
pendence model induced by a CG G relative to a chain
α. Then, Method B3(G, α) returns Gα.

We are now ready to prove that the extension of
Meek’s conjecture to CGs is true. The proof is con-
structive in the sense that we give an algorithm that
constructs a valid sequence of operations. The pseu-
docode of our algorithm, called Method G2H, can be
seen in Figure 3. The proof of the following theorem,
which guarantees the correctness of Method G2H, can
be found in Appendix B.

Theorem 1. Given two CGs G and H s.t. I(H) ⊆
I(G), Method G2H(G, H) transforms G into H by a
sequence of directed and undirected edge additions and
feasible splits and mergings s.t. after each operation in
the sequence G is a CG and I(H) ⊆ I(G).

4 THE CKES ALGORITHM

With the extension of Meek’s conjecture proven, we
can now present an algorithm which relies upon it
to find an inclusion optimal CG structure for a given
probability distribution that satisfies the composition
property. The algorithm is based on random walks
in the equivalence classes and is a generalized ver-
sion of the KES algorithm used for Bayesian network

1By convention, X⊥M∅| ∪k
j=1 Cj \ {X}.

781

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

CKES algorithm

1 G =Empty graph
2 Repeat until all the CGs in the equivalence class of

G have been considered:
3 For every ordered pair of nodes X and Y :
4 If X → Y is in G but X⊥pY |BdG(Y) \X

then remove X → Y from G and go to line 2
5 If X − Y is in G but X⊥pY |BdG(Y) \X

and X⊥pY |BdG(X) \ Y then remove X − Y
from G and go to line 2

6 If X → Y is not in G but adding X → Y to
G results in a CG and X 6⊥pY |BdG(Y)
then add X → Y to G and go to line 2

7 If X − Y is not in G but adding X − Y to
G results in a CG and X 6⊥pY |BdG(Y) or
X 6⊥pY |BdG(X) then add X − Y to G and
go to line 2

8 Move to another CG in the same equivalence
class of G by performing a random number of
random feasible merges or feasible splits on G
and thereby updating G

9 Return G

Figure 4: The CKES Algorithm.

structure learning (Nielsen et al., 2003). Unlike KES,
the CKES algorithm is not score-based but constraint-
based. The algorithm is shown in Figure 4. The proof
of the theorem below, which guarantees the correctness
of the CKES algorithm, can be found in Appendix B.

Theorem 2. For any probability distribution p for
which the composition property holds, the CKES al-
gorithm finds a CG that is inclusion optimal w.r.t. p.

It is worth mentioning that it follows from the proof
of the theorem above that the four operations in the
CKES algorithm are necessary to guarantee its cor-
rectness.

Due to the infeasibility to enumerate all CGs in each
visited equivalence class and the unavailability of the
probability distribution p, some approximations had
to be made when implementing the CKES algorithm.
There are two major differences between the algorithm
described in Figure 4 and its implementation in Figure
5. The first is that we check whether an independence
holds in p by running a hypothesis test on a sample
from it, which is what we have access to in practice.
Such a test is represented in Figure 5 with the function
I(X,Y |Z), which returns the p-value of the test. The
second major difference is that line 2 in Figure 4 has
been replaced by two loops visible in lines 2 and 4 in
Figure 5. The loop in line 4 considers m graphs in the
current equivalence class to find the best edge addition
or removal for that class. However, unless m → ∞ it
is unclear whether all graphs in the equivalence class

CKES implementation(α, k, l,m)

1 G =Empty graph
2 Repeat until I(G) does not change for k iterations:
3 pr = 0, pa = 1
4 Repeat for m iterations:
5 For every ordered pair of nodes X and Y :
6 If X → Y is in G but

I(X,Y |BdG(Y) \X) > pr, then set
pr = I(X,Y |BdG(Y) \X) and
Gr = G \ {X → Y }

7 If X − Y is in G but
min(I(X,Y |BdG(Y) \X), I(X,Y |BdG(X) \ Y)) > pr,

then set
pr = min(I(X,Y |BdG(Y) \X), I(X,Y |BdG(X) \ Y))

and Gr = G \ {X − Y }
8 If X → Y is not in G but adding X → Y to

G results in a CG and I(X,Y |BdG(Y)) < pa,
then set pa = I(X,Y |BdG(Y)) and
Ga = G ∪ {X → Y }

9 If X − Y is not in G but adding X − Y to G
results in a CG and
min(I(X,Y |BdG(Y)), I(X,Y |BdG(X)) < pa,
then set
pa = min(I(X,Y |BdG(Y)), I(X,Y |BdG(X))
and Ga = G ∪ {X − Y }

10 Move to another CG in the same equivalence
class of G by performing l random feasible
merges or feasible splits on G and thereby
updating G

11 If pr > α, then set G = Gr and go to line 2
12 If pa ≤ α, then set G = Ga and go to line 2
13 Return G

Figure 5: CKES Implementation.

have been considered. This means that not all edge
additions and removals may have been considered for
the equivalence class and that the edge addition or
edge removal with lowest resp. highest p-value may
not have been found. This can be acceptable if some
edge addition or removal is found but not when deter-
mining if the equivalence class is an inclusion optimal
CG (i.e. when terminating the algorithm). The loop
in line 2 has therefore been added to make sure that
the final equivalence class is searched extra thoroughly
by repeating the inner loop k times. Finally, there is
also the l variable in line 10, which controls how many
splits or mergings that are performed when moving be-
tween graphs in the same equivalence class. All in all
this means that large values on k, l and m increase the
probability that the implementation terminates in an
inclusion optimal CG, assuming that the independence
hypothesis test does not induce any error. Theoreti-
cally, an inclusion optimal CG can only be guaranteed
to be found if either m → ∞ or k → ∞. Empirical
results do however suggest that these conditions can
be relaxed considerably and that the parameter values

782

An inclusion optimal algorithm for chain graph structure learning

k = 10, l = 4, m = 100 are high enough to find a local
optimum for our experiments in the next section.

5 EVALUATION

To our knowledge, only two other CG structure
learning algorithms have been presented under the
Lauritzen-Wermuth-Frydenberg interpretation. These
are the LCG recovery algorithm (Studený, 1997) and
the LCD algorithm (Ma et al., 2008). The SINful ap-
proach (Drton and Perlman, 2008) can also be used to
learn a CG structure but only if its components and
their order is known in advance. Both the LCG recov-
ery algorithm and the LCD algorithm assume faith-
fulness. It can be shown that if this assumption does
not hold, then these algorithms may find a CG that
does not include the probability distribution at hand,
even if the algorithms are given perfect information
about the independencies that hold in the probabil-
ity distribution (see Appendix C). In this section we
will evaluate our algorithm only against the LCD algo-
rithm, because it is the only that has been presented
with an implementation and evaluation.

Recall that for the CKES algorithm to find an inclu-
sion optimal CG of a probability distribution, it suf-
fices that the latter satisfies the composition property.
However, the LCD algorithm finds an inclusion opti-
mal CG of a probability distribution only if the latter
satisfies the faithfulness assumption. To avoid biasing
the experimental results in our favour, we only con-
sidered faithful probability distributions in the experi-
ments (see Appendix C for experiments under the com-
position property assumption). Specifically, we consid-
ered CGs with P=10, 20 nodes and N=2, 5 adjacencies
per node on average. For each of these four scenar-
ios, we generated 10 random CG structures with the
algorithm described in (Ma et al., 2008). Each struc-
ture was then parameterized into one binary and one
Gaussian probability distribution as proposed by Ma
et al. (2008). Then, samples of size n=100, 30000 were
obtained from these probability distributions. Using
these samples and the independence hypothesis tests
provided by Ma et al. with significance level α = 0.01,
the CKES and LCD algorithms were finally run. Note
that the probability distributions sampled are likely
to satisfy the faithfulness assumption, but there is no
guarantee. Note also that the samples can have ad-
ditional independencies that are not in the sampled
probability distributions. As performance measures in
the experiments, we computed the recall of the sepa-
rations in the CGs sampled, and the precision of the
separations in the CGs learnt. Since time did not per-
mit it, we did not check all the separations but a large
number of uniformly selected separations. Specifically,
for any given CG, we uniformly selected 10000 triplets

(X,Y, Z) withX, Y and Z disjoint sets of nodes among
all possible such triplets. For each triplet (X,Y, Z), we
tested whether X was separated from Y given Z in the
given CG. If so, the separation was selected.

The first conclusion that we drew from our experi-
ments is that multiple locally optimal CGs may be
found from the same sample. This phenomenon has
been previously noted for Bayesian networks (Nielsen
et al., 2003). Figure 6 illustrates this phenomenon.
Specifically, it plots the recall and precision of CGs
obtained by running 100 times the LCD and 100 times
the CKES algorithm on the same 30000 samples from
a Gaussian probability distribution sampled from a
CG with P=10 and N=2. In the case of the LCD
implementation this randomization comes from varia-
tions in the order in which the variables are considered
by the algorithm. The CKES implementation on the
other hand contains both the explicit randomness due
to lines 4 and 10 in Figure 5 and also the implicit ran-
domness due to the order in which the variables are
chosen in line 5 in Figure 5. The explicit randomness
can to a large extent be minimized with large enough
values on the parameters l and m in the algorithm.
Increasing these parameters significantly was however
seen to have little impact on the results. Instead, it is
the implicit randomness that is most significant.

With the numerous locally optimal CGs found in
mind, we then set out to find which of the two al-
gorithms reached the best CG. This was done by run-
ning both algorithms 100 times on each sample set in
the experiments and, then, selecting the best CGs in
terms of recall and precision from those obtained from
each sample set. Table 1 presents average recall and
precision values over the best CGs obtained from the
10 sample sets created for each scenario in the exper-
iments. In addition to these results, Table 2 presents
the following values for each scenario:

• Best recall: The number of sample sets on which
the CKES (resp. LCD) algorithm learnt a CG
with better or equal recall than any of the CGs
learnt by the LCD (resp. CKES) algorithm.

• Best precision: The number of sample sets on
which the CKES (resp. LCD) algorithm learnt a
CG with better or equal precision than any of the
CGs learnt by the LCD (resp. CKES) algorithm.

• Best recall and precision: The number of sample
sets on which the CKES (resp. LCD) algorithm
learned a CG with better or equal recall and pre-
cision than any of the CGs learnt by the LCD
(resp. CKES) algorithm.

We can now make the following observations about the
results obtained:

783

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

Figure 6: Multiple Locally Optimal CGs May Exist.

Table 1: Average Results For Categorical Data (Left) And Gaussian Data (Right).

CG structure Recall Precision
CKES LCD CKES LCD

P=10,N=2,n=100 0.97 0.98 0.60 0.59
P=10,N=2,n=30000 0.96 0.96 0.95 0.87
P=10,N=5,n=100 1.00 1.00 0.07 0.06
P=10,N=5,n=30000 0.95 0.98 0.92 0.34
P=20,N=2,n=100 0.97 0.99 0.65 0.64
P=20,N=2,n=30000 0.89 0.95 0.92 0.83
P=20,N=5,n=100 0.98 1.00 0.17 0.15
P=20,N=5,n=30000 0.71 0.95 0.89 0.56

CG structure Recall Precision
CKES LCD CKES LCD

P=10,N=2,n=100 0.95 0.99 0.83 0.76
P=10,N=2,n=30000 0.93 0.99 1.00 0.99
P=10,N=5,n=100 0.91 0.96 0.44 0.11
P=10,N=5,n=30000 1.00 0.92 1.00 0.57
P=20,N=2,n=100 0.92 0.99 0.99 0.87
P=20,N=2,n=30000 0.94 1.00 1.00 0.98
P=20,N=5,n=100 0.65 1.00 0.72 0.13
P=20,N=5,n=30000 0.77 0.91 1.00 0.53

1. According to Table 1, none of the algorithms is
generally able to recreate the CG sampled since
their recall and precision values do not equal 1.
This means that the sets of independencies de-
tected by the hypothesis test on the sample sets
are not faithful to the CGs that generated the
sample sets. As we will see, this leads the two
algorithms in the evaluation to behave differently.

2. According to Table 1, the LCD algorithm on aver-
age achieves good recall but not so good precision.
The reason for this may be that the faithfulness
assumption makes the LCD algorithm search for
a CG that represents all the independencies that
are detected in the sample set. However, such a
CG may also represent many other independen-
cies. Therefore, the LCD algorithm trades preci-
sion for recall.

3. According to Table 1, the CKES algorithm on av-
erage achieves good precision but not so good re-
call. The reason for this may be that the com-
position property assumption makes the CKES
algorithm search for a CG that only represent
independencies that are detected in the sample
set. However, such a CG may not represented

many of the detected independencies. Therefore,
the CKES algorithm trades off recall for preci-
sion. This can also be seen in Figure 6 where the
CKES algorithm achieves good recall only if it
also achieves good precision, which indicates that
it considers precision as more important.

In other words, it seems that the faithfulness as-
sumption makes the LCD algorithm overconfident
and aggressive, whereas the composition property
assumption makes the CKES algorithm cautious
and conservative. As we have seen, this implies
that in practice the LCD algorithm prioritizes re-
call and the CKES algorithm precision. In our
opinion, the latter behaviour is to be preferred:
By achieving better precision, the CGs learnt by
the CKES algorithm represent to a greater extent
an I map of the probability distribution sampled.
And this is the goal in structural learning.

4. The last observation is about which algorithm
usually returns the best CG. We can see in Ta-
ble 2 that the LCD algorithm usually returns the
best CG in terms of recall, whereas the CKES
algorithm usually returns the best CG in terms
of precision. However, note that it is the CKES

784

An inclusion optimal algorithm for chain graph structure learning

Table 2: Best Results For Categorical Data (Top) And Gaussian Data (Bottom).

CG structure Best recall Best precision Best recall and precision
CKES LCD CKES LCD CKES LCD

P=10,N=2,n=100 6 9 6 4 3 3
P=10,N=2,n=30000 8 5 9 1 8 1
P=10,N=5,n=100 10 10 9 1 6 1
P=10,N=5,n=30000 6 10 10 0 6 0
P=20,N=2,n=100 2 9 8 2 0 2
P=20,N=2,n=30000 1 9 10 0 1 0
P=20,N=5,n=100 3 10 9 1 3 1
P=20,N=5,n=30000 0 10 10 0 0 0

CG structure Best recall Best precision Best recall and precision
CKES LCD CKES LCD CKES LCD

P=10,N=2,n=100 3 9 9 2 1 2
P=10,N=2,n=30000 3 10 10 9 3 9
P=10,N=5,n=100 6 9 10 0 6 0
P=10,N=5,n=30000 9 2 10 0 8 0
P=20,N=2,n=100 1 9 10 0 1 0
P=20,N=2,n=30000 2 9 9 7 2 7
P=20,N=5,n=100 1 10 10 0 1 0
P=20,N=5,n=30000 4 6 10 0 4 0

algorithm which usually returns the best CG in
terms of recall and precision jointly.

6 CONCLUSIONS

In this article, we have presented and proved an exten-
sion of Meek’s conjecture to CGs under the Lauritzen-
Wermuth-Frydenberg interpretation. We have also
shown how this conjecture can be used to develop a
CG structure learning algorithm that is inclusion op-
timal for those probability distributions that satisfy
the composition property. This property is weaker
than faithfulness, which has been a prerequisite for
all earlier presented algorithms. We think that the ex-
tension of Meek’s conjecture proven in this paper is
very relevant, since we believe that it will be used by
other researchers to propose their own inclusion opti-
mal learning algorithms under the composition prop-
erty assumption.

In our experiments, we have seen that the CKES algo-
rithm, which only assumes the composition property,
produces CGs that can be interpreted as I maps of
the probability distribution at hand to a greater ex-
tent than the CGs produced by the LCD algorithm,
which assumes faithfulness. The reason seems to be
that assuming only the composition property induces
a more conservative behaviour as compared to assum-
ing faithfulness. CGs are aimed at helping discovering
independencies and/or performing probabilistic infer-
ence faster but accurately. In both of these tasks it is
more important that the independencies in the learnt
CG are true in the probability distribution at hand

than that all the true independencies are in the CG.
In other words, precision is more important than recall
for these tasks. The CKES algorithm is therefore, in
our humble opinion, preferred to the other algorithms
available today.

In our experiments, we have also seen that there may,
and often do, exist many local optima for a given data
set. This holds even if the data are sampled from a
faithful probability distribution. Therefore, it is not
wise to just run the learning algorithm once. Instead,
we propose to run the algorithm a number of times on
the same data and return the best CG found. However,
there remains a question to answer for this approach
to be applicable in practice: How do we know which
of the learnt CGs is the best ? One option is selecting
the CG learnt that has the best recall and/or precision
w.r.t. the independencies detected by the hypothesis
test in the sample set, rather than w.r.t. the separa-
tions in the CG sampled as we did in our experiments.
Another option is scoring each learnt CG with a score
such as the Bayesian information criterion (BIC). We
expect that these scores correlate well with the recall
and precision values in our experiments. Using a score
inside the CKES algorithm instead of the hypothesis
test is considered too time consuming due to the fact
that there is no closed-form estimates of the maximum-
likelihood parameters of a CG. However, we consider
it feasible to use a score to rank the CGs learnt by
multiple runs of CKES. We are currently working on
these two alternative ways to make our approach to
CG structure learning applicable in practice.

785

Jose M. Peña, Dag Sonntag, Jens D. Nielsen

References

Andersson, S. A., Madigan, D. and Pearlman, M. D.
An Alternative Markov Property for Chain Graphs.
In Proceedings of the 12th Conference on Uncer-
tainty in Artificial Intelligence, 40-48, 1996.

Chickering, D. M. Optimal Structure Identification
with Greedy Search. Journal of Machine Learning
Research, 3:507-554, 2002.

Cox, D. R. and Wermuth N. Linear Dependencies Rep-
resented by Chain Graphs. Statistical Science, 8:204-
283, 1993.

Drton, M. Discrete Chain Graph Models. Bernoulli,
15:736-753, 2009.

Drton, M. and Perlman, M. D. A SINful Approach to
Gaussian Graphical Model Selection. Journal of Sta-
tistical Planning and Inference, 138:11791200, 2008.

Frydenberg, M. The Chain Graph Markov Prop-
erty. Scandinavian Journal of Statistics, 17:333-353,
1990.

Lauritzen, S. L. Graphical Models. Oxford University
Press, 1996.

Lauritzen, S. L. and Wermuth, N. Graphical Models
for Association Between Variables, Some of which
are Qualitative and Some Quantitative. Annual of
Statistics, 17:31-57, 1989.

Ma, Z., Xie, X. and Geng, Z. Structural Learning of
Chain Graphs via Decomposition. Journal of Ma-
chine Learning Research, 9:2847-2880, 2008.

Meek, C. Graphical Models: Selecting Causal and Sta-
tistical Models. PhD thesis, Carnegie Mellon Univer-
sity, 1997.

Nielsen, J. D., Kočka, T. and Peña, J. M. On Local Op-
tima in Learning Bayesian Networks. In Proceedings
of the 19th Conference on Uncertainty in Artificial
Intelligence, 435-442, 2003.

Peña, J. M. Faithfulness in Chain Graphs: The Dis-
crete Case. International Journal of Approximate
Reasoning, 50:1306-1313, 2009.

Peña, J. M. Faithfulness in Chain Graphs: The Gaus-
sian Case. Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics,
588-599, 2011.

Peña, J. M. Learning AMP Chain Graphs under Faith-
fulness. In Proceedings of the 6th European Work-
shop on Probabilistic Graphical Models, 251-258,
2012.

Studený, M. Probabilistic Conditional Independence
Structures. Springer, 2005.

Studený, M. On Recovery Algorithms for Chain
Graphs. International Journal of Approximate Rea-
soning, 17:265-293, 1997.

Studený, M. and Bouckaert, R. R. On Chain Graph
Models for Description of Conditional Independence
Structures. The Annals of Statistics, 26:1434-1495,
1998.

Studený, M., Roverato, A. and Štěpánová, S. Two Op-
erations of Merging and Splitting Components in a
Chain Graph. Kybernetika, 45:208-248, 2009.

Volf, M. and Studený, M. A Graphical Charac-
terization of the Largest Chain Graphs. Interna-
tional Journal of Approximate Reasoning, 20:209-
236, 1999.

786

