Connected Sub-graph Detection

6 Supplementary
Proof of Lemma 1:

Proof. In the 2-step procedure of Algorithm 1, Sy is obvious the optimal solution to the sub-problem with
parameter |Spl, that is, Sy = S(|So|). Then for the second model selection step, Sy = S* due to global optimality
of So. ]

To prove Thm.3, we need the following Finsler’s lemma.

Lemma 8. (Finsler) Let x € R", B € R™*™ and ) € R"*™ such that rank(B) < n, Q symmetric and positive
semi-definite. Then the following two statements are equivalent:

2Qr>0,Vr#£0,Br =0 < Iy>0: Q+~vB'B~0. (19)
Proof of Thm.3:

Proof. Assume w.l.o.g. that S = {1,2,...,k} consists of the first k nodes. Then A o M exactly captures the
adjacency matrix of the induced sub-graph:

AoMz(%S g) (20)

In the fashion, diag ((Ao M)1,,) — (Ao M) captures the Laplacian matrix of S:

diag (Ao M)1,) — (Ao M) = < b 0 ) 21)

By Lemma 2 and Rayleigh-Ritz theorem, we want the following to hold on Lg:

2'Lgx >0, V0 # z € R¥ 2'1; = 0. (22)
By Lemma 8, the above condition can be converted into:

Ls + 71,1}, = ely, (23)

where vk > €. Now we place this LMI back to the large matrix and notice the fact that:

diag(M1,) = ( ké’“ 8 ) , (24)
the equivalent LMI for the large matrix is:
diag (Ao M)1,) — (Ao M) +~M > %diag(Mln), (25)
where vk > € should be satisfied. Let € = vk, and the proof is done. ]
Proof of Corollary 4:

Proof. Let v = Aa(Ag)/k. Then every S satisfying Q(M;~) = 0 and diag(M)'1,, = k is connected by Thm.3
and of size k. So S € Ay.

On the other hand, for any S € Ay, A\2(S) > Aa(Ag) > vk. From the proof of Thm.3, the indicator matrix M
corresponding to S satisfies Q(M;~) = 0 and diag(M)'1,, = k. Proof is done.
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Proof of Lemma 5:
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Proof. If M € {0,1}"*", by constraints of Eq.(10), M;; = 1 if and only if M;; = 1 and M;; = 1. Thus
M = diag(M)diag(M)" is rank-1.

On the other hand, if M is rank-1, or M = ff’, . Consider any two non-zero entries of f: f; =a #0, f; =b#0.
Then by M;; < min{M;;, M;;}, we have a = b. So every non-zero entry of f is equal. The node with M;; =1
ensures that all non-zero entries of f is 1. Proof is done. O

Proof of Theorem 6:

Proof. For part (a), assume on the contrary that the support of diag(M) is disconnected: S = C'U C, where
C=8-C. Let |S|=k,|C| =k1,C = ky. W.lo.g. assume M;; = 1, and C consists of nodes {1,2, ...,k }.

Consider the k x k sub-matrix Qg of @) corresponding to S, since the rest part are all 0. Now we use the vector
g = [1k1§ _1k2] to hit Qsi

' Qsg = ¢ (diag (As o Ms)1,) — (As o Mg)) g — vg' (diag (Ms1,) — Mg) g > 0. (26)

Note that Ag has the form:

([ Ac O
where the off-diagonal block is zero because by assumption C' and C' is disconnected. Then:
. INJC 0
dmg((ASoMS)ln) — (ASOMs) = 0 E* 5 (28)
c

where L¢ is the Laplacian matrix of C weighted by Mc. Notice it still holds that i/C]-kl = 0. This means
g’ (diag ((As o Ms)1,) — (As o Ms)) g = 0.

On the other hand, let diag (Mg1,,) — Mg be:
) L, L
diag (Msl,) — Mg = ( L/l L3 ) - (29)
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Using g1 = [14,;0] and g2 = [0;14,] to hit Qg will yield: 1} Li1;, = 0 and 1}, L1y, = 0. Apparently
g (diag (Ms1,) — Mg) g > 0 due to positive semi-definiteness of Laplacian matrix. If it’s strictly positive, proof
is done. Otherwise this means 1 Ls1;, = 0. Note that all entries of L3 are either 0 or negative due to non-
negativity of Mg. This means Ls = 0, or equivalently M;; = 0 for any 7 € C,j € C. But this can not happen,
because My = 1 and My; > 1+ M;; — 1 = M;; > 0 for any j € C. Contradiction!

Part (b) is straightforward by using ¢ = 1¢ — 14 to hit Qg. Proof is done. |
Proof of Proposition 7:

Proof. The proof is similar to the proof of Thm.6, by using g = 1¢, — 1¢, to hit Q. ]



