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Abstract

We characterize the family of connected sub-
graphs in terms of linear matrix inequali-
ties (LMI) with additional integrality con-
straints. We then show that convex relax-
ations of the integral LMI lead to parameter-
ization of all weighted connected subgraph-
s. These developments allow for optimizing
arbitrary graph functionals under connectiv-
ity constraints. For concreteness we consider
the connected sub-graph detection problem
that arises in a number of applications in-
cluding network intrusion, disease outbreak-
s, and video surveillance. In these applica-
tions feature vectors are associated with n-
odes and edges of a graph. The problem is
to decide whether or not the null hypothe-
sis is true based on the measured features.
For simplicity we consider the elevated mean
problem wherein feature values at various n-
odes are distributed IID under the null hy-
pothesis. The non-null (positive) hypothesis
is distinguished from the null hypothesis by
the fact that feature values on some unknown
connected sub-graph has elevated mean.

1 Introduction

We consider a connected graph G = (V,E) where n-
odes v ∈ V are associated with features values xv that
follow some statistical distribution. Our goal is to opti-
mize some objective function of the feature values over
all connected sub-graphs. To motivate this scenario
consider the disease outbreak problem [1] depicted in
Fig.1. Here a cholera outbreak along a winding river
can lead to elevated numbers for cases in those counties
near the river, which form a connected cluster in the
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graph representing geographical counties. Moreover,
this region can be irregularly shaped as seen in Fig.1.
Many other problems arising in network intrusion and
video surveillance share similar features.

Figure 1: Graph representation of perhaps a cholera out-
break along a winding river floodplain, where each cell rep-
resents a county. The corresponding region forms a con-
nected and irregularly shaped cluster. In the upper panel,
nodes represent counties, with adjacent counties linked by
edges. Dotted circles depict conventional scanning meth-
ods [2]. The figure on the lower panel is from [1].

This problem is known to be difficult [1, 3], because
there does not exist systematic ways of characterizing
the family of connected sub-graphs on a general graph.
Existing approaches deal with this issue by optimiz-
ing some cost function over a sub-class of well-defined
connected sets. For instance, scanning methods that
optimize over rectangles, circles or neighborhood balls
[2, 4] across different regions of the graphs are often
employed. However, it has been recognized that this
can result in loss of detection power [1].

The main contribution of this paper is to characterize
the family of connected sub-graphs in terms of linear
matrix inequalities. We present a convex parameteri-
zation of all weighted connected sub-graphs. In addi-
tion when integral constraints on the variables are im-
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posed we show that that they result in a parameteriza-
tion of all unweighted connected sub-graphs. These de-
velopments allow for optimizing arbitrary graph func-
tionals under connectivity constraints. For concrete-
ness we consider the connected subgraph detection
problem that has recently been the subject of exten-
sive study ([5, 6, 7, 3, 8, 9]). The problem is to decide
whether or not the null hypothesis is true based on
the measured features. For simplicity we consider the
problem wherein feature values across the nodes are
distributed IID under the null hypothesis. The non-
null (positive) hypothesis is distinguished from the null
hypothesis by the fact that feature values on some un-
known connected sub-graph follows a different distri-
bution. Much of this literature focuses on statistical
decision aspects of the problem and usually only con-
sider relatively simple graphs such as lines, lattices or
trees, and optimize over relatively simple sub-graphs
such as rectangles, balls or some other low-dimensional
parametric shapes. In [10, 2, 11] general graphs are
considered yet the connected shapes are still relatively
simple. To deal with more complex shapes [12, 13] sug-
gest a heuristic simulated annealing algorithm but this
method requires multiple starts and often needs many
iterations to achieve the global optimum. Recently,
[14], has proposed a spectral scan statistic method
which is based on graph regularization. While this
method does not necessarily restrict shapes of con-
nected sub-graphs, it has other disadvantages. Sub-
graphs are obtained by virtue of graph partitioning.
The graph partitions are not necessarily connected.
Furthermore, graph regularization favors balanced size
partitions and partitions with small conductance. In
contrast our method guarantees connectivity and al-
lows for arbitrarily shaped connected sub-graphs.

The paper is organized as follows. In Sec.2 we in-
troduce the problem setup and list some examples of
detection objectives that fit into our setup. We then
focus on the problem of anomalous cluster detection
under Gaussian model in Sec.2.1. In Sec.3 we charac-
terize the sufficient and necessary condition for exact
connectivity of a sub-graph in terms of an integral LMI
constraint. We then relax it into an SDP constraint
and show some nice properties of it. In Sec.4 we dis-
cuss several alternative approaches. Experiments on
synthetic and real data sets are reported in Sec.5.

2 Problem Setup

Let G = (V,E) denote an undirected unweighted
graph with |V | = n nodes and |E| = m edges. Let S ⊆
V be some subset of nodes. Define the indicator vector
of S: f = f (S) : V → {0, 1}n, fi = 1 for i ∈ S and 0
otherwise. Let Λ be the collection of all sub-graphs of
G that are connected: Λ = {S ⊆ V : S is connected}.

Let A denote the adjacency matrix of G. D is the
degree matrix D = diag(d) where d is the degree vec-
tor, di =

∑
j Aij . L = D − A is the unnormalized

graph Laplacian matrix of G. GS = (S,ES) denotes
the induced sub-graph of G on S, with AS , DS , LS the
corresponding adjacency, degree and Laplacian matri-
ces of GS . 1n denotes n-dim all-one vector. diag(x)
is the diagonal matrix with diagonal entries equal to
x; diag(A) denotes the vector of diagonal entries of
matrix A. A ◦ B denotes element-wise matrix multi-
plication: (A ◦B)ij = AijBij .

We are concerned with the following problem of op-
timizing some cost function c(·) on connected sub-
graphs S ∈ Λ in G:

max
S∈Λ

: c(S) = c(f (S)). (1)

Notice that generally this problem is hard to solve.
In fact, the prize-collecting Steiner Tree problem with
equal edge cost can be reduced to Eq.(1), and is known
to be NP-hard [15].

We present some examples to motivate this setup.

(1) Positive Elevated Mean Scan Statistic: The
scan statistic for a connected cluster S is:

η(S) =
1√|S|

∑
i∈S

xi ⇒ c(f) =
f ′x√
f ′1n

(2)

where xi is the observation at node i. This statis-
tic corresponds to the generalized likelihood ratio test
(GLRT) in many contexts for 1-parameter exponen-
tial family models. The Gaussian case has a simple
signal interpretation. We associate random variables
with each node as follows:

xi = μ · 1{i∈S} + εi, i ∈ V (3)

where μ > 0 is the signal strength. εi is i.i.d. standard
Gaussian across different nodes. S is some unknown
anomalous cluster which forms a connected compo-
nent, S ∈ Λ. The aim is to decide between the null
hypothesis H0 : xi ∼ N(0, 1), ∀i ∈ V and the alterna-
tive H1 =

⋃
S∈Λ H1,S , where H1,S : xi ∼ N(μ, 1), ∀i ∈

S;xi ∼ N(0, 1), ∀i /∈ S. [3] has shown that under some
conditions the test of rejecting H0 for large values of
maxS∈Λ : η(S) is statistically optimal or near-optimal
in the minimax sense. The issue here is the computa-
tion of Eq.(1) when c(S) = η(S).

(2) Elevated Mean Scan Statistic: When μ of
Eq.(3) can be either positive or negative, the corre-
sponding scan statistic (GLRT) can be shown to be:

η2(S) = |η(S)| = 1√|S| |
∑
i∈S

xi| (4)

⇒ c(f) =
f ′(xx′)f
f ′1n

=
(xx′) ◦M
trace(M)

(5)
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where M = ff ′.

(3) General graph functionals: The techniques de-
veloped here generalize to objectives that involve both
node and edge features on connected sub-graphs S.
We can incorporate this by means of a node indicator
vector f , and generalizing it to edge indicator by using
quadratic variants such as: fifj = 1 for i ∈ S, j ∈ S,
(i, j) ∈ E, and 0 otherwise.

2.1 Optimizing Scan Statistic for Positively
Elevated Mean

We need to solve: maxS∈Λ η(S) of Eq.(2). Note that
η(S) = η(f) is not even concave in binary variables f .
We propose to convexify the objective by transforming
it into a 2-step procedure. This procedure involves
first solving a family of sub-problems parameterized in
size of S, followed by a model selection step. Convex
relaxation on f will be presented in Sec.3.

Algorithm 1: Scan Statistic Computation
Input: observations {x1, . . . , xn} associated with n
nodes, adjacency matrix A, size parameter set K.

1. For different values of k ∈ K, solve the following
sub-routine conditioned on the size:

max
S∈Λ

:
∑
i∈S

xi = f ′x s.t. |S| = f ′1n ≤ k (6)

Let S(k) denote the result with parameter k.

2. Select the best cluster in terms of the scan statistic
objective among different k:

S∗ = arg max
S(k),k∈K

: η(S(k)). (7)

Output: the selected connected cluster S∗.

The following lemma describes the efficacy of the pro-
cedure above.

Lemma 1. Let S0 = argmaxS∈Λ η(S) denote the op-
timal solution. If |S0| ∈ K, then S∗ = S0.

Note that now the objective for fixed size is linear in
f ; since the parameterization only requires an addi-
tional linear constraint. The remaining issue is how to
characterize the connectivity condition S ∈ Λ.

3 Characterizing Exact Connectivity

In Sec.3.1 we first propose an exact characterization of
connectivity constraint S ∈ Λ through a linear matrix
inequality (LMI) in terms of the binary indicator vec-
tor f . We then relax it into a convex SDP constraint
in Sec.3.2. In Sec.3.3 we show that the empirical solu-
tion of our convex relaxation guarantees connectivity
as well as satisfies some nice properties, which then
leads to a simple rounding scheme.

3.1 Integer Program Characterization

To deal with connectivity we recall the following lem-
ma from spectral graph theory [16], which elegantly
transforms the combinatorial “connectivity” notion in-
to algebraic conditions:

Lemma 2. Let G be an undirected graph with the un-
weighted adjacency matrix A and the graph Laplacian
matrix L. Then the multiplicity p of the eigenval-
ue 0 of L equals the number of connected components
C1, . . . , Cp of the graph.

We want to guarantee the connectivity of the sub-
graph selected by some indicator f ∈ {0, 1}n. The next
theorem characterizes necessary and sufficient condi-
tions for sub-graph connectivity in terms of an LMI
constraint.

Theorem 3. Given a graph G = (V,E) with un-
weighted adjacency matrix A, let S ∈ V be the node
set selected by f ∈ {0, 1}n. Denote M = ff ′. Then
S forms a connected sub-graph of G if and only if for
some positive scalar γ the following LMI holds:

Q(f ; γ) = Q(M ; γ) � 0, (8)

where Q(M) = diag ((A ◦M − γM)1n)−A◦M+γM .

The proof of Thm.3 involves deriving an expression
of the Laplacian matrix LS of the sub-graph induced
by S using the indicator f . Then based on Lemma.2,
we apply the Courant-Fischer theorem to characterize
the 2nd smallest eigenvalue of LS . Finally, we apply
Finsler’s Lemma to convert the condition into an LMI.
Details of the proof can be found in supplementary
section.

Notice that the LMI constraint Eq.(8) is linear in M .
The non-convexity arises from integrality constraint
on M which we will relax into convex constraints in
the next section. Another point that needs clarifica-
tion is the role of γ in Eq.(8). This is described in
the following corollary. Define λ2(S) to be the sec-
ond smallest eigenvalue of the Laplacian matrix of S:
λ2(S) = λ2(LS).

Corollary 4. Let Λk be the collection of arbitrari-
ly connected clusters of size k: Λk = {S ⊂ V :
S is connected, |S| = k}. Let λ2(Λk) = minS∈Λk

:
λ2(S). M is as defined in Thm.3. Then Λk is fully
characterized by:

Λk = {S ⊂ V : Q(M ; γ) � 0, diag(M)′1n = k}, (9)

where γ ≤ λ2(Λk)/k.

Remark: (1) Thus solving an integer program with
the above constraints on the integer variable M is e-
quivalent to searching for clusters within Λk on the
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graph. In other words, γ and k parameterize the col-
lection of arbitrarily connected sub-graphs of G. (2)
It is well-known that λ2(S) [16] characterizes how well
S is connected. γ sets a lower bound on λ2(S). Intu-
itively larger γ favors ”thicker” clusters.

3.2 Convex Relaxation

Note that the symmetric matrix variableM in the con-
nectivity constraint Eq.(8) is binary and has rank one:
M = ff ′, f ∈ {0, 1}n. We can relax these non-convex
constraints leading to the following convex relaxation
to the IP constraint Eq.(8):

Q(M ; γ) � 0

0 ≤ Mij ≤ min{Mii,Mjj} ≤ 1 (10)

Mij −Mii −Mjj + 1 ≥ 0

It is easily seen that every binary rank-one matrix M
satisfies the above linear constraints. Surprisingly with
a small additional constraint the converse is true as
well.

Lemma 5. Let M be any symmetric matrix belonging
to the set described by the constraints in Eq.(10). If M
is binary, i.e., M ∈ {0, 1}n×n, then M has rank-one.
Conversely, if M has rank-one with some node having
Mii = 1, then M is binary.

3.3 Guarantees on Connectivity & Rounding

We now show that with an additional condition, the
support of diag(M) is guaranteed to be connected and
satisfies additional properties.

Theorem 6. Let M be an element of the set described
by constraints in Eq.(10) with some diagonal element
Mii = 1. Let S = {i ∈ V : Mii > 0} be the support of
diag(M). Then:
(a) S forms a connected sub-graph of G.
(b) The induced weighted sub-graph MS satisfies the
following property for any C ⊂ S,

cut
(
C, C̄

)
min{vol(C), vol(C̄} ≥ γ, (11)

where C̄ = S − C, cut
(
C, C̄

)
=

∑
i∈C,j∈C̄,(i,j)∈E Mij,

vol(C) =
∑

i∈C Mii.

The proof can be found in supplementary section.

Remark: (1) The additional condition Mii = 1 can
be imposed when one wants to search for a connect-
ed cluster around some particular node i. We observe
that by virtue of optimizing an objective function there
are usually many diagonal components that achieve
this value and so this is usually unnecessary. (2) Note
that to generate a sparse support one can also add

an L1 penalty on diag(M), or equivalently a size con-
straint diag(M)′1n ≤ k, as will be done in our experi-
ments. (3) If we viewM as weights on nodes and edges
of G, then (b) shows that empirically γ lower bound-
s the weighted conductance of S. Larger γ generates
thicker clusters.

Typically for any relaxation of a combinatorial op-
timization problem, some heuristic rounding step is
required to convert the continuous solution back to
a combinatorially feasible solution. Here we need a
rounding scheme to convert diag(M) of Eq.(10) back
to an unweighted connected cluster of G. Instead of
directly using the support of diag(M), we use an alter-
native refinement strategy that often leads to a better
discrete solution. The next proposition naturally mo-
tivates such a scheme.

Proposition 7. Let M be a symmetric matrix belong-
ing to the set described by constraints in Eq.(10) and
S the support of diag(M). Consider any two disjoint
connected clusters C1, C2 ∈ S. Consider any link (i, j)
such that i ∈ C1, j ∈ C2, we have,

Mii (Mjj) ≥ γmin{nC1 , nC2}, (12)

where nC denotes the number of 1’s in {Mii : i ∈ C}.

Figure 2: Demonstration of Prop.7.

Remark: Fig.2 depicts the geometric meaning of
Prop.7. On a 5 × 6 grid assume all colored nodes
(black,blue,yellow) form the support of diag(M) which
is some element described by Eq.(10). Black nodes
denote those with Mii = 1. Prop.7 guarantees that
all blue nodes have at least Mii ≥ γ. In particu-
lar, let C1 = {(2, 2), (2, 3), (2, 4), (3, 4), (3, 5)}, C2 =
{(4, 3), (4, 4), (5, 3)}. The only edge between C1 and
C2 is ((3,4),(4,4)). By Prop.7 these two nodes will
both have Mii ≥ 2γ. On the other hand, yellow nodes
may have small Mii values, indicating smaller contri-
bution to the objective c(M).

Intuitively on the support of diag(M), the nodes in
the region ”spanned” by those with Mii = 1 (black
and blue) are guaranteed to have large values of Mii.
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This suggests that a better scan statistic can often
be obtained by discarding those nodes outside of this
region. This motivates the following heuristic round-
ing step for refining S = supp(diag(M)) leading to a
rounded combinatorial solution to Eq.(1):

Algorithm 2: Rounding
Input: continuous solution diag(M).

1. Let S = {i : Mii > 0}| with L = |S|. Sort v ∈ S
in descending order: Mv1 ≥ . . . ≥ MvL .

2. For l = 1, 2, . . . , L, do:

• Let Vl = {v1, . . . , vl}. Note that Vl may not
be connected.

• Apply a depth-first search (DFS) from v1
within Vl to find the connected cluster Sl con-
taining v1.

3. Among {Sl, l = 1, 2, . . . , L}, select the best clus-
ter: S∗ = argmaxl : c(Sl).

Output: the selected connected cluster S∗.

Remark: Truncating the sorted list of nodes is e-
quivalent to thresholding Mii. By Thm.6 and Prop.7,
thresholding at γ guarantees that the depth-first
search starting from any node with Mii = 1 finds the
region spanned by all nodes with Mii = 1. Optimiz-
ing over thresholds generates larger families of rounded
discrete solutions leading to better objective values.

4 Alternative Approaches

Typical scan statistic methods scan parametric shapes
such as rectangles, circles in spatial graphs or neigh-
borhood balls in general graphs.

Simulated Annealing: Currently the simulated an-
nealing algorithm [12] is the only algorithm capable
of searching for arbitrary shaped connected clusters.
This algorithm propagates a region by making heuris-
tic choices based on adding/removing nodes.

An alternative approach is to augment objective func-
tion with regularization terms. This imposes smooth-
ness conditions on graph structures by adding graph
regularization terms. We experiment with these meth-
ods and describe them briefly here.

Edge-lasso regularization: This has been pro-
posed recently by [9] to directly estimate the signal
by penalizing an edge-lasso regularization term:

min
x̂

: ||x− x̂||2 + λ||Bx̂||1, (13)

where B is the oriented incidence matrix of G(V,E),
defined as: for each undirected edge e(u, v) ∈ E, ran-
domly define an orientation e+ = u, e− = v and con-
struct B ∈ {−1, 0, 1}|E|×|V | with Be,i = 1 if i = e+, -1

if i = e− and 0 otherwise. We denote this method by
L1R-a since it penalizes the L1 norm of differences of
edges. A variant of this is to augment the edge-lasso
penalizing term to our objective Eq.(6):

min
0≤f≤1

: −f ′x+ λ||Bf̂ ||1, s.t. f ′1n ≤ k (14)

We denote this method as L1R-b.

Graph Laplacian regularization: [14] proposes a
graph Laplacian regularization method to search for
anomalous clusters with small RatioCut values. How-
ever, their framework only works when the size of the
cluster is completely balanced, i.e. approximately n/2.
This method in our setting amounts to adding a graph
Laplacian regularizing term to Eq.(6):

min
0≤f≤1

: −f ′x+ λf ′Lf, s.t. f ′1n ≤ k. (15)

We denote this method by L2R.

Notice that none of the above three regularization
methods explicitly imposes connectivity. So we apply
the same heuristic rounding step (Algorithm 1) to the
continuous result (x̂ for L1R-a, f for L1R-b and L2R)
as described in Sec 4.2 to generate connected clusters.

5 Experiments

In this section we present experiments on both syn-
thetic and real data sets. We compare our exact con-
nectivity (EC) method (Algorithm 2) against scanning
with simple families of shapes such as rectangles and
neighborhood balls. We then compare against simulat-
ed annealing (SA) and graph regularization methods
(Sec.4) that do not explicitly parametrize the shapes.
For our EC method we vary k and γ and obtain the
best solution through the model selection step of Al-
gorithm 2. For rectangle scanning (Rect) on lattice,
we enumerate all possible rectangles and choose the
region with maximum value of scan statistic. For the
neighborhood ball (NB) scanning method on general
graphs, we enumerate each node v and scan its k-hop
neighborhood balls Nv(k) = {u ∈ V : d(u, v) ≤ k}
with different values of k, where d(u, v) is the shortest
hop distance from u to v. For the simulated annealing
algorithm we start the search from a randomly select-
ed node with 50 retries. For the graph regularization
methods we vary the trade-off coefficient λ and size
parameter k and optimize the scan statistic.

Toy Example: The ground truth on a 48-node grid
is shown in Fig.3(a). The input x is noiseless: xv = 1
for red nodes and 0 elsewhere. In this case the global
optimal solution with maximum scan statistic (Eq.(2))
is the smallest connected cluster linking two parts, as
shown in Fig.3(c). xv = 0 at position (3,5) simulates
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(a) ground-truth (b) EC (c) r-EC(OPTIMAL) (d) r-EC (k = 8)

(e) r-EC (large γ) (f) L1R-a(small λ) (g) L1R-a(large λ) (h) r-L1R-a(large λ)

(i) L2R(small λ) (j) r-L2R(small λ) (k) L2R(large λ) (l) Rectangle

Figure 3: Recovery for toy example by EC, L1R-a, L1R-b, L2R and Rect. Blue-red plots (“r-” means rounded) are
discrete results after rounding; grey-scale plots are continuous results. (a) shows ground truth. EC links two separated
parts and yields a very clean and sparse continuous result (b), which is then rounded to the GLOBALLY OPTIMAL
result of (c). (d) shows recovery of only left part when k is restricted. (e) shows “thick” recovery for larger γ. L1R-a
(similarly for L1R-b) with small λ completely ignores connectivity in (f), and is over-regularized with large λ as in (g,h).
L2R with small/large λ tend to include irrelevant nodes for thick clusters as in (i-k).

the effect of a node with very poor SNR. It turns out
for this example one has to recover both sub-clusters
accurately to maximize the scan statistic value.

Various algorithms including rectangle scanning,
graph regularizations, L1R-a, L1R-b, L2R, are com-
pared against our EC method. For L1R-a, L1R-b and
L2R we solve Eq.(13,14,15) with k = 13 and various
values of λ before applying the rounding step. For
EC we vary k and γ to demonstrate the effect of size-
constraints and recovery.

Fig.3(b) shows that EC with k = 12.5, γ = 0.005 gen-
erates a clean and sparse continuous solution which ef-
fectively links the two disconnected parts and recovers
the optimal cluster in (c) with η(S) = 12/

√
13 = 3.33.

Moreover, EC with size restriction k = 8 recovers the
left part in (d) and recovers thick cluster in (e) with
γ = 0.009. L1R methods with small λ loses connec-
tivity in (f), only recovers the left part of (d) after
rounding with η(S) = 2.83. With large λ L1R meth-
ods tend to generate piece-wise constant solutions (g)
(similar behavior is observed in [9]), and results in poor

recovery (h) with η(S) = 2.75. L2R with small λ tend-
s to include irrelevant nodes for thick clusters (i) and
recovery (j) with η(S) = 2.91. L2R with large λ gen-
erally includes irrelevant nodes (k). All regularization
methods fail to recover irregularly shaped clusters.

Synthetic Experiment: We then conducted detec-
tion experiments for the positive elevated means mod-
el introduced in [3](see Sec.2), on a random geomet-
ric graph (RGG) and a stochastic block model (SBM)
graph. We randomly generate the graphs (64 nodes)
and choose irregular shaped ground-truth anomalous
clusters (17 nodes) for both graphs. Due to space lim-
its we only depict the RGG in Fig.4. For the SB-
M graph we generate two densely connected graph-
s, G1, G2 that are disjoint. We then link nodes of
G1 to nodes of G2 with some small probability. The
anomalous cluster S in this case is chosen to be a
connected sub-graph that stretches from one cluster
to the other. The idea behind this example is that
graph-regularization tend to favor regular shapes, or
“fat/thick” clusters. More importantly our algorithm
attempts to find irregular shapes such that the conduc-
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tance of the sub-graph is approximately larger than γ.
On the other hand graph-regularization schemes are
based on graph-partitioning and attempt to find par-
titions that have low conductance. Consequently, for
a stochastic block model they tend to favor choosing
nodes only from one of the clusters rather than both.

We carry out 300 null/alternative tests respectively,
with fixed noise level σ = 1 and different values of
signal strength μ (Eq.(3)). We illustrate performance
with respect to the normalized SNR: Λ = μ

√|S|/σ
[3]. For each test we randomly generate Gaussian noise
and apply various methods including Rect, NB, L1R-a,
L1R-b, L2R and EC followed by the heuristic rounding
step, while being agnostic to the size, shape or position
of the ground-truth S. For L1R-a, L1R-b, L2R and EC
we try a range of values for λ, k, α, γ and select the best
discrete result. γ ∈ {0.001, 0.002, 0.004, ..., 0.064} for
EC. k ∈ {6, 9, 12, 15, 18, 21, 24, 27} for L1R-b, L2R and
EC. λ ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} for L1R-a,
L1R-b and L2R.

For each SNR setting we then threshold the scan statis-
tic values of various tests with different thresholds for
decision of H0/H1. We then compare decision results
against ground-truth and tabulate AUC performance
in Tab.1. We also tabulate the detection performance
of various methods with FA rate at approximately 10%
in Tab.2 for both RGG and SBM. As argued before EC
is superior on SBM as regularization favors picking n-
odes from one of the clusters. Both tables demonstrate
that our method compares favorably to SA and signif-
icantly outperforms other methods

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Random Geometric Graph Used in Experiment

Recovery for Disease Outbreak Dataset: We ap-
ply our framework for the setting of disease outbreak
detection as in [13]. We use real population data
from the northeastern U.S. geographic counties (129
nodes), including Massachusetts, New York, Vermont,
Maine, New Hampshire, Connecticut and Rhode Is-
land in Fig.5(a,b). The ground truth reveals disease
outbreak in two regions: Lake Ontaria coast (left part
in (a)) and Hudson River region (right part in (a)).

We consider the problem of outbreak detection, where

Table 1: AUC performance of various algorithms with d-
ifferent normalized SNR Λ = μ

√|S|/σ on RGG.

AUC
normalized SNR

3.0 3.5 4.5

RGG

EC 0.8639 0.9158 0.9732
SA 0.8623 0.9123 0.9758
Rect 0.7699 0.8040 0.9195
L1R-a 0.8314 0.8892 0.9640
L1R-b 0.7912 0.8437 0.9561
L2R 0.8481 0.8908 0.9619

Table 2: Detection rate performance of various methods
at false alarm rate of 10%. SA performs similar to EC
and is not shown here. EC significantly outperforms other
methods. RGG is a random geometric graph. SBM refers
to a stochastic block model.

AUC
normalized SNR

3.0 3.5 4.5

RGG

EC 63.9% 79.4% 94.2%
Rect 52.1% 60.2% 79.6%
L1R-a 60.1% 77.8% 91.5%
L1R-b 53.7% 67.3% 82.5%
L2R 55.6% 75.9% 91.8%

SBM

EC 58.6% 77.8% 91.2%
Rect 33.5% 50.2% 73.8%
L1R-a 53.9% 72.9% 88.6%
L1R-b 43.5% 61.6% 85.2%
L2R 52.0% 71.9% 87.9%

the clusters consist of adjacent counties forming con-
nected sub-graphs, under the Poisson model. The
number of disease cases ci within county i is a Pois-
son random variable with parameter Niλi, where Ni

is the population of county i and λi = μ0 for normal
counties and λi = μ1 > μ0 for anomalous counties.
μ0 is assumed to be known, which in reality can be
estimated by the average rate over years. μ1 is un-
known. We are interested in distinguishing between
the null hypothesis H0 : ci ∼ Poisson(Niμ0), ∀i and
the alternative H1 =

⋃
S∈Λ H1,S , where H1,S : ci ∼

Poisson(Niμ1), ∀i ∈ S; ci ∼ Poisson(Niμ0), ∀i /∈ S.
[3] suggests that the following statistic performs well
for rejecting H0 for large values:

G(S) =

√∑
i∈S

Ni

(( ∑
i∈S ci∑
i∈S Ni

)
− μ0

)
(16)

⇒ G(f) =

(
f ′C√
f ′N

− μ0

√
f ′N

)
, (17)

where N and C are population and case vectors across
the counties and f is indicator of S. While non-convex
in f , G(f) is monotonic in f ′N ; this enables us to ap-
ply exactly the same convexifying trick on G(f) as
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(b) Observed case rate
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Figure 5: (a) shows the county map of northeastern U.S. including 7 states, with ground-truth clusters corresponding to
Lake Ontaria Coast (left) and Hudson River region (right). (b) shows the observed case/population rates of each county.
(c) plots the scan statistic G vs. population constraint parameter k, which has two flat parts, the lower shown in (d) and
the higher in (e). We set Mii = 1 of the black county which has the highest case/population rate, indicating we want to
search for connected regions around this county.

described in Sec. 2.1 and convert this into an equiv-
alent 2-step procedure. Thus we can apply the same
Algorithm 2, with the following modified sub-routine:

max : diag(M)′C (18)

s.t. Q(M ; γ) � 0

0 ≤ Mij ≤ min{Mii,Mjj} ≤ 1

Mij −Mii −Mjj + 1 ≥ 0

diag(M)′N ≤ k

and the modified selection criterion c(S) = G(S) in
step 2,3 of Algorithm 2.

For simulation a benchmark dataset (numbers of dis-
ease cases for both H0 and H1) is first constructed
using real data population. Specifically, we generate
the numbers of disease cases ci in each county i ac-
cording to Poisson distribution with parameter Niλi,
where λi = μ0 = 5 × 10−5 for normal counties and
λi = μ1 = 4μ0 for anomalous counties. Fig.5(b) shows
the empirical case/population rates of each county. We
then apply our algorithm to detect the outbreaks. By
Thm.6 our method needs a seed node. For this we
pick the county with the largest incidence rate, which
is colored black in (d,e) as shown. We then search for
connected regions around this most severe county. We
plot the scan statistic G against the population thresh-
old parameter k of Eq.(18) in (c). This curve has two
flat regions, with the lower one corresponding to Lake
Ontaria coast in (d), and the higher one corresponding
to the globally optimal cluster in (e) which links Lake
Ontario coast with Hudson River region.

Discussion:
(1) Our method finds irregularly-shaped connected
clusters as is claimed in Thm.6. Even when the op-
timal cluster consists of two disconnected clusters, by
Prop.7 our algorithm is able to select the two counties
linking Lake Ontario coast with Hudson River region,
yielding the globally optimal result (e).
(2) By restricting the size, multiple clusters are iden-
tified as seen in the statistic-size plot. Our method
allows estimating multiple outbreak regions with dif-
ferent sizes.
(3) Other alternative methods have various drawbacks.
SA only realizes the large cluster and is not sufficient-
ly flexible to deal with multiple outbreak regions. In
addition our recovery results also appear to be sparse
and clean in comparison to any other regularization
method (which are not presented here due to lack of
space), which typically contain large number of false
alarms (i.e. counties that are not part of the outbreak).
(4) Our method can deal with up to 300 nodes using
sedumi/cvx under matlab environment. Computation
complexity for solving SDP problems has been a barri-
er for many machine learning algorithms [17, 18]. For
scalability to larger graphs, a divide-and-conquer s-
trategy can be applied; our approach can be used in
2nd stage for locally refined search.

Acknowledgements

This work was partially supported by NSF Grant
CCF-1320547 and U.S. Department of Homeland Se-
curity under Award Number 2008-ST-061-ED0001.

803



Jing Qian, Venkatesh Saligrama, Yuting Chen

References

[1] G. P. Patil and C. Taillie. Geographic and net-
work surveillance via scan statistics for critical
area detection. In Statistical Science, volume 18,
pages 457–465, 2003.

[2] L. Pickle M. Kulldorff, L. Huang and L. Duczmal.
An elliptic spatial scan statistic. In Statistics in
Medicine, volume 25, 2006.

[3] E. Arias-Castro, E. J. Candes, and A. Durand.
Detection of an anomalous cluster in a network.
In The Annals of Statistics, volume 39, pages 278–
304, 2011.

[4] D. J. Marchette C. E. Priebe, J. M. Conroy and
Y. Park. Scan statistics on enron graphs. In Com-
putational and Mathematical Organization Theo-
ry, 2006.

[5] L. Devroye Addario-Berry, N. Broutin and G. Lu-
gosi. On combinatorial testing problems. In The
Annals of Statistics, volume 38, pages 3063–3092,
2010.

[6] D. Donoho E. Arias-Castro and X. Huo. Near-
optimal detection of geometric objects by fast
multiscale methods. In IEEE Transactions on In-
formation Theory, volume 51, pages 2402–2425,
2005.

[7] H. Helgason E. Arias-Castro, E. J. Candes and
O. Zeitouni. Searching for a trail of evidence in
a maze. In The Annals of Statistics, volume 36,
pages 1726–1757, 2008.

[8] R. Nowak A. Singh and R. Calderbank. Detect-
ing weak but hierarchically-structured patterns in
networks. In AISTATS, 2010.

[9] A. Rinaldo J. Sharpnack and A. Singh. Sparsis-
tency of the edge lasso over graphs. In AISTATS,
volume 22, pages 1028–1036, 2012.

[10] J. Naus J. Glaz and S. Wallenstein. Scan Statis-
tics. Springer, New York, 2001.

[11] D. J. Marchette and C. E. Priebe. Scan statistic-
s for interstate alliance graphs. In Connections,
volume 28, pages 43–64, 2008.

[12] L. Duczmal and R. Assuncao. A timulated anneal-
ing strategy for the detection of arbitrarily shaped
spatial clusters. In Computational Statistics and
Data Analysis, volume 45, pages 269–286, 2004.

[13] M. Kulldorff L. Duczmal and L. Huang. Eval-
uation of spatial scan statistics for irregularly
shaped clusters. In Journal of Computational and
Graphical Statistics, volume 15, pages 428–442,
2006.

[14] A. Rinaldo J. Sharpnack and A. Singh. Change-
point detection over graphs with the spectral scan
statistic. In arXiv: 1206.0773v1, 2012.

[15] D. S. Johnson, M. Minkoff, and S. Phillips. The
prize collecting steiner tree problem: theory and
practice. In ACM-SIAM Symp. on Discrete Algo-
rithms, 2000.

[16] F. Chung. Spectral graph theory. American Math-
ematical Society, 1996.

[17] Z. Xu and R. Jin. Efficient convex relaxation for
transductive support vector machine. In NIPS,
2007.

[18] N. Vasconcelos A. B. Chan and G. R. G. Lanck-
riet. Direct convex relaxations of sparse svm. In
ICML, 2007.

804


