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Abstract

In this paper we present cluster canonical cor-

relation analysis (cluster-CCA) for joint dimen-

sionality reduction of two sets of data points.

Unlike the standard pairwise correspondence be-

tween the data points, in our problem each set

is partitioned into multiple clusters or classes,

where the class labels define correspondences be-

tween the sets. Cluster-CCA is able to learn dis-

criminant low dimensional representations that

maximize the correlation between the two sets

while segregating the different classes on the

learned space. Furthermore, we present a kernel

extension, kernel cluster canonical correlation

analysis (cluster-KCCA) that extends cluster-

CCA to account for non-linear relationships.

Cluster-(K)CCA is shown to be computationally

efficient, the complexity being similar to stan-

dard (K)CCA. By means of experimental evalu-

ation on benchmark datasets, cluster-(K)CCA is

shown to achieve state of the art performance for

cross-modal retrieval tasks.

1 Introduction

Joint dimensionality reduction techniques such as Canoni-

cal Correlation Analysis (CCA) [12], Partial Least Squares

(PLS) [23], Bilinear Model [26], Cross-modal Factor Anal-

ysis (CFA) [19] etc. have become quite popular in re-

cent years. These approaches differ from the standard di-

mensionality reduction techniques such as principal com-

ponent analysis (PCA) [5] or linear discriminant analysis

(LDA) [5], as the dimensionality reduction is performed

simultaneously across two (or more) modalities1. Given

a dataset with two paired modalities — where each data

point in the first modality is paired with a data point in

1 It is common to refer to ‘modalities’ as ‘sets’ or ‘views’.
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Figure 1: Representation of various methods to obtain cor-

related subspaces between sets. For each method, the two

sets are shown at the top and the joint projected space at the

bottom where △’ and ’©’ represent two clusters in each

set. (a) CCA: uses pairwise correspondences between sets

and cannot segregate the two clusters, (b) CCA for sets:

computes principal angles between two subspaces and can-

not handle multiple clusters, (c) cluster-CCA: uses all pair-

wise correspondences within a cluster across the two sets

and results in cluster segregation and (d) mean-CCA: com-

putes CCA between mean cluster vectors.

the second modality — these approaches learn a com-

mon low dimensional feature space where representation-

specific details are discarded to yield the common under-

lying structure. Of these, CCA is fast becoming the de

facto standard [19, 21, 22, 24, 27]. CCA has been applied

to several multimedia problems, such as cross-modal re-

trieval [10, 22, 24] — retrieval of data points from a given

modality in response to a query from a different modality,

image segmentation [21], cross-lingual retrieval [27], etc.

CCA has also been successfully kernelized to enable learn-

ing of non-linear relationships in [4, 9].

However, CCA requires paired modalities and can not be

directly applied when either multiple clusters of points in a
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given modality correspond to multiple clusters of points in

another modality, or when the paired modalities are supple-

mented with class labels. Such a scenario arises when, for

each class, several data points are available in two different

modalities which may or may not be paired. For example,

images and web-pages obtained using web search queries

for different class labels. Note that for the case of paired

modalities with class labels, CCA can still be applied ignor-

ing the class labels, however, as shown in Fig. 1(a), CCA

would be ineffective in achieving class discrimination.

In this work, we are interested in the above scenario, where

each set consists of multiple clusters/classes. The corre-

spondences between the sets are established by the class

labels (the sets may or may not be paired). The aim is to

learn a discriminative common low dimensional represen-

tation for the two sets. The contributions of this work are

as follows:

• We propose a very simple, yet effective adaptation

of CCA, referred to as cluster canonical correlation

analysis (cluster-CCA). As shown in Fig. 1(c), in

cluster-CCA all points from one modality within a

class are paired with all points from the other modal-

ity in the same class and thereafter the projections are

learned using the standard CCA framework.

• A naive implementation of cluster-CCA is computa-

tionally infeasible for large datasets, as the number

of pairwise correspondences grows quadratically with

the number of data points per cluster. We present

a formulation of cluster-CCA that is computationally

efficient and grows linearly.

• We also propose mean-CCA, a yet simpler adaptation

of CCA for our task, where the mean vectors per clus-

ter are used to learn the projections. We show that

the fundamental difference between cluster-CCA and

mean-CCA is in the estimation of the within-set co-

variances, which results in significant difference in

their performance.

• Finally, we present a kernelized extension of cluster-

CCA, referred to as cluster kernel canonical corre-

lation analysis (cluster-KCCA) to extract non-linear

relationships between modalities.

The efficacy of the proposed approaches is tested by mea-

suring their performance in cross-modal retrieval tasks on

benchmark datasets. The experiments show that cluster-

(K)CCA is not only superior to (K)CCA but, despite its

simplicity, outperforms other state-of-the art approaches

that use class-labels to learn low dimensional projections.

It is also shown that its performance can be improved

by adding data to a single modality independently of the

other modality, a benefit which is not shared by standard

(K)CCA.

2 Related Work

Several extensions of CCA have been proposed in the liter-

ature [15–17,21,25,28]. One class of modifications aims at

using CCA for supervised dimensionality reduction [1,11].

Given a set of samples with their class labels, CCA is used

to learn a low dimensional representation. The data sam-

ples themselves serve as the first modality and the class

labels as the second. Many variations in how the class la-

bels are used have been proposed [17,21,25]. Nevertheless,

the above approaches are targeted toward a single labeled

modality, and cannot be directly applied for joint super-

vised dimensionality reduction of two labeled modalities.

CCA for matching two sets that are not paired, was pro-

posed in [12]. Canonical vectors are obtained which

minimize the principal angles — the minimal angles be-

tween vectors of two subspaces. Fig. 1(b) shows a simple

schematic representation of ‘CCA for sets’. CCA for sets

has been applied to various problems [15, 16, 28], however

it is only useful for the case where sets are unlabelled, e.g.

to find canonical vectors for a given set of images and text

where all the images and text belong to the same cluster.

It cannot be directly applied to the case where there are

multiple clusters in each set. CCA for sets was modified

for classification of images into multiple classes in [16].

However, this approach too is applicable only to datasets

consisting of a single labeled set.

Recently several approaches have been proposed for joint

dimensionality reduction using class labels. Semantic

Matching (SM) was proposed in [22], where two map-

pings are implemented using classifiers of the two modal-

ities. Each modality is represented as vector of poste-

rior probabilities with respect to the same class vocabulary,

which serves as the common feature representation. Gener-

alized Multivew Linear Discriminant Analysis (GMLDA)

proposed in [24] formulates the problem of finding cor-

related subspaces as that of jointly optimizing covariance

between sets and separating the classes in the respective

feature spaces. The three objective functions are coupled

linearly using suitable constants. Multi-view Discriminant

Analysis (MvDA) proposed in [13] forgoes the free param-

eters by directly separating the classes in the joint feature

space, but it is not clear how correlated the samples from

different modalities are. Weakly-Paired Maximum Covari-

ance Analysis (WMCA) proposed in [18], learns a corre-

lated discriminative feature space without the need for pair-

wise correspondences. However, WMCA is based on max-

imum correlation analysis while the proposed work extends

CCA for a similar problem setting.

3 Canonical Correlation Analysis (CCA)

In this section we briefly review CCA (for a more detailed

introduction to CCA see [10]). Consider two multivariate
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random variables x ∈ ℜDx and y ∈ ℜDy with zero mean.

Let the sets Sx = {x1, . . . ,xn} and Sy = {y1, . . . ,yn},

be paired. CCA aims at finding a new coordinate for x

by choosing a direction w ∈ ℜDx and similarly for y by

choosing a direction v ∈ ℜDy , such that the correlation

between the projection of Sx and Sy on w and v is maxi-

mized,

ρ = max
w,v

w′Cxyv√
w′Cxxw

√

v′Cyyv
(1)

where ρ is the correlation, Cxx = E[xx′] = 1
n

∑n

i=1 xixi
′

and Cyy = E[yy′] = 1
n

∑n

i=1 yiyi
′ are the within-set co-

variance matrices and Cxy = E[xy′] = 1
n

∑n

i=1 xiyi
′ the

between-set covariance matrix, E denoting empirical ex-

pectation. The problem can be reduced to a generalized

eigenvalue problem [10], where w corresponds to the top

eigenvector:

C−1
xx CxyC

−1
yy Cyxw = λ2w (2)

The asymptotic time complexity for CCA is O(nd2) +
O(d3) where d = max(Dx, Dy); O(nd2) for comput-

ing the covariance matrices and O(d3) for matrix multi-

plication, inverse and eigenvalue decomposition. Fig. 1(a)

shows a simple schematic representation of CCA.

Kernel canonical correlation analysis (KCCA), reformu-

lates CCA to extract non-linear relationships using the

“kernel trick” [4, 9, 10],

ρ = max
ω,ν

ω
′KxKyν

√

ω
′K2

xω

√

ν
′K2

yν

(3)

where Kx(ij) = kx(xi,xj), Ky(ij) = ky(yi,yj) are the

n × n kernel matrices, kx() and ky() the kernel functions,

and ω = (ωi, . . . , ωn) ∈ ℜn, ν = (ν1, . . . , νn) ∈ ℜn the

projection coefficients. The optimization problem of (3)

can again be formulated as an eigenvalue problem. Note

that both CCA and KCCA require paired modalities to

learn the common low-dimensional representation.

4 Cluster Canonical Correlation Analysis

Consider two sets of data where each set is divided into

C different but corresponding clusters/classes. Let Tx =
{X1, . . . ,XC} and Ty = {Y1, . . . ,YC}, where Xc =
{xc

1, . . . ,x
c
|Xc|

} and Yc = {yc
1, . . . ,y

c
|Yc|

} are the data

points in the cth cluster for the first and the second set re-

spectively. Similar to CCA, the aim is to find a new coordi-

nate for x by choosing a direction w and for y by choosing

a direction v, such that the correlation between the projec-

tions of Tx and Ty on w and v is maximized and simul-

taneously the clusters are well separated. However, unlike

CCA, a direct correlation between these projections cannot

be computed since the sets Tx and Ty , and therefore their

projections on w and v lack any direct correspondence. To

address this, we propose two solutions viz. mean canoni-

cal correlation analysis (mean-CCA) and cluster canonical

correlation analysis (cluster-CCA).

4.1 Mean Canonical Correlation Analysis

One simple solution is to establish correspondences be-

tween the mean cluster vectors of the two sets. This

yields C vectors per set with one-to-one correspondences.

Given the cluster means µc
x = 1

|Xc|

∑|Xc|
j=1 xc

j and µc
y =

1
|Yc|

∑|Yc|
k=1 y

c
k, mean canonical correlation analysis (mean-

CCA) problem is formulated as,

ρ = max
w,v

w′Vxyv√
w′Vxxw

√

v′Vyyv
(4)

where the covariance matrices Vxy, Vxx and Vyy are defined

as:

Vxy =
1

C

C
∑

c=1

µc
xµ

c
y
′ (5)

Vxx =
1

C

C
∑

c=1

µc
xµ

c
x
′ (6)

Vyy =
1

C

C
∑

c=1

µc
yµ

c
y
′ (7)

The asymptotic time complexity for mean-CCA is

O(Cd2) +O(d3). Fig. 1(d) shows a simple schematic rep-

resentation of mean-CCA.

4.2 Cluster Canonical Correlation Analysis

In cluster canonical correlation analysis (cluster-CCA), in-

stead of establishing correspondences between the cluster

means, a one-to-one correspondence between all pairs of

data points in a given cluster across the two sets is estab-

lished and thereafter standard CCA is used to learn the pro-

jections. Fig. 1(c) shows a simple schematic representation

of cluster-CCA. The cluster-CCA problem is formulated

as,

ρ = max
w,v

w′Σxyv√
w′Σxxw

√

v′Σyyv
(8)

where the covariance matrices Σxy,Σxx and Σyy are de-

fined as:

Σxy =
1

M

C
∑

c=1

|Xc|
∑

j=1

|Yc|
∑

k=1

xc
jy

c
k
′ (9)

Σxx =
1

M

C
∑

c=1

|Xc|
∑

j=1

|Yc|xc
jx

c
j
′ (10)

Σyy =
1

M

C
∑

c=1

|Yc|
∑

k=1

|Xc|yc
ky

c
k
′ (11)
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where M =
∑C

c=1 |Xc||Yc|, is the total number of pairwise

correspondences. Similar to CCA, the optimization prob-

lem of (8) can be formulated as an eigenvalue problem.

Note that, for both mean-CCA and cluster-CCA, we as-

sume that covariance matrices are computed for zero mean

random variables2.

4.2.1 Computational Complexity

The asymptotic complexity of cluster-CCA is O(Md2) +
O(d3) where M is the number of pairwise correspondences

and d = max(Dx, Dy); O(Md2) to compute the between

set covariance matrix in (9) and O(d3) for matrix multi-

plication, inverse and eigenvalue decomposition. Since M
grows quadratically with the number of examples per clus-

ter (for example when |Xc| = |Yc| = L, M = CL2),

cluster-CCA becomes computationally infeasible for large

datasets. However (9) can be reformulated as the covari-

ance matrix of the vector of cluster means,

Σxy =
1

M

C
∑

c=1

|Xc||Yc|µc
xµ

c
y
′ (12)

This reduces the computational complexity of cluster-CCA

to O(kd2) + O(d3) where k = max(
∑

c |Xc|,
∑

c |Yc|),
thereby growing linearly with the number of data points.

In summary, although a naive implementation of cluster-

CCA can be computationally prohibitive for large datasets,

the reformulation of (12) makes it efficient.

4.2.2 Cluster-CCA vs Mean-CCA

From the covariance matrices of various methods, two ob-

servations can be made. First, after the reformulation of (9)

to (12), the between-set covariance matrix Σxy of cluster-

CCA bears close resemblance to the between-set covari-

ance matrix Vxy of mean-CCA (both being equal, modulo

the normalization, when |Xc| and |Yc| are class indepen-

dent). Second, the within-set covariance matrices Σxx and

Σyy of cluster-CCA in (10)-(11), bear close resemblance

to the within-set covariance matrices Cxx and Cyy of CCA

(again, both being equal, modulo the normalization, when

|Xc| and |Yc| are class independent).

This suggests that, the fundamental difference between

mean-CCA and cluster-CCA is in the estimation of the

within set covariance matrices. For mean-CCA they are

estimated using the cluster means, effectively ignoring the

rich information present in the data points themselves. For

cluster-CCA, unlike mean-CCA, they they are estimated

using all the data points as in CCA. As we shall see, this

fundamental difference between mean-CCA and cluster-

CCA, causes significant improvement in performance of

cluster-CCA over mean-CCA.

2Thus in practice the sample means need to be adjusted ac-
cordingly.

4.3 Cluster Kernel Canonical Correlation Analysis

Similar to KCCA, cluster-CCA can also be extended to dis-

cover non-linear relationships between the two sets using

non-linear projections of the data onto high dimensional

spaces. Using the kernels functions kx() and ky(), cluster

kernel canonical correlation analysis (cluster-KCCA) can

be formulated as,

ρ = max
ω,ν

ω
′Rxyν√

ω
′Rxxω

√

ν
′Ryyν

(13)

Rxy =
1

M

C
∑

c=1

(

|Xc|
∑

j=1

Kc
xj)(

|Yc|
∑

k=1

Kc
yk)

′ (14)

Rxx =
1

M

C
∑

c=1

|Xc|
∑

j=1

|Yc|Kc
xjK

c
xj

′ (15)

Ryy =
1

M

C
∑

c=1

|Yc|
∑

k=1

|Xc|Kc
ykK

c
yk

′ (16)

where Kc
xj =

[

. . . , kx(x
c
j ,xi), . . .

]′
and Kc

yk =

[ . . . , ky(y
c
k,yi), . . . ]

′
, where i indexes the data points

in Tx and Ty for Kc
xj and Kc

yk respectively. Similar to

KCCA, the optimization problem of (13) can be reformu-

lated as an eigenvalue problem. The computational com-

plexity of both KCCA and cluster-KCCA is O(N3).

5 Experiments

In this section we present experimental evaluation

for cluster-(K)CCA using cross-modal retrieval tasks.

Precision-recall (PR) curves and mean average precision

(MAP) scores are used for evaluation (except for the HFB

dataset where rank-1 recognition is the standard). A re-

trieved item is considered to be correct if it belongs to the

same class (cluster) as that of the query.

5.1 Datasets

The evaluation is conducted on five publicly available

datasets, viz. Pascal VOC 2007 [6], TVGraz [14], Wiki

Text-Image Dataset [22], Heterogeneous Face Biometrics

(HFB) [20] and Materials Dataset [18].

Pascal dataset consists of 5011/4952 train/test images and

their annotations divided into 20 classes. The images were

provided by the Pascal challenge [6] and the text annota-

tions were collected in [8]. The image annotation serves

as the text modality and is defined over a vocabulary of

804 keywords. We restrict our experiments to images and

annotations which belong to a single class, reducing the

train/test set to 2954/3192. Of these, some of the anno-

tations are empty, i.e., contain no keywords, thus we form

two different datasets viz. VOC and VOCfull. In VOC, we

remove all the images with empty annotations to maintain a
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(a) CCA Image (b) CCA Text (c) KCCA Image (d) KCCA Text

(a) cluster-CCA Image (b) cluster-CCA Text (c) cluster-KCCA Image (d) cluster-KCCA Text

Figure 2: Low-dimensional mapping of images and text from ‘bus’, ‘car’ and ‘motorbike’ classes of Pascal VOC dataset.

The top row shows the mappings obtained using CCA (left) and KCCA (right). The bottom rows shows the mapping ob-

tained using the proposed cluster-CCA (left) and cluster-KCCA (right) for both images and text (left and right respectively

for each scenario). Notice that cluster-(K)CCA is able to segregate different classes while mapping the two modalities to

have high correlation.

balance between the number of image objects and text ob-

ject (which also helps in comparing to other works). This

yields a total of 1905/2032 train/test images and annota-

tions. In VOCfull we retain the annotation-less images for

training. The test set in VOC and VOCfull is same, en-

abling us to evaluate the performance of cluster-CCA with

respect to adding more data independently to one of the

modalities.

TVGraz dataset was first compiled by Khan et. al. [14],

where web pages were retrieved for ten classes of the

Caltech-256 [7] dataset. Due to copyright issues, the TV-

Graz dataset is stored as a list of URLs and must be re-

compiled by each new user. We collected 2058 images

and text from webpages (out of 2592 URLs), since some

URLs were defunct. This set was randomly divided into

1558/500 train/test.

Wiki dataset was compiled by Rasiwasia et. al. [22] using

the featured articles from the Wikipedia website. It con-

sists of 2173/693 train/test images and text articles from

10 different classes.

HFB dataset consists of four near infrared (NIR) and four

visual (VIS) images for each of the 100 subjects (classes)

without any natural pairing. Note that both modalities are

images but procured from different sensors. We follow Pro-

tocol II [13, 20] where images from 70 subjects are used to

learn the projections and rest 30 subjects serve as the test

set.

Materials consists of images as well as audio signatures

from 17 different materials [18]. We present comparison

with the published result for the classification task and also

for cross-modal retrieval task.

In all datasets retrieval is performed on the test set, where

each test set example from one modality is used to rank the

test set examples of the other modality.

5.2 Features

For the VOC dataset we use the publicly available features

of [8] (dense SIFT bag-of-words (BOW) for images and

the raw BOW for text). For Wiki again we use the publicly

available features of [22] (dense SIFT BOW for images

10-topic Latent Dirichlet Model (LDA) [3] for text). This

helps us to compare directly with existing results. We also

present results on a richer set of 200-topic LDA and 4096-

codebook SIFT BOW, henceforth referred to as WikiRich.

This enables us to present results for high-dimensional fea-

ture spaces. For TVGraz, a feature extraction procedure

similar to Wiki was adopted (400-topic LDA for text and

4096-codebook SIFT BOW for images). For HFB, raw

pixel data from the 32 × 32 cropped images is used with-

out any further processing resulting in a 1024 dimensional

feature space. For Materials dataset, we use the publicly

available features of [18].
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5.3 Experimental Protocol

We used regularized versions of (K)CCA for all our exper-

iments, where the regularization constant is obtained us-

ing cross-validation. For kernelized approaches radial χ2

kernel [2] is used for both text and images, where the nor-

malization parameter is set to the mean of the χ2 distances

in the training set. Finally, normalized correlation score is

used to compute similarities between the low-dimensional

projected vectors. All experiments have been repeated ten

times using random test-train splits.

6 Results

In this section we present the results for cluster-(K)CCA.

6.1 cluster-(K)CCA

In this section we show that cluster-(K)CCA results in a

discriminative low-dimensional representation with high

correlation between the projected sets. To demonstrate this,

a toy dataset is constructed using ‘bus’, ‘car’ and ‘motor-

bike’ classes of the Pascal dataset. As shown in Fig. 2(left),

a two dimensional mapping is computed by projecting the

data points on the 1st and 2nd most correlated CCA (top)

and cluster-CCA (bottom) components, for both text and

images. It is clear from the figures that CCA, although

yielding mappings with high correlation between text and

images (0.79 and 0.72 for the first and second dimensions

respectively), is not able to achieve class discrimination.

Cluster-CCA achieves high correlation between text and

images (0.67 and 0.62 for first two dimensions3) and simul-

taneously separates different classes into different regions

of the space, supporting class discrimination. Fig. 2(right)

shows similar mappings obtained using KCCA (top) and

cluster-KCCA(bottom) where cluster-KCCA is again able

to yield a better discriminative low-dimensional feature

space.

6.2 Cross-Modal Retrieval

In this section we presents the results of cluster-(K)CCA

for cross-modal retrieval and compare it with (K)CCA.

Table 1 presents the MAP performance of (K)CCA

and cluster-(K)CCA on VOC, TVGraz, WikiRich, Wiki

and HFB datasets. We also present results obtained

using mean-(K)CCA and random chance performance.

(K)CCA uses only pairwise correspondences and, mean-

(K)CCA/cluster-(K)CCA use only the class labels. First,

notice that mean-CCA is able to outperform CCA. Given

that the number of pairwise correspondences in mean-CCA

3Correlation values for CCA and cluster-CCA are not directly
comparable as for CCA the correlation is computed between pairs
of text and images and for cluster-CCA , between all same class
pairs of text and images.
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(c) TVGraz-Text (d) TVGraz-Image

Figure 3: 11-point PR curves for (K)CCA and cluster-

(K)CCA for TVGraz. The cluster versions outperform their

respective standard algorithms at all levels of recall with

cluster-KCCA achieving the best retrieval performance.

Table 1: Cross-modal Retrieval Performance.

Experiment
Image Text

DatasetQuery Query
(MAP) (MAP)

random 0.0882 0.0882

VOC

CCA 0.263 ± 0.007 0.225 ± 0.005
mean-CCA 0.290 ± 0.007 0.241 ± 0.009
clusterCCA 0.377 ± 0.007 0.335 ± 0.007

KCCA 0.326 ± 0.007 0.301 ± 0.007
mean-KCCA 0.116 ± 0.005 0.186 ± 0.005
clusterKCCA 0.445 ± 0.006 0.429 ± 0.008

random 0.1191 0.1191

TVGraz

CCA 0.395 ± 0.013 0.359 ± 0.013
mean-CCA 0.438 ± 0.021 0.411 ± 0.024
clusterCCA 0.554 ± 0.011 0.545 ± 0.014

KCCA 0.530 ± 0.014 0.511 ± 0.016
mean-KCCA 0.194 ± 0.003 0.242 ± 0.006
clusterKCCA 0.612 ± 0.012 0.607 ± 0.011

random 0.1149 0.1149

WikiRich

CCA 0.281 ± 0.011 0.223 ± 0.010
mean-CCA 0.303 ± 0.009 0.220 ± 0.009
clusterCCA 0.334 ± 0.011 0.250 ± 0.009

KCCA 0.263 ± 0.008 0.226 ± 0.008
mean-KCCA 0.166 ± 0.013 0.186 ± 0.006
clusterKCCA 0.365 ± 0.008 0.288 ± 0.010

random 0.1191 0.1191

Wiki

CCA 0.252 ± 0.010 0.202 ± 0.008
mean-CCA 0.246 ± 0.005 0.194 ± 0.005
clusterCCA 0.273 ± 0.008 0.218 ± 0.005

KCCA 0.269 ± 0.009 0.221 ± 0.009
mean-KCCA 0.163 ± 0.010 0.164 ± 0.005
clusterKCCA 0.318 ± 0.010 0.249 ± 0.009

Experiment
NIR VIS

DatasetQuery Query
(Rank-1%) (Rank-1%)

random 0.0333 0.0333

HFB

CCA 0.564 ± 0.085 0.583 ± 0.041
mean-CCA 0.468 ± 0.044 0.456 ± 0.052
clusterCCA 0.627 ± 0.076 0.628 ± 0.089

KCCA 0.596 ± 0.084 0.597 ± 0.065
mean-KCCA 0.497 ± 0.061 0.487 ± 0.058
clusterKCCA 0.632 ± 0.092 0.638 ± 0.070
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{’350d, diesel, locomotive, railway,
train’}, {’china, railroad, railway, steam,
train’}, {’locomotive, rail, railroad,
railway, train’}

{’bird, birds, impressedbeauty, specani-
mal’}, {’abigfave, birds, bokeh, florida,
nature’}, {’bird, florida, pier’}

{’animal, cat, love, nature, pets, puppy’}
{’cats, dogs’}, {’cat, cute, pet’}

{’island,
sea, sum-
mer,
yacht’}

Grace, of a family of elephants that researchers call the Virtues, touches the ailing

Eleanor, the matriarch of the First Ladies family, who has fallen in Kenya’s

Samburu National Reserve on October 10, 2003. Grace will soon push Eleanor

back to her feet, though the ailing elephant’s resurgence will be short-lived.

Elephants show compassionate behavior to others in distress, even to elephants not

closely related to them, according to the researchers who produced these photos

and an accompanying report published in the July 2006 issue of the journal

Applied Animal Behaviour Science. Before this picture was taken, Eleanor, a new

mother, had been found with a swollen trunk, abrasions to an ear and a leg, and a

broken tusk probably from a previous fall. About two minutes after Eleanor had

fallen, Grace rapidly approached. Her tail was raised and her temporal glands

located on either side of the head between the eye and ear were excreting fluid.

”The raised tail and the streaming temporal gland are typical signs of alarm and

stress,” said zoologist Iain Douglas-Hamilton, lead author of the study and founder

of the nonprofit Save the Elephants.

On 31 January, the effort to retake the city began anew. The attack was launched at

08:30 hours, and was met by inaccurate Iraqi fire which knocked-out two Saudi

V-150 wheeled vehicles. Stanton, claims that two vehicles were destroyed, while

Westermeyer, claims that three were knocked-out. The 8th battalion of the Saudi

brigade was ordered to deploy to the city by 10:00 hours, while 5th Battalion to

the north engaged another column of Iraqi tanks attempting to reach the city. The

latter engagement led to the destruction of around 13 Iraqi tanks and armored

personnel carriers, and the capture of 6 more vehicles and 116 Iraqi soldiers,

costing the Saudi battalion two dead and two wounded. The 8th Battalion engaged

the city from the northeast, linking up with 7th Battalion. These units cleared the

southern portion of the city, until 7th Battalion withdrew south to rest and rearm at

18:30 hours, while the 8th remained in Al-Khafji.Stanton, The 8th continued

clearing buildings and by the time the 7th had withdrawn to the south, the Saudis

had lost approximately 18 dead and 50 wounded, as well as seven V-150 vehicles.

Coalition aircraft continued to provide heavy support throughout the day and

night.Westermeyer, A veteran of the Iran-Iraq War later mentioned that Coalition

airpower ”imposed more damage on his brigade in half an hour than it had

sustained in eight years of fighting against the Iranians.”

Figure 4: Some examples of cross-modal retrieval. Top

three rows show examples of image-to-text retrieval for im-

ages from the VOC dataset. The query image is shown in

the first column and the retrieved documents (collection of

tags) in the rest. The bottom three rows show examples of

text-to-image retrieval, one each from the VOC, TVGraz

and Wiki dataset.

is quite low (equal to the number of classes), the higher

performance of mean-CCA over CCA, suggests that us-

ing class labels to learn the low-dimensional subspaces is

beneficial for cross modal retrieval tasks. On the other

hand, mean-KCCA is not able to achieve satisfactory per-

formance. One reason for this could be that kernel based

algorithms define the hyperplane as a linear combination

of the data points, which being quite low for mean-KCCA,

compromises its ability to learn good projections.

On comparing (K)CCA with cluster-(K)CCA, it is clear

from the table that cluster-(K)CCA significantly outper-

forms (K)CCA. Cluster-CCA is able to achieve a signifi-

cant performance gain of 45.90%, 45.88%, 15.87%, 7.93%
and 9.23% over CCA on VOC, TVGraz, WikiRich, Wiki

and HFB datasets respectively. The corresponding gains

for cluster-KCCA over KCCA stand at 39.17%, 17.11%,

33.47%, 15.51% and 6.36%. Cluster-KCCA achieves the

best retrieval performance, an average MAP score (over

image and text query) of 0.4370, 0.6090, 0.3270, 0.2830
for VOC, TVGraz, WikiRich, Wiki and Rank-1 score of

0.635 for HFB dataset. Also note that the performance of

cluster-(K)CCA is significantly superior to mean-(K)CCA.

This highlights the importance of robust estimation of the

covariance structure of the data, which is the fundamental

difference between the two approaches.

Fig. 3 shows the precision recall curves for (K)CCA and

cluster-(K)CCA for TVGraz. Cluster-(K)CCA outper-

forms (K)CCA at all levels of recall with cluster-KCCA

achieving the best retrieval performance. Finally, Fig. 4

shows some examples of retrieval using cluster-KCCA.

The top three rows shows examples of image to text re-

trieval, where images from the VOC dataset are used to

retrieve annotation sets. The bottom three rows shows ex-

amples of text to image retrieval where a text document

each from the three text-based datasets is used to retrieve

images. As is evident from the figure, the retrieved exam-

ples belong to the same general class as that of the query.

6.3 Comparison with Existing Work

In this section we compare cluster-(K)CCA with existing

works, where all approaches use class labels to learn the

common low-dimensional space. In particular we present

a comparison with SM of [22] — where two isomorphic

spaces are learned using image/text classifiers, GMLDA

of [24] — where a joint objective function is defined for

maximizing correlation and class discrimination 4, MvDA

of [13] — where LDA is performed on the low dimensional

feature space and WMCA [18] — where maximum covari-

ance analysis is modified for cluster-wise correspondences.

To make the comparison fair, we also reimplemented the

SM using kernel support vector machines as the classifier

4Published results of GMLDA [24] on the VOC dataset are on
different set of features as used in this work.
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with radial χ2 kernel instead of logistic regression, referred

to as SM(χ2).

Table 2 presents the retrieval performance obtained with

different approaches on various datasets. Despite its

simplicity, cluster-(K)CCA outperforms other more in-

volved approaches to achieve state-of-art performance on

all datasets, indicating that cluster-(K)CCA can reliably

learn discriminative common low-dimensional representa-

tions in diverse settings. Table 2 also presents comparisons

to WMCA [18] on the Materials dataset. To compare we

conduct two experiments. First, classification using nearest

neighbors as evaluated in [18]. Cluster-CCA improves the

classification error from 5.3% to 4.2%. Second, using the

cross-modal retrieval task. Using WMCA features yields

an MAP of 0.567/0.791 for the two reciprocal cross-modal

tasks. The corresponding numbers using cluster-CCA fea-

tures are 0.827/0.881. Thus, for both these experiments,

cluster-CCA outperforms WMCA. The performance is sig-

nificantly better for the cross-modal tasks (relative gain of

45%/11%).

Table 2: Comparison with Existing Works.

Experiment
Image Text

Dataset
(MAP) (MAP)

GMLDA [24] 0.427 0.339
VOCSM(χ2) 0.426 ± 0.009 0.403 ± 0.009

clusterKCCA 0.445 ± 0.006 0.429 ± 0.008

SM(χ2) 0.651 ± 0.018 0.647 ± 0.018
TVGraz

clusterKCCA 0.612 ± 0.012 0.607 ± 0.011

SM(χ2) 0.358 ± 0.010 0.278 ± 0.009
WikiRich

clusterKCCA 0.365 ± 0.008 0.288 ± 0.010

SM [22] 0.225 0.223

Wiki
GMLDA [24] 0.272 0.232

SM(χ2) 0.294 ± 0.007 0.233 ± 0.009
clusterKCCA 0.318 ± 0.010 0.249 ± 0.009

NIR VIS
(Rank-1%) (Rank-1%)

SM(χ2) 0.339 ± 0.063 0.368 ± 0.050
MvDA [13] 50.0 53.3

HFB
clusterKCCA 0.632 ± 0.092 0.638 ± 0.070

Audio Image
(MAP) (MAP)

WMCA [18] 0.567±0.020 0.791±0.037

Materials
clusterCCA 0.827±0.023 0.881±0.040

Classification -
Error % -

WMCA [18] 5.3±2.3 -
clusterCCA 4.2±2.4 -

6.4 Effect of Additional Uni-modal Data

As discussed in 5.1, the Pascal VOC dataset contains some

images which are not annotated. In CCA these images can-

not be used for learning the low-dimensional subspaces as

the corresponding text data is absent. However, cluster-

(K)CCA does not require pair-wise correspondences and

any additional data in one modality can potentially help to

improve the retrieval performance. To test this, we con-

duct experiments using the VOCfull dataset (where all im-

ages, with or without annotations, are used to learn the

low-dimensional subspaces). Table 3 presents the retrieval

results and a comparison to the VOC dataset. Note that

the test set is the same for both the datasets, thus any

gain in performance is due to the (1049) additional im-

ages of the VOCfull dataset. The table shows that using

additional images, without any additional text, improves

the retrieval performance. Similar behavior is observed

in other datasets where on increasing (decreasing) data for

any single modality increases (decreases) the retrieval per-

formance.

Table 3: Effect of Additional Unimodal Data (MAP).

Experiment
Image Text

Average Dataset
Query Query

cluster-CCA 0.3672 0.3346 0.3509 VOC
cluster-CCA 0.3802 0.3442 0.3622 VOCfull

cluster-KCCA 0.4287 0.4162 0.4245 VOC
cluster-KCCA 0.4446 0.4355 0.4401 VOCfull

7 Conclusion

In this work, we proposed cluster-CCA for joint dimension-

ality reduction across two sets of variables, where each set

is divided into multiple clusters. Further, we proposed a

kernelized version of cluster-CCA, cluster-KCCA that is

able to incorporate non-linear relationships between the

two sets. Cluster-(K)CCA works on the principle of es-

tablishing correspondences between all pairs of data point

in a given cluster across the two sets. It was shown that

by doing so, cluster-(K)CCA is simultaneously able to

achieve cluster segregation and high correlation between

the sets. Cluster-(K)CCA was also shown to be computa-

tionally efficient, having the same computational complex-

ity as that of (K)CCA. Cluster-(K)CCA, despite its simplic-

ity, achieves superior state of the art performance in cross-

modal retrieval tasks on benchmark datasets. Finally it was

shown that its performance can be improved by adding data

independently to either of the sets, a benefit that is exclu-

sive to cluster-(K)CCA and is not shared by (K)CCA.
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