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Sequential crowdsourced labeling as an epsilon-greedy exploration in a Markov Decision Process

A Variational Bayes updates for the single coin model

The joint likelihood of the observed labels yi and the true label zi for the ith instance given the annotator
parameters θ can be factored as

p(yi, zi|θ) = p(zi)p(yi|zi,θ) = p(zi)
∏
j∈Mi

p(yji |zi, θ
j) = p(zi)

∏
j∈Mi

(θj)δ(y
j
i ,zi)(1− θj)1−δ(y

j
i ,zi),

where δ(yji , zi) = 1 if yji = zi and 0 otherwise. We have made an assumption that the labels provided by
the different annotators for a given instance are independent conditional on the true label, which is a typical
assumption made in most crowdsourcing algorithms. Hence

ln p(yi, zi|θ) = ln p(zi) +
∑
j∈Mi

[
δ(yji , zi) ln θj + (1− δ(yji , zi)) ln (1− θj)

]
. (1)

VBE-step: Assuming the n instances are independent the updates for q
(t+1)
z (z) can be broken down across the

n instances as q
(t+1)
z (z) =

∏n
i=1 q

(t+1)
zi (zi) where

q(t+1)
zi (zi) ∝ exp

[
E
q
(t)
θ (θ)

[ln p(yi, zi|θ)]
]
.

Taking the expectation of (1) with respect to q
(t)
θ (θ) we have

E
q
(t)
θ (θ)

[ln p(yi, zi|θ)] = ln p(zi) +
∑
j∈Mi

[
δ(yji , zi) lnAj + (1− δ(yji , zi)) lnBj

]
,

where Aj := exp

(
E
q
(t)

θj
(θj)

[
ln θj

])
and Bj := exp

(
E
q
(t)

θj
(θj)

[
ln (1− θj)

])
. If x ∼ Beta(a, b) then E[lnx] =

Digamma(a)−Digamma(a+ b) and E[ln (1− x)] = Digamma(b)−Digamma(a+ b). Hence we have the following
updates for the hidden variable zi

q(t+1)
zi (zi) ∝ p(zi)

∏
j∈Mi

(Aj)δ(y
j
i ,zi)(Bj)1−δ(y

j
i ,zi), i = 1, . . . , n. (2)

VBM-step: Similarly the updates for q
(t+1)
θ (θ) can be broken down across the m annotators as q

(t+1)
θ (θ) =∏m

j=1 q
(t+1)
θj

(θj) where

q
(t+1)
θj (θj) ∝ p(θj) · exp

[
E
q
(t+1)
z (z)

[
ln p(y, z|θj)

]]
.

Assuming the instances are independent and taking the expectation of (1) with respect to q
(t+1)
z (z)

E
q
(t+1)
z (z)

[
ln p(y, z|θj)

]
=
∑
i∈N j

ln p(zi) + q(t+1)
zi (yji ) ln θj + (1− q(t+1)

zi (yji )) ln (1− θj),

since E
q
(t+1)
zi

(zi)

[
δ(yji , zi)

]
= q

(t+1)
zi (yji ). Hence we have the following updates for the annotator accuracy θj

q
(t+1)
θj (θj) ∝ p(θj)

∏
i∈Nj

(θj)q
(t+1)
zi

(yji )(1− θj)1−q
(t+1)
zi

(yji ), j = 1, . . . ,m. (3)

As a consequence of using a beta prior for θj the posterior is again a beta distribution

q
(t+1)
θj (θj) = Beta

θj |aj +
∑
i∈Nj

q(t+1)
zi (yji ), b

j +
∑
i∈Nj

1− q(t+1)
zi (yji )

 .


