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Abstract

Crowdsourcing marketplaces are widely used
for curating large annotated datasets by col-
lecting labels from multiple annotators. In
such scenarios one has to balance the trade-
off between the accuracy of the collected la-
bels, the cost of acquiring these labels, and
the time taken to finish the labeling task.
With the goal of reducing the labeling cost,
we introduce the notion of sequential crowd-
sourced labeling, where instead of asking for
all the labels in one shot we acquire labels
from annotators sequentially one at a time.
We model it as an epsilon-greedy exploration
in a Markov Decision Process with a Bayesian
decision theoretic utility function that incor-
porates accuracy, cost and time. Experimen-
tal results confirm that the proposed sequen-
tial labeling procedure can achieve similar ac-
curacy at roughly half the labeling cost and
at any stage in the labeling process the algo-
rithm achieves a higher accuracy compared
to randomly asking for the next label.

1 Introduction

Annotating an unlabeled dataset is one of the major
bottlenecks in using supervised learning methods to
build good predictive models. Typically annotators
who are task experts are hired to annotate the dataset.
Getting the dataset labeled by expert annotators can
be expensive and time consuming. With the advent
of crowdsourcing marketplaces (Amazon Mechanical
Turk (AMT) [1] being a prime example) it has be-
come quite easy to acquire reasonably accurate labels
from a large number of annotators in a short amount
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of time (see [21], [29] and [5] for some natural lan-
guage processing and computer vision case studies).
When exploring the option of crowdsourcing any la-
beling task one has to balance the tradeoff between
three factors: the accuracy of the collected labels, the
cost of acquiring these labels, and the time taken to
finish the labeling task.

Accuracy: One drawback of most crowdsourcing
marketplaces is that we do not have control over the
quality of the annotators. The annotators can come
from a diverse pool including genuine experts, novices,
biased annotators, malicious annotators, and spam-
mers. Hence in order to get good quality labels re-
questers typically get each instance labeled by mul-
tiple annotators and these multiple annotations are
then consolidated either using a simple majority vot-
ing or more sophisticated methods that model and
correct for annotator biases [8, 19] and/or task com-
plexity [27]. Much of the recent work in the machine
learning community has been in this area where the
goal is to get an accurate estimate of the true labels
based on the collected noisy labels from multiple an-
notators [15, 18, 16, 27]. In this paper we are more
interested in the cost of acquiring the labels.

Cost: Typically all the labels are acquired in one shot.
For example in AMT the requesters are able to pose
tasks known as Human Intelligence Tasks (HITs). An-
notators (called workers) can then browse among ex-
isting tasks and complete them for a small monetary
payment set by the requester. In order to get multiple
labels the task requester specifies that each HIT has to
be completed by k workers. The workers then browse
through the existing tasks and pick the one they are
interested in. If we have n instances to be labeled then
the total cost is proportional to nk labels. There are
no standard guidelines on how to choose the right k.
Large k will result in large cost while small k results in
the loss of accuracy. One solution is to perform small
pilot studies with different values of k and choose the
smallest k that results in a desired consensus or accu-
racy. In practice requesters typically try values of k
in the range from 3 to 10, depending on the task and
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worker

task 1 2 3 4 5

1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×
5 × × × × ×

(a) complete labeling

worker

task 1 2 3 4 5

1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×

(b) AMT labeling

worker

task 1 2 3 4 5

1 × ×
2 × × ×
3 × ×
4 × ×
5 × × × ×

(c) sequential labeling

Figure 1: Illustration of label acquisition from multiple workers. (a) Each task is labeled by all the workers. (b) Each
task gets labeled by exactly k(=3) workers (AMT scenario). (c) The sequential labeling strategy where for each task
labels are acquired one at a time. Each task will be labeled by a different number of workers.

the labeling budget. Some instances need more labels
to reach a consensus while a lot of instances need very
few labels to reach a good consensus. Hence asking for
a fixed set of k labels in one shot for all the instances
is not optimal in terms of the cost. This motivates the
sequential crowdsourced labeling problem we tackle in
this paper, instead of asking for k labels in one shot we
acquire labels from annotators sequentially. Acquir-
ing labels from multiple annotators can be thought of
as filling the entries of a matrix where the row corre-
sponds to an instance and the column corresponds to
a worker (see illustration in Figure 1).

Time: The main disadvantage of using sequential
methods over one shot labeling is that we increase the
time required to finish the labeling task, since we need
to wait for the labels to be provided before asking for
the next label. However our experimental results show
that the proposed method results in around 50% cost
savings which can possibly justify the increase in the
time required for completing the tasks.

Contributions: Our proposed sequential labeling al-
gorithm has three core components. We first model
the annotator labeling process and use a Bayesian ap-
proach to compute the posterior distribution of the
true labels given the labels collected so far (§ 2). The
sequential crowdsourced labeling problem is then mod-
eled as an exploration/exploitation problem in an ap-
propriately defined Markov Decision process (MDP)
(§ 4). The reward function for the MDP (§ 3) is based
on a decision theoretic utility function and specifically
address the following issues.

1. When should the requester stop asking for
more labels for a given instance? Once the labels
from annotators are collected we can compute the pos-
terior distribution of the true label (see § 2). Based on
the posterior we have to decide whether to collect one
more label for this instance or to stop collecting more
labels. We take a decision theoretic approach (§ 3) to
this problem by first specifying a (logarithmic) utility
function and stopping when the maximum expected
utility (also known as the value function) is ≥ δ, for a
user defined value δ. For the logarithmic utility func-
tion the value function turns out to be the negative of

the Shannon entropy of the label posterior.

2. Which annotator should the requester ask
for a label from? Having specified the stopping
criterion we can implement a sequential strategy by
acquiring one label at a time from a randomly chosen
annotator. This could be a reasonable strategy when
all our annotators are experts. However this is not op-
timal in market places where the workers come from a
diverse pool. One would like to invest only in those an-
notators who can provide a maximum increase in the
value function, prior to observing the label from the an-
notator. In § 3 we quantify the expected change in the
value function due to collecting one more label from
an annotator. For the logarithmic utility function this
turns out to be the Lindley information [14], which is
the expected value of the Kullback-Leibler divergence
between two distributions.

3. Incorporating labeling costs By casting the
problem to a decision theoretic framework we can in-
corporate the actual labeling costs into the utility func-
tion (§ 3). In the AMT platform the cost is set by the
requester, however in general the annotators can also
specify the cost at which they are willing to provide
the labels. Incorporating the labeling costs into the
utility function allows us to balance the accuracy of
the annotator with the cost of getting the label.

4. Task allocation in pull marketplaces We dis-
tinguish between two kinds of crowdsourcing market-
places, the push and the pull marketplace. In the push
marketplace (for example annotators hired to perform
specific annotation tasks) the requesters push the task
to the workers. Once a task is allocated the workers
are guaranteed to finish the task. In contrast, in a pull
market place (AMT being a prime example) the work-
ers pull the tasks from the requesters. The requester
posts tasks on the marketplace for a fixed price, the
worker then goes through the list of tasks and takes up
any task which he is interested in. From the sequential
labeling perspective, this implies that even if we assign
a task to a particular worker, we are not guaranteed
that the worker will provide the label. In § 3 we show
how to modify the utility function to handle worker
selection in pull marketplaces.
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2 Variational Bayes for approximating
the posterior of the true label

The core inference primitive needed is the evaluation
of the posterior distribution of the true labels given the
labels collected so far. For ease of exposition we de-
scribe the method for binary labeling tasks and char-
acterize each annotator by one parameter, the accu-
racy 1. We use a fully Bayesian model in which the
annotator accuracies are given prior distributions and
are absorbed into the set of latent variables. This is
relevant for our sequential algorithms since during the
early stages we have few labels and we are essentially
in the exploration phase when selecting the annota-
tors for labeling. The consequence of this is that the
estimated annotator model parameters for such anno-
tators will have large standard errors. The Bayesian
approach allows us to absorb this uncertainty into the
estimation of the consensus label.

We have n instances to be labeled and a pool of m an-
notators. Let yji ∈ {0, 1} be the binary label assigned
to the ith instance by the jth annotator. Let zi ∈ {0, 1}
be the (unknown) true label. In a crowdsourcing setup
an annotator labels only a few instances. Let Nj be
the set of instances labeled by the jth annotator (with
nj = |Nj |) and Mi be the set of annotators who
have labeled the ith instance (with mi = |Mi|). Let
θj := Pr[yji = zi] be the accuracy of the jth annotator.
We will use the notation θ = [θ1, . . . , θm] to refer to
all the parameters of the model, z = [z1, . . . , zn] the
true labels (hidden variables), and y = [y1, . . . ,yn] the
observed data where yi = {yji }j∈Mi

is all the labels
collected for the ith instance.

Given the observed labels y the task is to estimate the
posterior distribution p(z,θ|y) of the true labels z and
the annotator parameters θ. We assume a beta prior
p(θj |aj , bj) = Beta(θj |aj , bj) ∝ (θj)a

j−1(1 − θj)b
j−1

for the annotator accuracies 2. We use Bernoulli prior
p(zi|pi) = Bernoulli(zi|pi) = pzii (1− pi)1−zi for zi.
We use Variational Bayes (VB) methods [3] to
approximate the required posterior distribution. The
basic idea in the VB framework is to approximate
the posterior over both the hidden variables and

1The methods proposed in this paper can be extended
to more sophisticated annotator models proposed in the
literature [19, 27, 28]. Two important extensions are the
two-coin model and the task specific model. The two-coin
model [19] uses two parameters per annotator, the sensi-
tivity αj := Pr[yji = 1|yi = 1] and specificity βj := Pr[yji =
0|yi = 0]. The task-specific model [27] tries to model the
difficulty of labeling each instance.

2In the absence of any strong prior we use uninfor-
mative priors. Commonly used uninformative priors are
Beta(θj |1, 1) (Bayes uniform prior), Beta(θj |1/2, 1/2) (Jef-
frey prior) and Beta(θj |0, 0) (Haldane prior).

the parameters with a simpler distribution, usually
one which assumes that the hidden variables and
parameters are independent given the data. We
constrain the posterior to be a simpler, factorised
approximation to p(z,θ|y) ≈ qz(z)qθ(θ). VB iter-
atively minimizes the Kullback-Leibler divergence
KL [qz(z)qθ(θ) ‖ p(z,θ|y)] (which is equivalent to
maximizing a lower bound on the marginal p(y))
with respect to the free distributions qz(z) and
qθ(θ) by performing the following iterative updates:
VBE-step: q

(t+1)
z (z) ∝ exp

[∫
dθ q

(t)
θ (θ) ln p(y, z|θ)

]
and VBM-step: q

(t+1)
θ (θ) ∝

p(θ) exp
[∫

dz q
(t+1)
z (z) ln p(y, z|θ)

]
.

As a consequence of the i.i.d instances, for the
particular annotator model and the choice of
priors these updates simplify to (see supple-
mental material for details): q

(t+1)
θj (θj) = Beta(

θj |aj +∑i∈Nj q
(t+1)
zi (yji ), b

j +
∑
i∈Nj 1− q

(t+1)
zi (yji )

)
for j = 1, . . . ,m and q

(t+1)
zi (zi) ∝ pzii (1 −

pi)
1−zi

∏
j∈Mi

(Aj)δ(y
j
i ,zi)(Bj)1−δ(y

j
i ,zi) for

i = 1, . . . , n, where Aj := exp

(
E
q
(t)

θj
(θj)

[
ln θj

])
and Bj := exp

(
E
q
(t)

θj
(θj)

[
ln (1− θj)

])
. If

x ∼ Beta(a, b) then E[lnx] = ψ(a) − ψ(a + b)
and E[ln (1− x)] = ψ(b) − ψ(a + b), where ψ is
the digamma function, defined as the logarithmic
derivative of the gamma function. At convergence
p(zi|y) ≈ qzi(zi) and p(θj |y) ≈ qθj (θ

j). These
updates are similar to the mean field updates derived
in [15], except that we have additionally introduced a
Bernoulli prior for each instance.

3 Value of collecting a new label

We are now interested in the situation where the la-
bels are acquired sequentially one at a time. Consider
an instance i for which the true label is zi ∈ {0, 1}.
We will assume that we have a large pool of m work-
ers/annotators denoted asM. The requester can ask
for labels yji ∈ {0, 1}, j ∈M from multiple annotators.
We will also assume that we have a push marketplace
for crowdsourcing, that is we can ask for a label from a
particular annotator and we are guaranteed to get the
label. Acquiring a label yji for instance i from annota-
tor j incurs a finite cost cji > 0 and has a probability θj

of providing the correct label, that is, θj := Pr[yji = zi]
is the accuracy of the annotator. We take a decision
theoretic approach to this problem by first specifying
an utility function and then quantifying the change in
utility due to collecting one more label.
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Prior and Posterior Let us say we have collected
labels from k annotators until now for the ith instance.
Let π(0)

i (zi) := p(zi) denote the prior probability of zi
and let π(k)

i (zi) := p(zi|y(k)
i ) be the posterior proba-

bility of zi after having collected k labels y(k)
i . The

computation of the posterior depends on the specific
annotator model we use. In § 2 we discussed how to
approximate this posterior via a mean field approxi-
mation using the variational Bayes framework.

Utility specification The utility function u(a(zi), zi)
specifies the payoff you would receive when the true
label is zi and you predict the posterior as a(zi).
We choose a logarithmic utility function defined as
u(a(zi), zi) = log2 (a(zi)). The utility function is spec-
ified such that if the true label is zi then we get a higher
payoff or utility if the estimated posterior probability
a(zi) is close to one and decreasing payoff as the pos-
terior approaches zero (see Figure 2(a)).

Expected utility and Bayes decision From a
decision theoretic perspective we choose the action
(in our case the posterior a(zi)) that maximizes
the expected utility. The expected utility for ac-
tion a(zi) is given by Ui(a(zi)) = Ezi [u(a(zi), zi)] =∑
zi∈{0,1} π

(k)
i (zi) log2 (a(zi)), where the expectation

is taken with respect to π(k)
i (zi). Hence the Bayes ac-

tion which maximizes the expected utility is a∗(zi) =
argmaxa(zi) Ui(a(zi)) = π

(k)
i (zi).

Value function (maximum expected utility) The
decision rule essentially tells us that π(k)

i (zi) is the
optimal posterior (under the specified utility function)
if we stop after collecting k labels yki and the expected
utility of this decision is given by the value function

Vi(π
(k)
i ) = sup

a(zi)

Ui(a(zi)) =
∑

zi∈{0,1}

π
(k)
i (zi) log2

(
π
(k)
i (zi)

)
.

(1)
This represents the value to the task requester of col-
lecting k labels for the ith instance. The value function
is minimum when the posterior probability is 0.5 and
increases in both directions to reach a maximum value
of 0 (see Figure 2(b)). The negative of this value func-
tion is the Shannon entropy of the posterior π(k)

i (zi).
At the beginning of the data collection process when
no labels have been collected so far the Bayes decision
which maximizes the expected utility is essentially the
prior π(0)

i (zi). In the absence of any strong prior in-
formation on the true labels we use a Bernoulli prior
π
(0)
i (zi) = pzii (1 − pi)

1−zi with pi = 0.5, which cor-
responds to the most uninformative prior and has an
expected utility of -1. A reasonable strategy to stop
collecting labels for the ith instance is when the value
Vi(π

(k)
i ) ≥ δ, for a user defined value δ close to zero.
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Figure 2: (a) The utility function u(a(zi), zi). (b) The
value function V (k)

i (π
(k)
i ) which is the maximum expected

utility, as a function of the posterior probability π(k)
i (1)

Expected value function If we now collect one more
label we can recompute the posterior π(k+1)

i (zi) and
also the value function Vi(π

(k+1)
i ). However we would

like to know the value of collecting one more label,
prior to observing that label. Let us say we ask for a la-
bel yji from the jth annotator. The annotator can give
a label either 0 or 1 based on his accuracy. Hence we
compute the expectation of Vi(π

(k+1)
i ) with respect to

the marginal 3 of the label yji and define the expected
change in the value function as

Vji =

 ∑
yji∈{0,1}

Vi(π
(k+1)
i |yji )p(yji )

− Vi(π(k)
i ). (2)

This quantity is known as the expected value of sample
information. Using (1), Vji can be written as

Vji =
∑
yji

p(yji )
∑
zi

π
(k+1)
i (zi) log2

(
π
(k+1)
i (zi)

π
(k)
i (zi)

)

= Eyji

[
Ezi|yji

[
log2

(
π
(k+1)
i (zi)

π
(k)
i (zi)

)]]
.

This quantity is also known as the Lindley informa-
tion [14], which is essentially the expected value with
respect to yji of the Kullback-Leibler (KL) divergence
between π(k+1)

i (zi) and π
(k)
i (zi). Since V is convex and

Vji can be written as Eyji [Vi(π
(k+1)
i )]−Vi(Eyji [π

(k+1)
i ]),

from Jensen’s inequality we have Vji ≥ 0. This means
that the expected utility monotonically increases from

3For the annotator model defined in § 2
the marginal p(yji ) can be computed as fol-
lows p(yji ) =

∑
zi∈{0,1} π

(k)
i (zi)

∫
θj
(θj)δ(y

j
i ,zi)(1 −

θj)1−δ(y
j
i ,zi)p(θj |y)dθj . Since θj ∼ Beta(θj |α, β)

(with α and β as defined in the VB updates)
the marginal can be computed as p(yji ) =∑
zi∈{0,1} π

(k)
i (zi)

B(α+δ(y
j
i ,zi),β+1−δ(yji ,zi))
B(α,β)

, where

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the beta function.

835



Vikas C. Raykar, Priyanka Agrawal

-1 to 0 as we collect more labels. The term Vji es-
sentially quantifies the expected increase in utility by
asking for a label from annotator j.

Incorporating labeling costs We can now incor-
porate the labeling costs into the utility. Acquir-
ing a label yji for instance i from annotator j in-
curs a finite cost cji > 0. Let ci(k) :=

∑k
j=1 c

j
i

denote the total cost of acquiring k labels for the
ith instance. The value function (1) incorporating
the labeling costs can now be written as Vi(π

(k)
i ) =

−ci(k) +
∑
zi∈{0,1} π

(k)
i (zi) log2

(
π
(k)
i (zi)

)
. Similarly

the expected value of collecting one more label can be
written as Vji = −cji+

[∑
yji∈{0,1}

Vi(π
(k+1)
i |yji )p(yji )

]
−

Vi(π
(k)
i ). Using this expression now allows us to bal-

ance the accuracy with the cost. An accurate an-
notator may not necessarily contribute to the largest
change in utility if the cost of labeling is very high.

Extension to the pull marketplace In the previous
sections we assumed that we had a push model. This
guaranteed us that if we asked for a label from an an-
notator we were sure to get it at the cost specified by
the annotator. The push model is suitable when anno-
tators are internally hired to work on our annotation
tasks. However most commercial crowdsourcing mar-
ket places like AMT work based on a pull model where
workers can browse among existing tasks and complete
them for a monetary payment set by the requester.
So while we may like to get a label from a particular
worker we are not guaranteed that the worker will be
interested in completing the task. Workers are free to
ignore any HITs that are not to their liking or that
don’t seem to pay enough to be worth doing. In or-
der to account for this we keep track of the number
of tasks accepted by a particular worker and compute
the quantity pj as the probability that the worker j
would accept a task. A less accurate worker who al-
ways accepts the tasks may result in a higher utility
than a highly accurate worker who seldom accepts the
tasks. We can now incorporate this probability into
the utility function thus balancing the accuracy of the
worker, the cost for acquiring the label, and the prob-
ability that the worker accepts the task (this would in-
directly influence the time taken to complete the task).
While there are many ways to penalize smaller pj the
following utility function works well in practice.

Vji =
1

pj

−cji +
 ∑
yji∈{0,1}

Vi(π
(k+1)
i |yji )p(yji )

− Vi(π(k)
i )

 .
(3)

So when pj decreases the expected value of collecting
one more label Vji increases. The probability pj can be
initially set to 1 and updated as the labeling proceeds.

In practice we compute the confidence interval (using
the Jeffreys method [6]) for pj and use the upper limit
of the confidence interval in the utility function.

4 Markov Decision Process

Using the utility function defined earlier we now model
the sequential crowdsourced labeling problem as an
exploration/exploitation problem in an appropriately
defined Markov Decision process (MDP).

A MDP is a natural framework to model sequen-
tial decision making problems under uncertainty. A
MDP [17] is a four tuple: {S,A,P,R}, where S is
a finite set of states, A(s) is a finite set of actions
available in state s, P : S × S × A 7→ [0, 1] denotes
the transition probabilities between the states, and
R : S × A 7→ [0, Rmax] is positive bounded reward
function. If the agent is in state s and performs action
a, then P(.|s, a) is the distribution over next possible
states and R(s, a) is the expected immediate reward
received. The state transitions possess the Markov
property, given s and a, the next state is condition-
ally independent of all previous states and actions.

In our setup at any time t the state st corresponds to
the set of (instance,annotator) pairs which have been
labeled so far. An action at corresponds to querying
for the label of the ith instance from the jth annota-
tor, and the acquired label is represented as yji . Since
we do not allow repeated labeling, at any given state
st the set of actions available corresponds to the all
the (instance,annotator) pairs which have not yet been
queried for labels so far. The action at changes the
state to st+1, the transition probabilities P(st+1|st, at)
are given by the marginals p(yji ). The expected imme-
diate reward is given by utility function (3).

The behavior of an agent in an MDP is modeled us-
ing the notion of a policy. A deterministic station-
ary policy π : S 7→ A determines what action to
take depending only on the current state. If the
dynamics of the MDP are known, a policy can be
found mapping states to actions that maximizes the
expected discounted reward by solving the recursively
defined Bellman optimality equations [4], Q(s, a) =
R(s, a) + γ

∑
s′∈S P(s′|s, a)maxa′∈AQ(s′, a′), and se-

lecting action π∗(s) = argmaxa∈AQ(s, a). The three
standard methods [20] used are value iteration, policy
iteration, and linear programming.

Since our defined MDP has a very large state space,
direct computation with the above methods is infeasi-
ble. So we take a greedy strategy and ask for a label
which maximizes the reward function. This essentially
corresponds to the first step of the value iteration algo-
rithm and can be viewed as a local multi armed bandit
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approximation [9] to the MDP.

ε-greedy exploration in MDP If the model (transi-
tion probabilities) are known then we can get a near-
optimal policy. In our case the parameters of the
model are also re-estimated after each action. Hence
one needs to also introduce an exploration phase to ex-
plore the state space. We use ε-greedy exploration [25],
where the agent chooses actions greedily with proba-
bility 1− ε and chooses actions randomly with proba-
bility ε. The ε-greedy exploration ensures convergence
to an optimal policy in the limit and it is often sug-
gested [23, 22] that this algorithm is hard to beat com-
pared to more sophisticated exploration strategies.

5 Related work

Much of the recent work in the machine learning com-
munity has focused on getting an accurate estimate
of the true labels based on the collected noisy labels
from multiple annotators [15, 18, 16, 27]. In this pa-
per we are interested both in the accuracy and also the
cost of acquiring the labels. There are some methods
proposed to detect spammers [18, 11] with the goal of
eliminating them from further labeling in order to re-
duce the costs. Some of the recent works [13, 12] have
introduced approaches that are budget-optimal and se-
lectively allocates the tasks to the annotators. Most of
these works consider only one-shot setting, where all
the tasks are given at once to the annotators and then
all the labels are obtained simultaneously. Recently
[24] proposed an active learning approach which asks
for image labels that are the most informative, but
assumes the expertise of annotators to be fixed and
known. algorithm to assigning tasks to workers.

The closest related work is the algorithm in [26] where
they propose an online algorithm for estimation of an-
notators expertise and the ground truth. Our pro-
posed algorithm differs from this work in the following
aspects: (1) They use an EM algorithm to compute the
MAP estimate for the annotator parameters, whereas
our proposed algorithm is full Bayesian. (2) They use
a threshold directly on the posterior to decide when
to stop collecting labels. Our proposed approach is
more principled and is based on a decision theoretic
approach. (3) At each iteration they maintain a list of
spammers and eliminate them from further labeling.
Our approach inherently does not let the requester se-
lect any spammer till it has exhausted all the good
annotators. (4) Our proposed approach can easily in-
corporate costs and can be directly extended to the
pull marketplaces. In spirit this is quite similar to
the sequential labeling strategy where the workers are
chosen randomly, except that they maintain a list of
experts and spammers at each round and eliminate the

spammers from further labeling. In the experimental
section we compare our algorithm with this variant.

Recently [7] also cast the sequential labeling problem
as an MDP and proposed to use the optimistic knowl-
edge gradient as an approximate allocation policy. We
differ from this work in the following aspects: (1) They
consider only the accuracy in the reward function. Our
proposed utility function is quite different and incor-
porates the notion of both cost and accuracy and is
specifically designed for pull marketplaces. (2) Unlike
our approach the algorithm just greedily exploits and
does not have an exploration phase. (3) They used the
maximum instead of the average in defining the reward
function (which they termed it as the optimistic knowl-
edge gradient based on the earlier work of [10]). In our
setting this corresponds to

Vji =

[
max

yji∈{0,1}
Vi(π

(k+1)
i |yji )

]
− Vi(π(k)

i ). (4)

We experimentally also compare our algorithm with a
corresponding variant where instead of the average we
use the maximum in the value function.

6 Experimental validation

Simulated data We first experimentally validate the
proposed sequential labeling algorithm using simu-
lated data. We first sample 100 instances with equal
prevalence for positives and negatives. We simulate la-
bels from a pool of 20 annotators with randomly cho-
sen accuracies. Figure 3(a) and (b) plots the accuracy
and the average value per task as a function of the to-
tal number of labels collected. The results are averages
over 100 repetitions. The plot compares the following
five methods: (1) non-seq (k=20) This corresponds
to the non-sequential approach where we collect labels
from all the 20 annotators. This essentially has the
maximum accuracy (1.00) that can be achieved and
costs a total of 2000 labels. (2) non-seq (k=5) This
is also a non-sequential approach where we collect 5 la-
bels per task from randomly chosen annotators. This
costs us 500 labels and achieves an accuracy of 0.85.
This is the approach typically used on the AMT mar-
ketplace, where the workers randomly choose the tasks
to work on and the labeling stops when we have k la-
bels per task. The main drawback is that unless k
is large we are not guaranteed accurate labels if the
market place has a lot of spammers. The next three
methods are the sequential labeling approaches. For
all the three approaches we stop collecting more la-
bels when the value function for each task is above
δ = −10−2. In order to see the trend at each round
we ask for labels from 50 tasks. (3) seq-random This
is the sequential labeling strategy where the next an-
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Figure 3: Experiments on simulated data (see § 6) We simulate labels from a pool of 20 annotators with randomly chosen
accuracies. (a) Accuracy as a function of the total number of labels collected for different sequential labeling strategies.
(b) The number of labels collected for each task on the x-axis and the corresponding value on the y-axis for our proposed
method (seq-lindley-avg). (c) The total number of labels collected as a function of the number of spammers. (d) The
total number of labels collected (solid line) and the number of rounds (dotted line) as a function of the number of workers
per round. (e) The total cost for the seq-lindley-avg method with and without including the labeling cost.

notator is randomly chosen from the pool of annota-
tors. (4) seq-welinder This is the sequential labeling
strategy proposed in [26]. This is essentially same as
seq-random except that at each round we eliminate
spammers from the labeling process. (5) seq-lindley-
avg This is our proposed sequential labeling strategy
which does an ε(=0.1)-greedy exploration in an MDP
with the reward function based on the average value
function (see Eq (2)). (6) seq-lindley-okg This is
same as the earlier method except that instead of the
average we use the maximum value of the value func-
tion (see Eq (4)) as the reward as proposed in [7].

From Figure 3(a) it can be seen that at any stage of
the labeling process the proposed seq-lindley-avg algo-
rithm achieves the highest accuracy. At termination
all three strategies achieve the same accuracy. How-
ever seq-lindley uses the least amount of labels (675
labels, a 35% reduction over seq-random and a 66%
reduction over using all the annotators). Even if we
had a limited budget of say 500 labels, we achieve a

much higher accuracy using the sequential approach
rather than collecting all 500 labels in one shot. The
seq-welinder algorithm is very similar to seq-random
during the early stages, because we do not tag an anno-
tator as a spammer until we have enough data. There
is also no significant difference between seq-lindley-
avg and seq-lindley-okg and for further experiments
we show the results only for seq-lindley-avg.

The sequential algorithm collects different number of
labels for different tasks. This is illustrated in Fig-
ure 3(b) which plots the number of labels collected for
each task on the x-axis and the corresponding value
on the y-axis.

Effect of spammers Figure 3(c) shows the difference
in cost among the three methods as a function of the
number of spammers. We start with an initial pool of
10 good workers (accuracies > 0.7) and keep adding
spammers (with accuracy 0.5). The proposed algo-
rithm has the lowest cost.
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cost (# of labels) % reduction in cost accuracy

——–sequential labeling——– ——–sequential labeling——– ——–sequential labeling——–
dataset orig random welinder lindley random welinder lindely orig random welinder lindely

anger 1000 462 439 385 53.8% 56.1% 61.5% 0.96 0.97 0.97 0.96
disgust 1000 463 444 409 53.7% 55.6% 59.1% 1.00 0.99 1.00 1.00

fear 1000 427 396 385 57.3% 60.4% 61.5% 0.91 0.90 0.88 0.91
joy 1000 419 414 349 58.1% 58.6% 65.1% 0.89 0.89 0.89 0.89

sadness 1000 478 493 451 52.2% 50.7% 54.9% 0.94 0.93 0.94 0.95
surprise 1000 386 388 343 61.4% 61.2% 65.7% 0.91 0.91 0.91 0.91

Table 1: Cost savings for the affective text analysis data [21] collected via Amazon Mechanical Turk(see § 6) Each dataset
contains 100 tasks and 38 distinct workers. Each task is labeled by 10 workers thus the total original cost being 1000
labels. seq-r, seq-w and seq-l refer to the three sequential crowdsourcing methods.

Getting labels from k workers Our proposed algorithm
asks for labels from one worker at a time. However
practically it makes sense to ask for labels from k an-
notators due to two reasons (1) In pull market places
since there is a chance that the worker may not accept
the task we can increase our chance of acquiring a label
by asking for labels from more workers. (2) Asking for
k labels at once reduces the annotation time. However
the downside is that we may end up acquiring more
labels than needed. This is illustrated in Figure 3(d)
where we compare the cost (solid line) and the number
of rounds (dotted line) as a function of k.

Effect of labeling costs In this experiment we incorpo-
rate labeling costs. We assume each worker has a label-
ing cost proportional to his accuracy. Figure 3(e) illus-
trates that incorporating costs into the utility function
leads to a lower total cost of labeling.

Experiments on data collected via Amazon Me-
chanical Turk In this section we perform experi-
ments using this publicly available dataset [2] collected
by [21]. We specifically use the six affective analysis
datasets (see Table 1), wherein each annotator is pre-
sented with a list of short headlines, and is asked to
give numeric judgments in the interval [0,100] rating
the headline for six emotions: anger, disgust, fear, joy,
sadness, and surprise. The dataset contains 100 tasks
and 38 distinct annotators. Each task is labeled by a
random set of 10 annotators. Each annotator on the
average has labeled 26 tasks. For our experiments we
threshold the numeric ordinal ratings to binary rat-
ings. For all the datasets the original gold standard
labels are also available. Since each task is labeled by
10 annotators we have a total of 1000 labels. Using
this dataset we can consolidate the labels using our
proposed variational Bayes approach and evaluate the
accuracy of the resulting consensus ground truth using
the gold standard labels.

The goal of this experiment is to analyze if using the
proposed sequential crowdsourcing approach, the same
accuracy could have been achieved at a reduced cost
(that is, using fewer labels). Table 1 summarizes the
results where we compare the following three methods,

(a) orig. (using the entire original dataset), (b) ran-
dom (sequential crowdsourcing where workers are sam-
pled randomly), (c)welinder (the methods proposed by
[26]) and (d) lindely (proposed algorithm). For the se-
quential methods for each round we query labels for all
the 100 tasks tasks one worker at a time. Note that
unlike the earlier simulation setup, we are now in a pull
mode, where if we ask for a label from a worker it is
not guaranteed that he will provide the label. We set
the stopping criterion to δ = −0.01 and the maximum
number of workers per task to 10. We compare these
three approaches in terms of cost and accuracy. The
following observations can be made from Table 1: (1)
All the sequential strategies achieve similar accuracies
as compared to using all the labels from 10 workers.
(2) The sequential strategies can achieve the same ac-
curacies as the original dataset at roughly half the cost
(number of labels), resulting in a 50%−65% reduction
of cost. The sequential method based on Lindley infor-
mation results in a higher reduction in cost compared
to the sequential strategy where workers are sampled
randomly and also the sequential strategy proposed
in [26]. In summary the proposed sequential labeling
procedure can achieve similar accuracy at roughly half
the labeling cost.

7 Conclusions

In this paper we proposed a Bayesian decision the-
oretic algorithm for sequential crowdsourced labeling
that balances the accuracy of the collected labels and
the cost of collecting them by casting it as an explo-
ration/exploitation tradeoff in a Markov Decision Pro-
cess. While we assumed that the annotator accuracy
are fixed the proposed algorithm can easily handle the
situation where the annotator accuracies change over
time. The only change needed is to use the current
posterior as the prior and use only the most recent
labels to update the posterior. The notion of utility
function gives the task requester flexibility to specify
his design constraints, for example, one could also in-
corporate the time taken by a worker to complete the
task into the utility function.
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