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A PROOF OF PROPOSITION 4

Observe

|R(f)− R̂(f)| = |RM (f)− R̂M (f)|

+

∣∣∣∣∣
M−1∑
i=1

πi(Ri(f)− R̂i(f)) +

M−1∑
i=1

(πi − π̂i)R̂i(f)

∣∣∣∣∣
≤ |RM (f)− R̂M (f)|

+

M∑
i=1

|Ri(f)− R̂i(f)|+
M−1∑
i=1

|πi − π̂i|. (S.1)

From (S.1) and by consistency of the π̂i, it suffices to
show that

sup
f∈Fk(n)

|RM (f)− R̂M (f)| → 0 (S.2)

and that for each i, 1 ≤ i < M ,

sup
f∈Fk(n)

|Ri(f)− R̂i(f)| → 0 (S.3)

in probability as n → ∞. For i < M , (S.3) follows
from the standard (two-class) VC theorem (Devroye
et al., 1996), by (7), and because the standard VC
dimension of {x : f(x) 6= i}f∈F is upper bounded by
the multiclass VC dimension.

To establish (S.2), recall Eqns. (5) and (6). For brevity

we omit the dependence of Ri` and R̂i` on f at times.
For any f

|RM (f)− R̂M (f)|

≤

[
|R0M − R̂0M |+

M−1∑
i=1

|πiRiM − π̂iR̂iM |

]

=

[
|R0M − R̂0M |

+

M−1∑
i=1

|πi(RjM − R̂iM ) + (πi − π̂i)R̂iM |

]
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≤

[
|R0M (f)− R̂0M (f)|

+

M−1∑
i=1

(
|RiM (f)− R̂iM (f)|+ |πi − π̂i|

)]
.

Standard VC theory (Devroye et al., 1996) implies that
for any ε > 0 and for 0 ≤ i ≤M−1, supf∈Fk

|RiM (f)−
R̂iM (f)| → 0 with probability one, by (7), and because
the standard VC dimension of {x : f(x) 6= M}f∈F is
upper bounded by the multiclass VC dimension. The
other terms tend to zero in probability by consistency
of the π̂i. The result now follows.

B PROOF OF THEOREM 1

Consider the decomposition into estimation and ap-
proximation errors,

R(f̂)−R∗ = R(f̂)− inf
f∈Fk(n)

R(f) + inf
f∈Fk(n)

R(f)−R∗.

The approximation error converges to zero by the
stated approximation property and because k(n) →
∞.

To establish convergence in probability of the estima-
tion error, let ε > 0. For each positive integer k, let
f∗k ∈ Fk such that R(f∗k ) ≤ inff∈Fk

R(f) + ε
4 . Then

R(f̂)− inf
f∈Fk(n)

R(f) ≤ R(f̂)−R(f∗k(n)) +
ε

4

≤ R̂(f̂)− R̂(f∗k(n)) +
ε

2
(with prob. tending to 1, by previous result)

≤ τk(n) +
ε

2
≤ ε,

where the last step holds for n sufficiently large. The
result now follows.



Class Proportion Estimation with Application to Multiclass Anomaly Rejection

C ADDITIONAL DETAILS OF
EXPERIMENTS

For each permutation of each dataset, hyper-
parameters for Kernel Logistic Regression were se-
lected via grid-search maximizing classification accu-
racy using 3-fold cross validation. For the subsequent
binary classification step between each training class
and the test sample, the bandwidth parameter from
the previous step is used (to save computation) but the
regularization parameter is again selected, this time to
maximize area under the ROC curve.

Before fitting our ROC regression models, we em-
ployed a Bayesian bootstrap method to reduce noise
and provide better fits (Gu et al., 2008). The Bayesian
bootstrap method also provided confidence intervals
on the ROC. By fitting the model from Eqn. (9) to
the lower confidence interval of the ROC, we were able
to estimate an upper confidence interval on π̂. We esti-
mate a corresponding lower confidence interval as one
minus the sum of the remaining class upper confidence
intervals. Table 1 shows the percentage of true class
proportions which fall between the upper and lower
estimated 95th-percentile confidence intervals. As ex-
pected for the two sided interval, we see it is valid
in greater than 90% of cases. We also find that the
bounds are tighter when more examples are available.

Note we truncated the sizes of some multiclass datasets
in order to process them in a timely manner. Namely,
the Opportunity dataset (Roggen et al., 2010), and the
SensIT dataset (Duarte and Hu, 2004).
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Table 1: Percentage of true class proportions that fall in the estimated π̂ 95th percentile confidence intervals,
and the standard deviation of the upper confidence interval from the true class proportion.

Dataset (# Classes) % in range Train Counts Test Counts Upper-Interval Std. Dev.
All Binary 0.947 0.26

All Multiclass 0.972 0.10
Australian (2) 0.955 350 153 0.17

Banana (2) 0.991 2677 1188 0.06
Breast-cancer (2) 0.900 140 41 0.54

Diabetis (2) 0.991 389 134 0.29
German (2) 0.982 506 150 0.34
Image (2) 0.945 1167 495 0.10

Ionosphere (2) 0.918 178 63 0.23
Ringnorm (2) 0.982 3738 1832 0.03
Saheart (2) 0.891 234 80 0.41
Splice (2) 0.964 1605 763 0.11

Thyroid (2) 0.818 109 33 0.28
Twonorm (2) 0.991 3738 1849 0.03
Waveform (2) 0.982 2526 824 0.08

SensIT (3) 0.991 1011 492 0.17
DNA (3) 0.985 1011 474 0.09

Opportunity (4) 0.975 1150 300 0.12
SatImage (6) 0.982 2241 536 0.06
Segment (7) 0.949 1167 165 0.09


