Supplementary Material for "Estimating Dependency Structures for non-Gaussian Components with Linear and Energy Correlations"

Aapo Hyvärinen^{3,4} Hiroaki Sasaki¹ Michael U. Gutmann² Hayaru Shouno¹ hsasaki@cc.uec.ac.jp michael.gutmann@helsinki.fi shouno@uec.ac.jp aapo.hyvarinen@helsinki.fi

¹Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan ²Department of Mathematics and Statistics and HIIT, University of Helsinki, Helsinki, Finland ³Department of Computer Science and HIIT, University of Helsinki, Helsinki Finland ⁴ ATR Cognitive Mechanisms Laboratories, Kyoto, Japan

Details for the Permutation Algorithm

Here, we describe the permutation algorithm used in Section 3. The goal of this algorithm is to estimate an order vector $\mathbf{k} = (k_1, k_2, \dots, k_d)$ where $k_i \in \{1, 2, \dots, d\}$ so that **M** in Figure 2(b) approaches a tridiagonal matrix. The algorithm is as follows:

Greedy Permutation Algorithm

Input: W and M.

- Initialization: Set $\hat{k}_1 = 1$ and the remaining index set $I = \{2, \dots, d\}$, and make a matrix with zero diagonal elements by $\mathbf{M}' = \mathbf{M} - \mathbf{M}_{diag}$ where \mathbf{M}_{diag} denotes the diagonal matrix whose diagonal elements are the diagonal ones in M.
- Repeat the following procedures from i=2 to i = d:
 - Find \hat{k}_i by

$$\hat{k}_i = \arg\max_{j \in \mathbf{I}} m'_{\hat{k}_{i-1}, j} \tag{A1}$$

where $m'_{\hat{k}_{i-1},j}$ denotes the (\hat{k}_{i-1},j) -th element in \mathbf{M}' .

- Update I by removing k_i :

$$\mathbf{I} \leftarrow \mathbf{I} \setminus \hat{k}_i.$$
 (A2)

Output: $\hat{k} = (\hat{k}_1, \hat{k}_2, \dots, \hat{k}_d).$

should be close to a tridiagonal matrix. Using \hat{k} , the row vectors in \mathbf{W} were permuted as $\mathbf{W}_p = (\boldsymbol{w}_{\hat{k}_1}, \boldsymbol{w}_{\hat{k}_2}, \dots, \boldsymbol{w}_{\hat{k}_d})^{\top}$ where \boldsymbol{w}_i denotes the *i*-th row vector in \mathbf{W} , and in Figure 2(c) and (d), we visualized the performance matrix as $\mathbf{W}_{p}\mathbf{A}$ and correlation matrix for the permuted sources $\mathbf{W}_{p}x$.

\mathbf{B} Undirected Graph for Natural Images

This section presents an undirected graph for natural images as in Figure 6 for the outputs of simulated complex cells. The graph is depicted in Figure A. It shows that features with similar orientations or positions tend to be (conditionally) dependent.

By (A1), $m_{\hat{k}_{i-1},\hat{k}_i}$ for all i are made to take a large value, and thus, \hat{M} , whose (i,j)-th element is $m_{\hat{k}_i,\hat{k}_i}$,

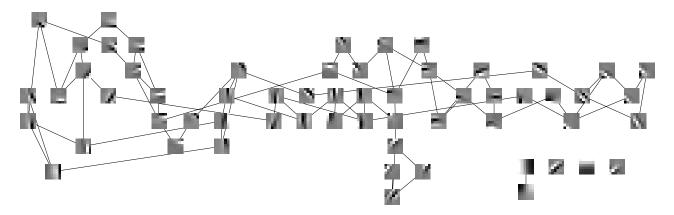


Figure A: An undirected graph for natural images. Each node corresponds to a feature estimated from natural images, and only the links which have $m_{i,j}$ larger than 0.8 are displayed.