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Abstract
MinHash and SimHash are the two widely
adopted Locality Sensitive Hashing (LSH) al-
gorithms for large-scale data processing ap-
plications. Deciding which LSH to use for
a particular problem at hand is an impor-
tant question, which has no clear answer in
the existing literature. In this study, we pro-
vide a theoretical answer (validated by exper-
iments) that MinHash virtually always out-
performs SimHash when the data are binary,
as common in practice such as search.

The collision probability of MinHash is a
function of resemblance similarity (R), while
the collision probability of SimHash is a func-
tion of cosine similarity (S). To provide a
common basis for comparison, we evaluate
retrieval results in terms of S for both Min-
Hash and SimHash. This evaluation is valid
as we can prove that MinHash is a valid LSH
with respect to S, by using a general inequal-
ity S2 ≤ R ≤ S

2−S . Our worst case analysis
can show that MinHash significantly outper-
forms SimHash in high similarity region.

Interestingly, our intensive experiments re-
veal that MinHash is also substantially better
than SimHash even in datasets where most
of the data points are not too similar to each
other. This is partly because, in practical
data, often R ≥ S

z−S holds where z is only
slightly larger than 2 (e.g., z ≤ 2.1). Our re-
stricted worst case analysis by assuming
S

z−S ≤ R ≤ S
2−S shows that MinHash in-

deed significantly outperforms SimHash even
in low similarity region.

We believe the results in this paper will pro-
vide valuable guidelines for search in practice,
especially when the data are sparse.
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right 2014 by the authors.

1 Introduction

The advent of the Internet has led to generation of
massive and inherently high dimensional data. In
many industrial applications, the size of the datasets
has long exceeded the memory capacity of a single
machine. In web domains, it is not difficult to find
datasets with the number of instances and the num-
ber of dimensions going into billions [1, 6, 28].

The reality that web data are typically sparse and high
dimensional is due to the wide adoption of the “Bag
of Words” (BoW) representations for documents and
images. In BoW representations, it is known that the
word frequency within a document follows power law.
Most of the words occur rarely in a document and most
of the higher order shingles in the document occur only
once. It is often the case that just the presence or
absence information suffices in practice [7, 14, 17, 23].
Leading search companies routinely use sparse binary
representations in their large data systems [6].

Locality sensitive hashing (LSH) [16] is a gen-
eral framework of indexing technique, devised for effi-
ciently solving the approximate near neighbor search
problem [11]. The performance of LSH largely de-
pends on the underlying particular hashing methods.
Two popular hashing algorithms areMinHash [3] and
SimHash (sign normal random projections) [8].

MinHash is an LSH for resemblance similarity
which is defined over binary vectors, while SimHash
is an LSH for cosine similarity which works for gen-
eral real-valued data. With the abundance of binary
data over the web, it has become a practically im-
portant question: which LSH should be preferred in
binary data?. This question has not been adequately
answered in existing literature. There were prior at-
tempts to address this problem from various aspects.
For example, the paper on Conditional Random Sam-
pling (CRS) [19] showed that random projections can
be very inaccurate especially in binary data, for the
task of inner product estimation (which is not the same
as near neighbor search). A more recent paper [26] em-
pirically demonstrated that b-bit minwise hashing [22]
outperformed SimHash and spectral hashing [30].
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Our contribution: Our paper provides an essentially
conclusive answer that MinHash should be used for
near neighbor search in binary data, both theoretically
and empirically. To favor SimHash, our theoretical
analysis and experiments evaluate the retrieval results
of MinHash in terms of cosine similarity (instead of
resemblance). This is possible because we are able to
show that MinHash can be proved to be an LSH for
cosine similarity by establishing an inequality which
bounds resemblance by purely functions of cosine.

Because we evaluate MinHash (which was designed for
resemblance) in terms of cosine, we will first illustrate
the close connection between these two similarities.

2 Cosine Versus Resemblance
We focus on binary data, which can be viewed as sets
(locations of nonzeros). Consider two sets W1,W2 ⊆
Ω = {1, 2, ..., D}. The cosine similarity (S) is

S =
a√
f1f2

, where (1)

f1 = |W1|, f2 = |W2|, a = |W1 ∩W2| (2)

The resemblance similarity, denoted by R, is

R = R(W1,W2) =
|W1 ∩W2|
|W1 ∪W2|

=
a

f1 + f2 − a
(3)

Clearly these two similarities are closely related. To
better illustrate the connection, we re-write R as

R =
a/

√
f1f2√

f1/f2 +
√
f2/f1 − a/

√
f1f2

=
S

z − S
(4)

z = z(r) =
√
r +

1√
r
≥ 2 (5)

r =
f2
f1

=
f1f2
f2
1

≤ f1f2
a2

=
1

S2
(6)

There are two degrees of freedom: f2/f1, a/f2, which
make it inconvenient for analysis. Fortunately, in The-
orem 1, we can bound R by purely functions of S.

Theorem 1

S2 ≤ R ≤ S
2− S

(7)

Tightness Without making assumptions on the data,
neither the lower bound S2 or the upper bound S

2−S can
be improved in the domain of continuous functions.

Data dependent bound If the data satisfy z ≤ z∗,
where z is defined in (5), then

S
z∗ − S

≤ R ≤ S
2− S

(8)

Proof: See Appendix A. �

Figure 1 illustrates that in high similarity region, the
upper and lower bounds essentially overlap. Note that,
in order to obtain S ≈ 1, we need f1 ≈ f2 (i.e., z ≈ 2).
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Figure 1: Upper (in red) and lower (in blue) bounds
in Theorem 1, which overlap in high similarity region.

While the high similarity region is often of interest,
we must also handle data in the low similarity region,
because in a realistic dataset, the majority of the pairs
are usually not similar. Interestingly, we observe that
for the six datasets in Table 1, we often have R = S

z−S
with z only being slightly larger than 2; see Figure 2.

Table 1: Datasets

Dataset # Query # Train # Dim
MNIST 10,000 60,000 784
NEWS20 2,000 18,000 1,355,191
NYTIMES 5,000 100,000 102,660
RCV1 5,000 100,000 47,236
URL 5,000 90,000 3,231,958
WEBSPAM 5,000 100,000 16,609,143
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Figure 2: Frequencies of the z values for all six datasets
in Table 1, where z is defined in (5). We compute z
for every query-train pair of data points.
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Figure 3: Left panels: For each query point, we
rank its similarities to all training points in descend-
ing order. For every top location, we plot the median
(among all query points) of the similarities, separately
for cosine (dashed) and resemblance (solid), together
with the lower and upper bounds of R (dot-dashed).
Right Panels: For every query point, we rank the
training points in descending order of similarities, sep-
arately for cosine and resemblance. We plot the resem-
blance of two ranked lists at top-T (T = 1 to 1000).

For each dataset, we compute both cosine and resem-
blance for every query-train pair (e.g., 10000 × 60000
pairs for MNIST dataset). For each query point, we
rank its similarities to all training points in descending
order. We examine the top-1000 locations as in Fig-
ure 3. In the left panels, for every top location, we plot
the median (among all query points) of the similari-
ties, separately for cosine (dashed) and resemblance
(solid), together with the lower and upper bounds of
R (dot-dashed). We can see for NEWS20, NYTIMES,
and RCV1, the data are not too similar. Interestingly,
for all six datasets, R matches fairly well with the up-
per bound S

2−S . In other words, the lower bound S2

can be very conservative even in low similarity region.

The right panels of Figure 3 present the comparisons
of the orderings of similarities in an interesting way.
For every query point, we rank the training points in
descending order of similarities, separately for cosine
and resemblance. This way, for every query point we
have two lists of numbers (of the data points). We
truncate the lists at top-T and compute the resem-
blance between the two lists. By varying T from 1 to
1000, we obtain a curve which roughly measures the
“similarity” of cosine and resemblance. We present the
averaged curve over all query points. Clearly Figure 3
shows there is a strong correlation between the two
measures in all datasets, as one would expect.

3 Locality Sensitive Hashing (LSH)

A common formalism for approximate near neighbor
problem is the c-approximate near neighbor or c-NN.

Definition: (c-Approximate Near Neighbor or c-NN).
Given a set of points in a d-dimensional space Rd, and
parameters S0 > 0, δ > 0, construct a data structure
which, given any query point q, does the following with
probability 1− δ: if there exist an S0-near neighbor of
q in P , it reports some cS0-near neighbor of q in P .

The usual notion of S0-near neighbor is in terms of the
distance function. Since we are dealing with similar-
ities, we can equivalently define S0-near neighbor of
point q as a point p with Sim(q, p) ≥ S0, where Sim
is the similarity function of interest.

A popular technique for c-NN, uses the underlying the-
ory of Locality Sensitive Hashing (LSH) [16]. LSH is
a family of functions, with the property that similar
input objects in the domain of these functions have a
higher probability of colliding in the range space than
non-similar ones. In formal terms, consider H a family
of hash functions mapping RD to some set S.

Definition: Locality Sensitive Hashing A fam-
ily H is called (S0, cS0, p1, p2)-sensitive if for any two
points x, y ∈ Rd and h chosen uniformly from H sat-
isfies the following:
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• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1

• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically,
p1 > p2 and c < 1 is needed. Since we are defining
neighbors in terms of similarity we have c < 1. To
get distance analogy we can use the transformation
D(x, y) = 1− Sim(x, y) with a requirement of c > 1.

The definition of LSH family H is tightly linked with
the similarity function of interest Sim. An LSH allows
us to construct data structures that give provably ef-
ficient query time algorithms for c-NN problem.

Fact: Given a family of (S0, cS0, p1, p2) -sensitive hash
functions, one can construct a data structure for c-NN
with O(nρ log1/p2

n) query time, where ρ = log p1

log p2
.

The quantity ρ < 1 measures the efficiency of a given
LSH, the smaller the better. In theory, in the worst
case, the number of points scanned by a given LSH
to find a c-approximate near neighbor is O(nρ) [16],
which is dependent on ρ. Thus given two LSHs, for
the same c-NN problem, the LSH with smaller value
of ρ will achieve the same approximation guarantee
and at the same time will have faster query time. LSH
with lower value of ρ will report fewer points from
the database as the potential near neighbors. These
reported points need additional re-ranking to find the
true c-approximate near neighbor, which is a costly
step. It should be noted that the efficiency of an LSH
scheme, the ρ value, is dependent on many things. It
depends on the similarity threshold S0 and the value
of c which is the approximation parameter.

3.1 Resemblance Similarity and MinHash

Minwise hashing [4] is the LSH for resemblance simi-
larity. The minwise hashing family applies a random
permutation π : Ω → Ω, on the given set W , and
stores only the minimum value after the permutation
mapping. Formally MinHash is defined as:

hmin
π (W ) = min(π(W )). (9)

Given sets W1 and W2, it can be shown by elementary
probability argument that

Pr(hmin
π (W1) = hmin

π (W2)) =
|W1 ∩W2|
|W1 ∪W2|

= R. (10)

It follows from (10) that minwise hashing is
(R0, cR0,R0, cR0) sensitive family of hash function
when the similarity function of interest is resemblance
i.e R. It has efficiency ρ = logR0

log cR0
for approximate

resemblance based search.

3.2 SimHash and Cosine Similarity

SimHash is another popular LSH for the cosine sim-
ilarity measure, which originates from the concept of

sign random projections (SRP) [8]. Given a vector x,
SRP utilizes a random vector w with each component
generated from i.i.d. normal, i.e., wi ∼ N(0, 1), and
only stores the sign of the projected data. Formally,
SimHash is given by

hsim
w (x) = sign(wTx) (11)

It was shown in [12] that the collision under SRP sat-
isfies the following equation:

Pr(hsim
w (x) = hsim

w (y)) = 1− θ

π
, (12)

where θ = cos−1
(

xT y
||x||2||y||2

)
. The term xT y

||x||2||y||2 , is

the cosine similarity for data vectors x and y, which
becomes S = a√

f1f2
when the data are binary.

Since 1 − θ
π is monotonic with respect to cosine sim-

ilarity S. Eq. (12) implies that SimHash is a(
S0, cS0,

(
1− cos−1(S0)

π

)
,
(
1− cos−1(cS0)

π

))
sensitive

hash function with efficiency ρ =
log

(
1− cos−1(S0)

π

)
log

(
1− cos−1(cS0)

π

) .
4 Theoretical Comparisons

We would like to highlight here that the ρ values for
MinHash and SimHash, shown in the previous section,
are not directly comparable because they are in the
context of different similarity measures. Consequently,
it was not clear, before our work, if there is any theo-
retical way of finding conditions under which MinHash
is preferable over SimHash and vice versa. It turns out
that the two sided bounds in Theorem 1 allow us to
prove MinHash is also an LSH for cosine similarity.

4.1 MinHash as an LSH for Cosine Similarity

We fix our gold standard similarity measure to be the
cosine similarity Sim = S. Theorem 1 leads to two
simple corollaries:

Corollary 1 If S(x, y) ≥ S0, then we have
Pr(hmin

π (x) = hmin
π (y)) = R(x, y) ≥ S2

0

Corollary 2 If S(x, y) ≤ cS0, then we have
Pr(hmin

π (x) = hmin
π (y)) = R(x, y) ≤ cS0

2−cS0

Immediate consequence of these two corollaries com-
bined with the definition of LSH is the following:

Theorem 2 For binary data, MinHash is
(S0, cS0, S

2
0 ,

cS0

2−cS0
) sensitive family of hash func-

tion for cosine similarity with ρ =
logS2

0

log
cS0

2−cS0

.

4.2 1-bit Minwise Hashing

SimHash generates a single bit output (only the signs)
whereas MinHash generates an integer value. Recently
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proposed b-bit minwise hashing [22] provides simple
strategy to generate an informative single bit output
from MinHash, by using the parity of MinHash values:

hmin,1bit
π (W1) =

{
1 if hmin

π (W1) is odd

0 otherwise
(13)

For 1-bit MinHash and very sparse data (i.e., f1
D → 0,

f2
D → 0), we have the following collision probability

Pr(hmin,1bit
π (W1) = hmin,1bit

π (W2)) =
R+ 1

2
(14)

The analysis presented in previous sections allows us
to theoretically analyze this new scheme. The inequal-
ity in Theorem 1 can be modified for R+1

2 and using
similar arguments as for MinHash we obtain

Theorem 3 For binary data, 1-bit MH (minwise

hashing) is (S0, cS0,
S2
0+1
2 , 1

2−cS0
) sensitive family of

hash function for cosine similarity with ρ =
log 2

S2
0+1

log (2−cS0)
.

4.3 Worst Case Gap Analysis

We will compare the gap (ρ) values of the three hashing
methods we have studied:

SimHash: ρ =
log

(
1− cos−1(S0)

π

)
log

(
1− cos−1(cS0)

π

) (15)

MinHash: ρ =
logS2

0

log cS0

2−cS0

(16)

1-bit MH: ρ =
log 2

S2
0+1

log (2− cS0)
(17)

This is a worst case analysis. We know the lower bound
S2 ≤ R is usually very conservative in real data when
the similarity level is low. Nevertheless, for high simi-
larity region, the comparisons of the ρ values indicate
that MinHash significantly outperforms SimHash as
shown in Figure 4, at least for S0 ≥ 0.8.

4.4 Restricted Worst Case Gap Analysis

The worst case analysis does not make any assumption
on the data. It is obviously too conservative when the
data are not too similar. Figure 2 has demonstrated
that in real data, we can fairly safely replace the lower
bound S2 with S

z−S for some z which, defined in (5),
is very close to 2 (for example, 2.1). If we are willing
to make this assumption, then we can go through the
same analysis for MinHash as an LSH for cosine and
compute the corresponding ρ values:

MinHash: ρ =
log S0

z−S0

log cS0

2−cS0

(18)

1-bit MH: ρ =
log 2(z−S0)

z

log (2− cS0)
(19)
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Figure 4: Worst case gap (ρ) analysis, i.e., (15) (16)
(17), for high similarity region; lower is better.

Note that this is still a worst case analysis (and hence
can still be very conservative). Figure 5 presents the
ρ values for this restricted worst case gap analysis, for
two values of z (2.1 and 2.3) and S0 as small as 0.2.
The results confirms that MinHash still significantly
outperforms SimHash even in low similarity region.
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Figure 5: Restricted worst case gap (ρ) analysis by
assuming the data satisfy S

z−S ≤ R ≤ S
2−S , where z

is defined in (5). The ρ values for MinHash and 1-bit
MinHash are expressed in (18) and (19), respectively.

Both Figure 4 and Figure 5 show that 1-bit MinHash
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can be less competitive when the similarity is not high.
This is expected as analyzed in the original paper of
b-bit minwise hashing [20]. The remedy is to use more
bits. As shown in Figure 6, once we use b = 8 (or even
b = 4) bits, the performance of b-bit minwise hashing
is not much different from MinHash.
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Figure 6: Restricted worst case gap (ρ) analysis for
b-bit minwise hashing for b = 1, 2, 4, 8.

4.5 Idealized Case Gap Analysis

The restricted worst case analysis can still be very con-
servative and may not fully explain the stunning per-
formance of MinHash in our experiments on datasets
of low similarities. Here, we also provide an analysis
based on fixed z value. That is, we only analyze the
gap ρ by assuming R = S

z−S for a fixed z. We call
this idealized gap analysis. Not surprisingly, Figure 7
confirms that, with this assumption, MinHash signif-
icantly outperform SimHash even for extremely low
similarity. We should keep in mind that this idealized
gap analysis can be somewhat optimistic and should
only be used as some side information.

5 Experiments

We evaluate both MinHash and SimHash in the actual
task of retrieving top-k near neighbors. We imple-
mented the standard (K,L) parameterized LSH [16]
algorithms with both MinHash and SimHash. That
is, we concatenate K hash functions to form a new
hash function for each table, and we generate L such
tables (see [2] for more details about the implemen-
tation). We used all the six binarized datasets with
the query and training partitions as shown in Table 1.
For each dataset, elements from training partition were
used for constructing hash tables, while the elements
of the query partition were used as query for top-k
neighbor search. For every query, we compute the
gold standard top-k near neighbors using the cosine
similarity as the underlying similarity measure.

In standard (K,L) parameterized bucketing scheme
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Figure 7: Idealized case gap (ρ) analysis by assuming
R = S

z−S for a fixed z (z = 2 and z = 2.5 in the plots).

the choice of K and L is dependent on the similarity
thresholds and the hash function under consideration.
In the task of top-k near neighbor retrieval, the sim-
ilarity thresholds vary with the datasets. Hence, the
actual choice of ideal K and L is difficult to deter-
mine. To ensure that this choice does not affect our
evaluations, we implemented all the combinations of
K ∈ {1, 2, ..., 30} and L ∈ {1, 2, ..., 200}. These com-
binations include the reasonable choices for both the
hash function and different threshold levels.

For each combination of (K,L) and for both of the
hash functions, we computed the mean recall of the
top-k gold standard neighbors along with the average
number of points reported per query. We then com-
pute the least number of points needed, by each of the
two hash functions, to achieve a given percentage of
recall of the gold standard top-k, where the least was
computed over the choices of K and L. We are there-
fore ensuring the best over all the choices of K and
L for each hash function independently. This elimi-
nates the effect of K and L, if any, in the evaluations.
The plots of the fraction of points retrieved at different
recall levels, for k = 1, 10, 20, 100, are in Figure 8.

A good hash function, at a given recall should retrieve
less number of points. MinHash needs to evaluate
significantly less fraction of the total data points to
achieve a given recall compared to SimHash. MinHash
is consistently better than SimHash, in most cases very
significantly, irrespective of the choices of dataset and
k. It should be noted that our gold standard mea-
sure for computing top-k neighbors is cosine similar-
ity. This should favor SimHash because it was the only
known LSH for cosine similarity. Despite this “disad-
vantage”, MinHash still outperforms SimHash in top
near neighbor search with cosine similarity. This nicely
confirms our theoretical gap analysis.
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Figure 8: Fraction of data points retrieved (y-axis) in order to achieve a specified recall (x-axis), for comparing
SimHash with MinHash. Lower is better. We use top-k (cosine similarities) as the gold standard for k = 1,
10, 20, 100. For all 6 binarized datasets, MinHash significantly outperforms SimHash. For example, to achieve
a 90% recall for top-1 on MNIST, MinHash needs to scan, on average, 0.6% of the data points while SimHash
has to scan 5%. For fair comparisons, we present the optimum outcomes (i.e., smallest fraction of data points)
separately for MinHash and SimHash, by searching a wide range of parameters (K,L), where K ∈ {1, 2, ..., 30}
is the number of hash functions per table and L ∈ {1, 2, ..., 200} is the number of tables.
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Figure 9: Retrieval experiments on the original real-
valued data. We apply SimHash on the original data
and MinHash on the binarized data, and we evaluate
the retrieval results based on the cosine similarity of
the original data. MinHash still outperforms SimHash.

To conclude this section, we also add a set of experi-
ments using the original (real-valued) data, for MNIST
and RCV1. We apply SimHash on the original data
and MinHash on the binarized data. We also evaluate
the retrieval results based on the cosine similarities of
the original data. This set-up places MinHash in a very
disadvantageous place compared to SimHash. Never-
theless, we can see from Figure 9 that MinHash still no-
ticeably outperforms SimHash, although the improve-
ments are not as significant, compared to the experi-
ments on binarized data (Figure 8).

6 Conclusion

Minwise hashing (MinHash), originally designed for
detecting duplicate web pages [3, 10, 15], has been
widely adopted in the search industry, with numerous
applications, for example, large-sale machine learning
systems [23, 21], Web spam [29, 18], content match-

ing for online advertising [25], compressing social net-
works [9], advertising diversification [13], graph sam-
pling [24], Web graph compression [5], etc. Further-
more, the recent development of one permutation hash-
ing [21, 27] has substantially reduced the preprocessing
costs of MinHash, making the method more practical.

In machine learning research literature, however, it ap-
pears that SimHash is more popular for approximate
near neighbor search. We believe part of the reason is
that researchers tend to use the cosine similarity, for
which SimHash can be directly applied.

It is usually taken for granted that MinHash and
SimHash are theoretically incomparable and the choice
between them is decided based on whether the desired
notion of similarity is cosine similarity or resemblance.
This paper has shown that MinHash is provably a bet-
ter LSH than SimHash even for cosine similarity. Our
analysis provides a first provable way of comparing two
LSHs devised for different similarity measures. Theo-
retical and experimental evidence indicates significant
computational advantage of using MinHash in place of
SimHash. Since LSH is a concept studied by a wide va-
riety of researchers and practitioners, we believe that
the results shown in this paper will be useful from both
theoretical as well as practical point of view.
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A Proof of Theorem 1

The only less obvious step is the Proof of tightness:
Let a continuous function f(S) be a sharper upper
bound i.e., R ≤ f(S) ≤ S

2−S . For any rational S = p
q ,

with p, q ∈ N and p ≤ q, choose f1 = f2 = q and
a = p. Note that f1, f2 and a are positive integers.
This choice leads to S

2−S = R = p
2q−p . Thus, the upper

bound is achievable for all rational S. Hence, it must
be the case that f(S) = S

2−S = R for all rational values
of S. For any real number c ∈ [0, 1], there exists a
Cauchy sequence of rational numbers {r1, r2, ...rn, ...}
such that rn ∈ Q and limn→∞ rn = c. Since all rn’s are
rational, f(rn) = rn

2−rn
. From the continuity of both

f and S
2−S , we have f(limn→∞ rn) = limn→∞

rn
2−rn

which implies f(c) = c
2−c implying ∀c ∈ [0, 1].

For tightness of S2, let S =
√

p
q , choosing f2 = a = p

and f1 = q gives an infinite set of points having
R = S2. We now use similar arguments in the proof
tightness of upper bound. All we need is the existence
of a Cauchy sequence of square root of rational num-
bers converging to any real c. �
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