
Loopy Belief Propagation in the Presence of Determinism

David Smith Vibhav Gogate
The University of Texas at Dallas

Richardson, TX, 75080, USA
dbs014200@utdallas.edu

The University of Texas at Dallas
Richardson, TX, 75080, USA

vgogate@hlt.utdallas.edu

Abstract

It is well known that loopy Belief propagation
(LBP) performs poorly on probabilistic graphi-
cal models (PGMs) with determinism. In this pa-
per, we propose a new method for remedying this
problem. The key idea in our method is finding
a reparameterization of the graphical model such
that LBP, when run on the reparameterization, is
likely to have better convergence properties than
LBP on the original graphical model. We pro-
pose several schemes for finding such reparam-
eterizations, all of which leverage unique prop-
erties of zeros as well as research on LBP con-
vergence done over the last decade. Our exper-
imental evaluation on a variety of PGMs clearly
demonstrates the promise of our method – it of-
ten yields accuracy and convergence time im-
provements of an order of magnitude or more
over LBP.

1 Introduction

Loopy Belief Propagation [15, 16] is a widely used algo-
rithm for performing approximate inference in graphical
models. The algorithm is exact on tree graphical models
and often yields reasonably good poly-time approximations
on graphical models having cycles. Its applicability has
been demonstrated across a wide variety of fields, includ-
ing error correcting codes [6, 12], computer vision [5], and
combinatorial optimization [22].

Despite its popularity, LBP is known to display erratic be-
havior in practice. In particular, it is still not well under-
stood when LBP will yield good approximations. Consid-
erable progress has been made towards characterizing the
approximations that LBP yields (as fixed points of approx-
imate free energy), formalizing sufficient conditions for

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

(i) ensuring the existence of fixed points [23]; (ii) ensuring
LBP convergence [21]; and (iii) ensuring the uniqueness of
the fixed point to which LBP converges to [8, 9, 14, 17];
and so on. Unfortunately, in practice, even the best bounds
are too narrow to be used as an accurate predictor of con-
vergence across the spectrum of graphical models.

The situation becomes even murkier when LBP is applied
to problems that contain determinism. Many of the con-
vergence results apply only to problems that model strictly
positive distributions. Some work has been done on in-
vestigating the effect of determinism on the LBP family of
algorithms [4], and some convergence results account for
determinism in a restricted manner [14], but in general the
existing literature avoids consideration of determinism be-
cause of the complications it engenders.

The goal of this work is to harness the presence of deter-
minism in a PGM in order to help LBP converge more
quickly and to more accurate results. In particular, we
leverage the following unique property of graphical models
(Markov networks) having zeros: if we can derive that the
marginal probability of an entry in a potential is zero from
other potentials in the Markov network, then we can change
that entry to any non-negative real value without changing
the underlying distribution. The key idea in this paper is
to change such potential entries, namely re-parameterize
the Markov network, in such a way that the LBP algorithm
converges faster on the new parameterization than on the
original Markov network.

To achieve this objective, we present two algorithms. The
first algorithm leverages techniques from the Satisfiability
(SAT) literature to identify a set of potential entries whose
values can be altered without affecting the underlying dis-
tribution. The second algorithm uses a variety of heuristics
to calculate a new set of values in order to create a repa-
rameterization of the distribution in which the interactions
between neighboring potentials are indicative of models on
which LBP tends to be successful. We show experimen-
tally that our new approach often allows LBP to converge
in fewer iterations and to more accurate results.

895

Loopy Belief Propagation in the Presence of Determinism

2 Preliminaries and Notation

2.1 Markov Networks

Let G = (V,E) be an undirected graph, where V =
{1, . . . , N} is the set of vertices, and E ⊆ {(i, j)|i, j ∈
V ; i 6= j} is the set of edges. Let X = {Xi|i ∈ V } de-
note the set of random variables associated with G and let
dom(Xi) denote the domain of Xi. (We restrict random
variables to Boolean domains for the sake of simplicity of
exposition. Our method is quite general and can be applied
to multi-valued graphical models). Let Φ = {φ1, . . . , φm}
be a set of real-valued functions, called potentials, where
φi(Xj , . . . , Xk) : dom(Xi)× . . .× dom(Xk)→ R+

0 , and
such that the vertex set {j, . . . , k} is a maximal clique in
G. Then, the pair M = 〈G,Φ〉 forms a Markov network.
We denote the set of random variables associated with a
potential φi by vars(φi).

A Markov network M , induces the following probability
distribution:

PM (x) =
1

Z

∏
1≤i≤m

φi(xi)

where x is a full assignment to all variables in X , xi is the
projection of the assignment x on the variables in vars(φi),
and Z is the normalization constant or the partition func-
tion, given by Z =

∑
x

∏
1≤i≤m φi(xi).

2.2 Factor Graphs

Factor graphs are special graph structures that enable us to
systematically study and understand the properties of sum-
product algorithms such as loopy belief propagation. A
factor graph contains a corresponding vertex for each ran-
dom variable and each potential in the Markov network.
A potential vertex is connected (via an undirected edge) to
a random variable vertex if the the potential contains the
random variable in its scope. Formally, given a Markov
network M = 〈G = (V,E),Φ〉, the corresponding factor
graph, denoted by F = (VF , EF), is an undirected bipar-
tite graph with vertex set VF = {Vi|i ∈ V } ∪ {Pi|φi ∈ Φ}
and edge set EF = {(Vi, Pj)|Xi ∈ vars(φj)}, where Xi is
the random variable corresponding to Vi.

2.3 Loopy Belief Propagation

Given a Markov network M , loopy belief propagation
(LBP) is an iterative algorithm that computes approx-
imations to the set of marginal distributions of PM ,
{P (Xi)}i∈V . It does so by passing messages on the factor
graph corresponding to M . On every iteration, each vertex
passes a message to each of its neighbors. We denote the
message from variable vertex Vi to a potential vertex Pj by
µVi→Pj

(xi) and the message from Pj to Vi by µPj→Vi
(xi).

Note that each message is a potential over a single vari-
able. On each iteration it, the messages a node sends are

determined by the messages received from its neighbors on
the previous iteration it − 1, as well as by the associated
potential φj if the node is a potential node Pj . They are
calculated by the following update equations:

µ
(it+1)
Vi→Pj

(xi) ∝
∏

Pk∈NF (Vi)\Pj

µ
(it)
Pk→Vi

(xi) (1)

µ
(it+1)
Pj→Vi

(xi)∝
∑

vars(φj)\Xi

φ(xi)
∏

Vk∈NF (Pj)\Vi

µ
(it)
Vk→Pj

(xk)

(2)
NF (Vi) and NF (Pj) are the sets of neighbors of Vi and Pj
in the factor graph F respectively.

In practice, the messages are normalized in order to
prevent underflow or overflow (hence ∝ instead of
=). The loopy belief propagation algorithm iterates un-
til it reaches some iteration it such that ∀i, j, xi ∈
dom(Xi), |µ(it−1)

Vi→Pj
(xi) − µ(it)

Vi→Pj
(xi)| < ε and similarly,

∀i, j, xi ∈ dom(Xi)|µ(it−1)
Pj→Vi

(xi) − µ(it)
Pj→Vi

(xi)| < ε, for
some small positive constant ε > 0.

At this point, the algorithm is said to have converged and
one can calculate the approximations to the single variable
marginals (often called beliefs) via the following equation:

bi(xi) = Ni
∏

Pj∈N(VI)

µ
(it)
Pj→VI

(xi) (3)

where Ni is a normalization constant, chosen so that∑
xi∈dom(Xi)

bi(xi) = 1.

3 Zero-Based Reparameterizations of
Markov Networks

The behavior of the LBP algorithm on models with deter-
minism is, in general, poorly understood. In practice, LBP
has been observed to yield sub-par results when applied to
such models. The purpose of this work is to present an al-
gorithm that takes a Markov network M with determinism
(i.e., PM is not strictly positive), and yields a Markov net-
workM ′ such that PM = PM ′ (i.e., our algorithm achieves
a reparameterization), and the associated approximations
to the single variable marginals that LBP yields on M ′ are
more accurate than the ones it yields on M .

To this end, we are interested in defining a class of func-
tions that take a Markov network M with zeros as input,
leverage unique properties of zeros, and return a reparam-
eterization M ′ of M (if M ′ is a reparameterization of M ,
we will say M ≡ M ′). Also, in order to keep the number
of possible reparameterizations manageable, we will only
consider reparameterizations satisfying the following two
properties: (i) M and M ′ are defined over the same set of
variables; and (ii) for each potential φ inM there is a corre-
sponding potential φ′ in M ′ such that vars(φ) = vars(φ′).1

1Technically, if we express the Markov network as a set of

896

David Smith, Vibhav Gogate

A

B C

(a) A graph

A B C PM

0 0 0 0∗

0 0 1 0∗

0 1 0 0
0 1 1 1/3
1 0 0 1/3
1 0 1 0
1 1 0 0
1 1 1 1/3

(b) The joint probability
distribution

A B φA,B

0 0 2†

0 1 1
1 0 1
1 1 1

A C φA,C

0 0 0
0 1 1
1 0 1
1 1 1

B C φB,C

0 0 1
0 1 0
1 0 0
1 1 1

(c) A set of potentials

Figure 1: A Markov network and its associated joint prob-
ability distribution

We will use a unique property of zeros for defining our
reparameterizing functions. We illustrate it using the fol-
lowing example.
Example 1. Consider the Markov network given in Figure
1. The Markov network consists of 3 binary-valued random
variables and 3 pairwise potentials with some zero valued
tuples. The joint distribution of the network is shown in
Figure 1(b). Notice that the entry in φA,B corresponding to
A = 0, B = 0 (denoted with a †) has a non-zero weight of
2, but that all the tuples in the joint distribution consistent
with this assignment (denoted with a ∗) have zero weight.
Thus, even though φA,B(A = 0, B = 0) = 2, the proba-
bility of the assignment P (A = 0, B = 0) = 0. As a con-
sequence, we can create a Markov networkM ′ = 〈G′,Φ′〉,
in which G′ = G and Φ′ = {φ′A,B , φA,C , φB,C}, where:

φ′A,B(a, b) =

{
r, (a = 0) ∧ (b = 0)

φA,B(a, b), otherwise

If r ≥ 0, we are guaranteed that M ′ is well-formed as long
as M is. And notice that M ≡M ′ for any value we choose
for r.

We formalize the ideas presented in Example 1 starting
with a required definition.
Definition 1 (Inferable Zero). Let M be a Markov net-
work and let xi be an assignment to all variables in a po-
tential φi of M . We say that φi(xi) is an inferable zero
of M iff for all possible extensions x of xi to all variables
X of M , there exists a potential φj in M , i 6= j such that
φj(xj) = 0. In other words, φi(xi) is an inferable zero iff
PM (xi) = 0 can be inferred from other potentials in M .

weighted features, we are only considering transformations that
change the weights of features.

In our running example, we have only one inferable zero:
φA,B(a = 0, b = 0). It turns out that we can always safely
change an inferable zero to any non-negative real number
without changing the underlying distribution. We consider
a class of functions f that achieve this, and we show that
they yield a reparameterization of M .
Theorem 3.1. Given a Markov network M = 〈G,Φ〉, an
inferable zero of M φi(xi), and an element r ∈ R+

0 , let
f be a function of the form f(M,φi(xi), r) = M ′, where
M ′ = 〈G,Φ′〉, Φ′ = Φ \ φi ∪ φ′i and

φ′i(x
′
i) =

{
r, x′i = xi

φi(x
′
i), otherwise

(4)

Then, f(M,φi(xi), r) is a reparameterization of M .
Namely, f(M,φi(xi), r) ≡M .

Proof. We will show that for any assignment x,∏
φj∈Φ φj(xj) =

∏
φ′
j∈Φ′ φ′j(xj). We consider two cases.

Case 1: When φi(xi) is not an inferable zero, by definition,
φj(xj) = φ′j(xj) for all j and therefore

∏
φj∈Φ φj(x) =∏

φ′
j∈Φ′ φ′j(x).

Case 2: When φi(xi) is an inferable zero, by definition,
there exists a potential φk such that φk(xk) = φ′k(xk) = 0.
Therefore,

∏
φj∈Φ φj(xj) =

∏
φ′
j∈Φ′ φ′j(xj) = 0.

The class of functions denoted by f in Theorem 3.1 define
our reparameterizing functions. f can be simultaneously
applied to all potential values which are non-zero without
altering the underlying distribution because f will not re-
move any zeroes from the networkM . However, more care
must be taken when applying f to potential weights which
are zero-valued, because f can potentially replace these ze-
ros with positive real numbers, thus changing the set of
inferable zeros in M . We illustrate this in the following
example.
Example 2. Consider the Markov network shown in Fig-
ure 1 with the following change: φA,B(A = 0, B =
0) = 0 instead of 2. Notice that the new Markov net-
work has two inferable zeros: φA,B(A = 0, B = 0) and
φA,C(A = 0, C = 0). Out of these, we can either change
φA,B(A = 0, B = 0) or φA,C(A = 0, C = 0) to an
arbitrary positive number without affecting the underlying
distribution, but we cannot change both.

In other words, the order in which inferable zeros with as-
sociated zero weights are changed to positive numbers mat-
ters. Since we are interested in replacing multiple inferable
zeros by positive numbers, we next define an algorithmic
process that achieves this objective. We will refer to this
process as F .

Process F applies f along a particular (heuristically cho-
sen) ordering of inferable zeros in M . As previously men-
tioned, if φi(xi) 6= 0, then we can safely apply f to the

897

Loopy Belief Propagation in the Presence of Determinism

Algorithm 1 Process F
1: Input: A Markov network M
2: Output: A Markov Network M ′ such that M ≡M ′, a set Ψ

of configurable parameters of M ′

3: Let Φa = {φi(xi) | φi(xi) is an inferable zero of M}
4: Let π(Φa) be an ordering of the elements of Φa
5: Ψ = ∅
6: M ′ = M
7: for i = 1 to |Φa| do
8: Let φi(xi) be the i-th entry in π(Φa)
9: Let φ′

i(xi) be the potential entry in M ′ corresponding to
φi(xi)

10: if φi(xi) 6= 0 then
11: M ′ = f(M ′, φ′

i(xi), 1)
12: Ψ = Ψ ∪ {φi(xi)}
13: else if φ′

i(xi) is an inferable zero of M ′ then
14: M ′ = f(M ′, φ′

i(xi), 1)
15: Ψ = Ψ ∪ {φi(xi)}
16: end if
17: end for
18: return 〈M ′,Ψ〉

Markov network (Steps 9 and 10). However, if φi(xi) = 0
then care must be taken to ensure that xi is also an infer-
able zero of the current Markov network M ′ (Steps 12 and
13). F sets the value of each inferable zero to 1 (as a place-
holder), and it collects the inferable zeros in the set Ψ.

Since the Markov network M ′ at each iteration in F is ei-
ther the same or obtained by applying the function f to the
Markov network in the previous iteration, it follows from
Theorem 3.1 thatM ′ is a reparameterization of the Markov
network in the previous iteration. Therefore, by using the
principle of induction, it is straight-forward to show that:

Theorem 3.2. F yields a reparameterization of M .
Namely, if F(M) = 〈M ′,Ψ〉, then M ′ ≡M .

Now, notice that each of the potential weights Ψ of M ′

can be set to any element r ∈ R+
0 without affecting the

distribution PM . Let ∆(M,Ψ) be any function that assigns
any element of R+

0 to each free parameter in Ψ. Then:

Theorem 3.3. ∆(M,Ψ) yields a reparameterization ofM .
Namely, if F(M) = 〈M ′,Ψ〉, then ∆(M,Ψ) ≡M .

Thus, we refer to the parameters of Ψ as the free parame-
ters of M .

Three practical issues remain with regard to using F for
improving the convergence and accuracy of LBP:

• How to find the inferable zeros of M?
• What value of R+

0 should be assigned to each inferred
zero in Ψ?
• How to choose an ordering for inferable zeros?

We will answer these three questions in the next two sec-
tions

4 Finding Inferable Zeros

The computation of f requires inferring some global infor-
mation about the given Markov network for every entry of
the given potential φi. It is well-known that such a task is
NP-Hard for arbitrary Markov networks [3]. Fortunately,
we do not need to infer the actual probability of each entry;
it suffices to know whether or not the probability of each
entry is equal to zero. Even so, such a task is NP-Complete
for arbitrary Markov networks. However, with the help of
modern SAT solving techniques (cf. [20]), even problems
with a large number of variables and clauses can often be
handled easily.

It is straightforward to encode the problem of finding the
zero-valued marginals of a Markov networkM with binary
random variables as a SAT instance. For each random vari-
able in M , add a Boolean variable to the SAT instance. For
each φi(xi) = 0 in M , add the clause ¬ci to the SAT in-
stance, where ci is the conjunctive clause corresponding to
the assignment xi.
Example 3. Let A, B and C be the Boolean vari-
ables associated with three random variables in the
Markov network in Figure 1. Then the conjunctive clause
c(A=0,C=0) = (¬A ∧ ¬C), and ¬c(A=0,C=0) = (A ∨ C).

The conjunction of all such clauses forms a SAT instance
in conjunctive normal form that is satisfiable iff M is
well-defined (i.e., contains any full assignment x such that
P (x) 6= 0). The problem is only slightly more difficult for
Markov networks with multi-valued random variables (cf.
Sang et al. [19]).
Example 4. Let A, B and C be the Boolean variables as-
sociated with three random variables in the Markov net-
work in Figure 1. The SAT instance corresponding to the
Markov network is (A ∨ C) ∧ (B ∨ ¬C) ∧ (¬B ∨ C).

We can use such an encoding in order to determine if any
potential entry is an inferable zero of M . Algorithm 2 de-
tails this procedure:

Algorithm 2 Check Inferable Zero
1: Input: A Markov network M , an inferable zero candidate,
φi(xi)

2: Output: A member of {True, False}
3: Let S = ConstructSAT(M)
4: Let ci be the conjunctive clause corresponding to xi
5: if φi(xi) 6= 0 then
6: S = S ∧ ci
7: else
8: S = (S \ ¬ci) ∧ ci 2

9: end if
10: return ¬ isSatisfiable(S)

Example 5. Consider again M from Figure 1. Suppose
we want to to determine if φA,B(A = 0, B = 0) is an
inferable zero of M . Since φA,B(A = 0, B = 0) = 2 6= 0,
we construct the SAT instance as shown in Example 4 and
conjoin it with the assignment (¬A)∧(¬B) to yield the SAT

898

David Smith, Vibhav Gogate

instance S = (A∨C)∧(B∨¬C)∧(¬B∨C)∧(¬A)∧(¬B).
S is not satisfiable; hence Algorithm 2 returns True. Thus,
φA,B(A = 0, B = 0) is an inferable zero of M .
Example 6. Consider the same modification to the Markov
network in Figure 1 as detailed in Example 2; namely that
φA,B(A = 0, B = 0) = 0 instead of 2. Again, suppose we
want to to determine if φA,B(A = 0, B = 0) is an inferable
zero of M . Since φA,B(A = 0, B = 0) = 0, we construct
the SAT instance S = (A∨B)∧(A∨C)∧(B∨¬C)∧(¬B∨
C), remove the clause corresponding to ¬(¬A ∧ ¬B) =
(A ∨ B), and add (¬A) ∧ (¬B), yielding a SAT instance
S = (A∨C)∧(B∨¬C)∧(¬B∨C)∧(¬A)∧(¬B). Again,
S is not satisfiable; hence Algorithm 2 again returns True.
Thus, φA,B(A = 0, B = 0) is an inferable zero of M .

There are a few notes we would like to briefly mention at
this point. First, in the case in which the Markov network
M is pairwise-binary, its corresponding SAT encoding is
an instance of 2-SAT. Since each clause added by Algo-
rithm 2 contains just a single variable, each inferable zero
test reduces to a 2-SAT satisfiability test, which can be done
in linear time using the approach of mapping the problem
to one of checking for strongly connected components [1].
Second, note that it is not necessary to find all inferred ze-
roes in order to apply Algorithm 1. If it is infeasible to ap-
ply Algorithm 2 to all φi(xi) ∈ M , one can simply check
only those potential entries that are troublesome for LBP.
We propose a method for heuristically ranking potentials
for this purpose in Section 5.

5 Setting the Free Parameters of M

Now that we can discover which potential entries can be
safely changed without affecting the overall distribution,
we must decide how to change them. There are many pos-
sible approaches to modifying a Markov network. In this
work, we have chosen to take advantage of the substantial
research that establishes sufficient conditions for the con-
vergence of LBP to a fixed point [8, 9, 14, 17, 21, 23].

Many of the results on the convergence of LBP rely on
defining some notion of the ‘strength’ of the potential and
then guaranteeing convergence if some relationship among
these potential strengths holds on the factor graph associ-
ated with the given Markov network. These notions are
often defined exclusively on Markov networks that yield
strictly positive distributions, thus making them unsuitable
for our purposes. However, Mooij and Kappen [14] have
defined a notion of potential strength that is well-defined
on many distributions that are not strictly positive, and so
we have chosen to use the formula offered in their work as
the basis for our choice of parameters. We reprint it here
for convenience:

N(φi, j, k) := sup
α 6=α′

sup
β 6=β′

sup
γ,γ′

2We abuse notation slightly. Take S \ c to mean the SAT in-
stance S with the clause c removed.

√
φi(αβγ)φi(α′β′γ′)−

√
φi(α′βγ)φi(αβ′γ′)√

φi(αβγ)φi(α′β′γ′) +
√
φi(α′βγ)φi(αβ′γ′)

(5)

Convergence to a unique fixed point, irrespective of initial
messages, is guaranteed if:

max
Pj→Vj

∑
Pi∈N(Pj)\Pj

∑
Vi∈N(Pi)\Vj

N(Pi, i, j) < 1 (6)

Our approach is to develop heuristics that attempt to min-
imize this quantity. We present several methods for per-
forming this optimization.

Given a Markov network M and some set of free parame-
ters Ψ, one has several choices as to how to optimize ele-
ments of Ψ for LBP. One can optimize each parameter in-
dependently, partition the parameters of Ψ into disjoint sets
and optimize each set of parameters independently, or one
can optimize the entire set of parameters in Ψ jointly. We
have found that optimizing the parameters independently
yields relatively little gain on the majority of Markov net-
works. Conversely, optimizing all the parameters jointly
tends to be infeasible on the majority of Markov networks.
Hence we have chosen to optimize the free parameters in
each potential jointly.

We present a formal framework for these optimizing func-
tions. Define ∆(M,Ψ) = M ′, where M ′ = 〈G,Φ′〉 and
Φ′ = {δ(φi, ψi)|φi ∈ Φ, ψi = {φi(xi)|φi(xi) ∈ Ψ}}, and
δ(φi, ψi) is any function that takes a potential φ and its free
parameters ψ as input, and returns a new potential φ′ that
has the same scope (vars(φ) = vars(φ′)), but in which all
free parameters have (possibly) different weights.

Thus, ∆(F(M)) = M ′ and M ≡ M ′. That is, a ∆ func-
tion takes a Markov network M and a set of free parame-
ters in M , and it calls δ on each potential of M along with
the free parameters of that potential, assigns values to all
free parameters, and returns a Markov network M ′ with an
equivalent joint distribution.

5.1 The Zero Heuristic- δ0

Perhaps the most obvious heuristic is to simply set all the
free parameters in each potential to 0. The intuitive idea is
that this choice would give LBP the maximum knowledge
about the global distribution at each potential. In the con-
text of Equation 5, such a choice of heuristic turns out to be
problematic, because it forces an evaluation of 1 in more
cases. Equation 5 implies that such evaluations will hurt
the performance of LBP, and our experiments corroborate
this hypothesis in many cases, although this heuristic does,
in general, help the performance of LBP (see Section 6).

5.2 The Mean Heuristic- δµ

Another computationally inexpensive method is to simply
set all the weights of the free parameters to the mean value
of the weights of the non-free parameters in their respective

899

Loopy Belief Propagation in the Presence of Determinism

potentials. Clearly, given a graphical model with uniform
pseudo-distributions at each potential (and hence an overall
distribution that is uniform), Equation 6 will have a value
of 0, assuring convergence to a unique fixed point. The idea
behind this simple modification is that it brings the pseudo-
distribution at each potential closer to the uniform one.

5.3 The Local Min Strength Heuristic- δLMS

This heuristic directly minimizes the quantity in Equation 5
via a nonlinear optimization routine. We optimize each po-
tential independently. Let x ∈ R+n

0 , where n is the number
of variable values in potential φi. We formulate the opti-
mization problem as:

min
t∈R+

0 ,x∈R+n
0

t subject to gk(x)− t ≤ 0
k∈{1,...,m}

where m is equal to the total number of constraints of the
form:

gk(x) =

√
φi(αβγ)φi(α′β′γ′)−

√
φi(α′βγ)φi(αβ′γ′)√

φi(αβγ)φi(α′β′γ′) +
√
φi(α′βγ)φi(αβ′γ′)

taken over all possible values for α,α′,β,β′, γ, and γ′, such
that α 6= α′, β 6= β′, and the at least one of the members
of the set {φi(αβγ), φi(α

′β′γ′), φi(α′βγ), φi(αβ
′γ′)} is

free parameter and hence equals xi for i ∈ {1, . . . , n}.
This formulation is equivalent to minimizing the maximum
value for gk(x), and hence is equivalent to minimizing the
strength of each potential independently (see Equation 5).

5.4 The Local Min Sum Strength Heuristic- δLMSS

The previous heuristic has the disadvantage that it only at-
tempts to minimize the maximum value of the set of con-
straints. Even after the minimax is found, we would like to
continue minimizing the gk(x) for all values of k. One way
to approximate this behavior is to minimize the sum of the
constraints. We formulate the problem as follows:

min
t∈R+

0 ,x∈R+n
0

t subject to t−
m∑
k=1

tk ≤ 0

gk(x)− tk ≤ 0
k∈{1,...,m}

where the set of constants are the same as those from the
previous heuristic.

5.5 The Local Min Exponential Sum Strength
Heuristic- δLMESS

Although the previous heuristic attempts to minimize over
all constraints, it has the disadvantage that it assigns equal
priority to the minimization of all sums, regardless of their
size. We would like to give larger sums a higher priority
for minimization. One way to approximate this behavior

is to minimize the exponential sum of the constraints. We
formulate the problem as follows:

min
t∈R+

0 ,x∈R+n
0

t subject to t−
m∑
k=1

etk ≤ 0

gk(x)− tk ≤ 0
k∈{1,...,m}

where the set of constants are the same as those from the
previous heuristic. Under this formulation, the largest val-
ues for gk(x) are assigned weights that decrease exponen-
tially faster than the smaller weights, and hence are the
priority for minimization, but after their mins have been
found, the overall sum can still be minimized by optimiz-
ing over the remaining constraints.

5.6 Using the N function as an Ordering Heuristic

The N function can also be used to rank the strength of po-
tentials in order to find an ordering for the application of f .
Our approach is to order the set of potentials in descend-
ing order according to their Nscore. We then apply f to
each entry of each potential along this ordering (we do no
sorting of the entries in a given potential).

The choice of this heuristic is motivated by the fact that
those potentials with higher Nscores are potentially more
problematic for LBP, and hence adding variable values to
them first is more likely to yield a reparameterization closer
to the convergence guarantee.

6 Experiments

The implementation of this algorithm requires a SAT-solver
and a nonlinear optimizer. We used Minisat [20] and
NLOpt [10] for these tasks, respectively. We experimented
with the following networks: (1) Ising Models, (2) random
Markov networks, and (3) random 3-SAT instances. The
potential values of the randomly generated Ising models
and Markov networks were set as follows: we draw a ran-
dom real number between 0 and 1 from the uniform distri-
bution; if the number is smaller than the percent zero value
for the network, we assign the potential entry a weight of 0;
else a real number x is drawn from a Gaussian distribution
with µ = 0 and variance equal to σ, an input parameter.
Then we take ex and assign it as the potential value.

6.1 Grid Networks (Ising Models)

To demonstrate the soundness of the concept, we first gen-
erated 10 × 10 Ising models with increasing levels of σ =
{1, 3, 5}. For each value for σ, we generated networks with
determinism between 0% to 20% (at 2.5% intervals, 1000
graphs at each interval). On each graph we calculated the
exact values of the single variable marginals; we then ap-
plied a variety of heuristics and ran LBP. Figure 2 shows

900

David Smith, Vibhav Gogate

�

�

�

�

�

� � �

�

�

�
�

� �

� �

à

à

à
à

à

à

à

à

æ

æ

æ
æ

æ

æ

æ

æ

ò

ò

ò ò

ò

ò

ò ò

@

@

@

@ @ @ @ @

0.00 0.05 0.10 0.15 0.20

7.6

7.7

7.8

7.9

8.0

%Zeroes

A
v
g

N
s
c
o
r
e

Avg Nscore vs %Zeroes 10x102d1m5mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

à

à

à

à

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ

ò

ò

ò

ò

ò

ò

ò

ò

@

@

@

@

@

@

@

@

0.00 0.05 0.10 0.15 0.20

100

120

140

160

180

%Zeroes

I
te

r
a
ti

o
n
s

Avg Iterations vs %Zeroes 10x102d1m5mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
à

à

à

à

à

à

à

à

æ

æ

æ

æ

æ

æ
æ

æ

ò

ò

ò

ò

ò

ò
ò

ò

@

@

@

@

@

@

@

@

0.00 0.05 0.10 0.15 0.20

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

%Zeroes

H
e
ll

in
g
e
r

D
is

ta
n
c
e

Hellinger Distance vs %Zeroes 10x102d1m5mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

Figure 2: Nscore, iterations to convergence, and Hellinger distance for 10x10 grids of binary variables, generated from an
exponential Gaussian distribution with σ = 5.

the results for networks generated with σ = 5. The re-
sults indicate a correlation between the Nscore of a graph
and many desirable properties under LBP. Networks with a
lower Nscore converge more often, in fewer iterations, and
to more accurate single variable marginals. Thus, even if it
is not possible to find an Nscore low enough to guarantee
convergence for a particular graph, optimizing for its min-
imum value will still give a higher chance of obtaining an
accurate approximation.

The heuristics that require optimization outperform those
that do not by a substantial margin. In general, δLMESS

yields the best results on these types of models and δLMSS

is next best. This result is expected; these two heuristics re-
quire the most constraints of any the heuristics tested. The
δ0 heuristic is an anomaly. While it usually creates net-
works with poor Nscores, these networks generally yields
good approximations, particularly as the value of σ in-
creases. This might suggest that our use of 0/0 = 1 in the
calculation of the Nscore is incorrect. However, in many
other varieties of networks, δ0 performs poorly; in many
cases, the application of δ0 forces networks that converge
under standard LBP to never converge.

We also calculate results for 40 × 40 grids generated via
the same procedure, with σ = 3. These models are too
large to run exact inference so we calculate only Nscore
and iterations to convergence (shown in Figure 3). Because
of the size of the model our algorithm would take a long
time to finish its preprocessing step, so we limited our algo-
rithm to 5 minutes for finding variable entries in the model,
and 5 minutes to run its optimization routine. Although
we cannot calculate the Hellinger distance from the true
marginals, we observe similar improvements in Nscore and
iterations to convergence, indicating that the heuristics are
improving accuracy on models of this size as well.

6.2 Networks with Random Structure

We also applied our method to networks with random struc-
ture. We generated models with 100 binary-valued vari-
ables and 80 potentials, each with 3 variables in its scope,

�

�

�

�

�

�

�

�

�

–

–

–

–

–

–

–
–

–

ð

ð

ð

ð
ð ð ð

ð
ð

2

2

2

2
2 2 2

2
2

¢

¢

¢

¢

¢
¢ ¢

¢

¢

@

@

@

@

@

@

@

@

@

0.00 0.02 0.04 0.06 0.08 0.10

3.0

3.2

3.4

3.6

3.8

4.0

%Zeroes

A
v
g

N
sc

o
re

Avg Nscore vs %Zeroes 40x402d1m3mu

� -none – ∆_Μ ð ∆_8LMS<

2 ∆_8LMSS< ¢ ∆_8LMESS<-no1 @ ∆_0

�

�

�

�

�

�
�

� �

–

–

–

–

–

–
–

–

–

ð

ð

ð

ð

ð

ð

ð

ð
ð

2

2

2

2

2

2
2

2
2

¢

¢

¢

¢

¢

¢

¢

¢ ¢

@

@

@

@

@

@
@

@ @

0.00 0.02 0.04 0.06 0.08 0.10

350

400

450

%Zeroes

It
e
ra

ti
o
n
s

Avg Iterations vs %Zeroes 40x402d1m3mu

� -none – ∆_Μ ð ∆_8LMS<

2 ∆_8LMSS< ¢ ∆_8LMESS<-no1 @ ∆_0

Figure 3: Nscore and iterations to convergence for 40x40
grids of binary variables, generated from an exponential
Gaussian distribution with σ = 3.

chosen at random from the uniform distribution. For these
networks, we chose σ = 3. Row 1 of Figure 4 shows the
results. The results here are similar to those found with the
grid models. δ0 performs well again, outperforming even
the expensive optimizing heuristics. Again, in results with
a smaller value of σ, the performance of δ0 suffers.

6.3 3-SAT Problems

Because inference in graphical models can be viewed as an
algorithm for weighted model counting [7], our algorithm
can also be used to find approximate solution counts to sat-
isfiability problems. We generated random 3-SAT prob-
lems in conjunctive normal form (100 variables, 380 to
480 clauses) and applied LBP to approximate their model

901

Loopy Belief Propagation in the Presence of Determinism

�

�
�

�

�

�
� �

�

�
� �

�

�

�

��

�
�

�

�

�

� �
�

� �

� � �

�

�

à

à
à

à

à

à

à à à

à
à

à à
à

à

à

æ

æ

æ
æ

æ
æ

æ æ
æ

æ

æ

æ

æ

æ

æ æò

ò
ò

ò

ò
ò

ò
ò

ò
ò

ò
ò

ò

ò

ò ò
@

@
@

@
@

@ @
@

@
@

@

@
@

@

@

@

0.0 0.1 0.2 0.3 0.4

0.4

0.5

0.6

0.7

0.8

0.9

%Zeroes

%
C

o
n
v
e
r
g
e
d

%Converged vs %Zeroes 100v80p3s2d1m3mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

�

�

�

�

�
� �

� �
�

� �

�

�

�

�

�

�
�

�
�

� � � �

�
�

�
� �

�

�

à

à
à

à
à

à à à à

à

à
à

à
à

à

à

æ

æ
æ

æ
æ

æ æ æ æ
æ

æ
æ

æ

æ

æ æ

ò

ò
ò

ò
ò ò ò

ò ò ò

ò ò

ò

ò

ò ò

@

@

@

@ @ @ @
@

@
@

@

@

@

@

@

@

0.0 0.1 0.2 0.3 0.4

100

150

200

%Zeroes

I
te

r
a
ti

o
n
s

Avg Iterations vs %Zeroes 100v80p3s2d1m3mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

�
� �

�
�

�
�

�
�

�

�
� � �

�

�

�
� �

�
�

�
�

�
�

�

�

�

�

�

�

�

à
à à

à
à

à
à

à à

à

à

à

à

à

à

à

æ
æ æ æ

æ
æ

æ
æ

æ
æ

æ æ æ æ

æ

æ

ò
ò

ò ò
ò

ò
ò

ò ò

ò
ò ò

ò
ò

ò

ò

@
@ @

@
@

@ @
@ @

@

@
@ @

@
@

@

0.0 0.1 0.2 0.3 0.4

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

%Zeroes

H
e
ll

in
g
e
r

D
is

ta
n
c
e

Hellinger Distance vs %Zeroes 100v80p3s2d1m3mu

� -none � ∆_Μ à ∆_8LMS<

æ ∆_8LMSS< ò ∆_8LMESS< @ ∆_0

�

�
�

� �

�

� �
� �

�

à

à

à

à

à

à

à à à

à

à

ò
ò

ò

ò

ò

ò

ò
ò

ò ò

ò

@

@

@
@

@ @
@ @

@

@

@

380 400 420 440 460 480

0.0

0.2

0.4

0.6

0.8

1.0

ðClauses

%
C

o
n
v
e
r
g
e
d

%Converged vs ðClauses cnf

� -none à ∆_8LMS< ò ∆_8LMESS< @ ∆_0

�
�

� �
�

�

�
� � �

�

à

à

à

à

à

à

à à à
à

à

ò ò

ò

ò

ò

ò

ò ò
ò

ò

ò

@

@

@

@

@
@ @

@ @
@

@

380 400 420 440 460 480

0

100

200

300

400

ðClauses

I
te

r
a
ti

o
n
s

Avg Iterations vs ðClauses cnf

� -none à ∆_8LMS< ò ∆_8LMESS< @ ∆_0

�

�

�

�

�
�

�

�

�

�

�à

à

à

à à

à à à
à

à à

ò

ò

ò
ò

ò

ò ò
ò ò

ò ò

@

@

@

@

@

@

@
@

@

@

@

380 400 420 440 460 480

0.00

0.02

0.04

0.06

0.08

ðClauses

H
e
ll

in
g
e
r

D
is

ta
n
c
e

Hellinger Distance vs ðClauses cnf

� -none à ∆_8LMS< ò ∆_8LMESS< @ ∆_0

Figure 4: Row 1: Results for randomly generated Markov networks. The x-axis denotes the amount of determinism in the
models. The y-axis shows (left to right) the ratio of converged graphs, the average iterations until convergence, and the
Hellinger distance of the single variable marginal approximations from their true values.
Row 2: Results for randomly generated SAT instances. The x-axis denotes the number of clauses. The y-axis shows (from
left to right) the ratio of converged graphs, the average iterations until convergence, and the Hellinger distance of the single
variable marginal approximations from their true values.

counts. Although the problems have relatively few vari-
ables, they have large treewidth in general (on average, the
treewidth found by the minfill heuristic is ∼67). We again
limited our algorithm to a 5 minute time limit. We calcu-
lated the exact solutions using the Cachet model counting
package [18]. Row 2 of Figure 4 shows the results.

We found that our heuristics yield the most significant
improvement in those cases where the generated SAT in-
stances have the highest uncertainty as to their satisfiability
status. Roughly half the generated problems have a solu-
tion at 430 clauses, and the results show that it is in this
neighborhood that the heuristics yield the greatest improve-
ment. These problems are well known to be the hardest
SAT problems to solve [2, 13]; it is not surprising that LBP,
which relies on only arc-consistency to enforce hard con-
straints, struggles to give accurate approximations. Provid-
ing each potential the global satisfiability information al-
lows the counting problem to be approximated much more
accurately in these cases.

Note that we have excluded results for the δµ heuristic from
the plots because it yields results almost identical to δLMS .

7 Conclusions and Future Work

In this paper, we proposed a general method for improving
the convergence and accuracy of LBP in presence of deter-

minism. Our method relies on finding alternate parameter-
izations of the given graphical model such that LBP con-
verges faster on them than on the original graphical model.
We proposed several heuristic methods that leverage exten-
sive previous work on LBP convergence for finding such
parameterizations and showed experimentally that our new
method is superior to LBP.

Directions for future work include: the development of
more uniformly successful heuristics across PGMs with
different graph structures and potential strengths; and the
application of the zero-finding method to other algorithms
in the LBP family (e.g., max-product BP, IJGP [11], etc.).

Acknowledgments

This research was partly funded by ARO MURI grant
W911NF-08-1-0242, by the AFRL under contract num-
ber FA8750-14-C-0021 and by the DARPA Probabilistic
Programming for Advanced Machine Learning Program
under AFRL prime contract number FA8750-14-C-0005.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
DARPA, AFRL, ARO or the US government.

902

David Smith, Vibhav Gogate

References
[1] Bengt Aspvall, Michael F Plass, and Robert Endre

Tarjan. A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information
Processing Letters, 14(4):195, 1982.

[2] Peter Cheeseman, Bob Kanefsky, and William M Tay-
lor. Where the really hard problems are. In IJCAI,
volume 91, pages 331–337, 1991.

[3] G. F. Cooper. The computational complexity of prob-
abilistic inference using Bayesian belief networks.
Artificial Intelligence, 42(2-3):393–405, March 1990.

[4] Rina Dechter and Robert Mateescu. A simple in-
sight into iterative belief propagation’s success. In
Proceedings of the Nineteenth conference on Uncer-
tainty in Artificial Intelligence, pages 175–183. Mor-
gan Kaufmann Publishers Inc., 2003.

[5] Pedro F Felzenszwalb and Daniel P Huttenlocher. Ef-
ficient belief propagation for early vision. Interna-
tional journal of computer vision, 70(1):41–54, 2006.

[6] Marc PC Fossorier, Miodrag Mihaljevic, and Hideki
Imai. Reduced complexity iterative decoding of low-
density parity check codes based on belief prop-
agation. Communications, IEEE Transactions on,
47(5):673–680, 1999.

[7] V. Gogate and P. Domingos. Formula-based proba-
bilistic inference. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence,
pages 210–219, 2010.

[8] Tom Heskes. On the uniqueness of loopy be-
lief propagation fixed points. Neural Computation,
16(11):2379–2413, 2004.

[9] Alexander T Ihler, John W Fisher III, Alan S Willsky,
and David Maxwell Chickering. Loopy belief prop-
agation: convergence and effects of message errors.
Journal of Machine Learning Research, 6(5), 2005.

[10] Steven G Johnson. The nlopt nonlinear-optimization
package, 2010.

[11] R. Mateescu, K. Kask, V. Gogate, and R. Dechter. It-
erative Join Graph Propagation algorithms. Journal of
Artificial Intelligence Research, 37:279–328, 2010.

[12] Robert J. McEliece, David J. C. MacKay, and Jung-
Fu Cheng. Turbo decoding as an instance of pearl’s
belief propagation algorithm. Selected Areas in Com-
munications, IEEE Journal on, 16(2):140–152, 1998.

[13] David Mitchell, Bart Selman, and Hector Levesque.
Hard and easy distributions of sat problems. In AAAI,
volume 92, pages 459–465. Citeseer, 1992.

[14] Joris Mooij and Hilbert Kappen. Sufficient conditions
for convergence of loopy belief propagation. arXiv
preprint arXiv:1207.1405, 2012.

[15] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy Be-
lief Propagation for Approximate Inference: An Em-
pirical Study. In Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence, pages
467–475, 1999.

[16] Judea Pearl. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann, 1988.

[17] Tanya Gazelle Roosta, Martin J Wainwright, and
Shankar S Sastry. Convergence analysis of
reweighted sum-product algorithms. Signal Process-
ing, IEEE Transactions on, 56(9):4293–4305, 2008.

[18] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A
Kautz, and Toniann Pitassi. Combining component
caching and clause learning for effective model count-
ing. SAT, 4:7th, 2004.

[19] Tian Sang, Paul Beame, and Henry Kautz. Solv-
ing bayesian networks by weighted model counting.
In Proceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI-05), volume 1, pages
475–482, 2005.

[20] Niklas Sorensson and Niklas Een. Minisat v1. 13-
a sat solver with conflict-clause minimization. SAT,
2005:53, 2005.

[21] Sekhar C Tatikonda and Michael I Jordan. Loopy be-
lief propagation and gibbs measures. In Proceedings
of the Eighteenth conference on Uncertainty in artifi-
cial intelligence, pages 493–500. Morgan Kaufmann
Publishers Inc., 2002.

[22] Chen Yanover and Yair Weiss. Finding the ai most
probable configurations using loopy belief propaga-
tion. Advances in Neural Information Processing Sys-
tems, 16:289, 2004.

[23] Jonathan S Yedidia, William T Freeman, and Yair
Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. Informa-
tion Theory, IEEE Transactions on, 51(7):2282–2312,
2005.

903

