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Abstract

Nonlinear embeddings such as stochastic neigh-
bor embedding or the elastic embedding achieve
better results than spectral methods but require
an expensive, nonconvex optimization, where the
objective function and gradient are quadratic on
the sample size. We address this bottleneck by
formulating the optimization as aNM-body prob-
lem and using fast multipole methods (FMMs) to
approximate the gradientin linear time. We study
the effect, in theory and experiment, of approx-
imating gradients in the optimization and show
that the expected error is related to the mean cur-
vature of the objective function, and that grad-
ually increasing the accuracy level in the FMM
over iterations leads to a faster training. When
combined with standard optimizers, such as gra-
dient descent or L-BFGS, the resulting algorithm
beats theO(N log N) Barnes-Hut method and
achieves reasonable embeddings for one million
points in around three hours’ runtime.

and Saul, 2000), especially when the high-dimensional data
have a complex cluster and manifold structure. Also, given

the weighted graph, the runtime of nonlinear (and spectral)
embedding algorithms is independent of the input dimen-

sionality, and so they can handle very high-dimensional ob-

jects, such as images.

The fundamental disadvantage of NLE is their difficult,
slow optimization, which has prevented their widespread
use (particularly in exploratory data analysis, whererinte
activity is important). Although recent advances in the
optimization algorithms, such as the spectral direction of
Vladymyrov and Carreira-Peiffiin (2012), have signifi-
cantly reduced the number of iterations, each iteration is
still guadratic on the number of poinié, and this does not
scale to large datasets. Stochastic gradient descent is not
helpful, because each step would only update a small sub-
set of theD (V) parameters, becoming a form of alternating
optimization. As pointed out by Vladymyrov and Carreira-
Perpiian (2012), a convenient way to break the quadratic
cost is to approximate the gradient with-body methods,

in particular fast multipole methods (FMM; Greengard and
Rokhlin, 1987). N-body problems arise when the exact
computation involves the interaction between all pairs of
points in the dataset. They are of particular importance

Dimensionality reduction algorithms are often used to ex-; . ) . L .
in particle simulations in biology and astrophysics. Gen-

plore the structure of high-dimensional datasets, to iden—erall there are two wavs o speed dbbody problems:
tify useful information such as clustering, or to extract Y, y P Opbody p '

low-dimensional features that are useful for classifiecgtio using a free structure (e.g. Barnes and Hut, 1986) or us-

search or other tasks. We focus on the classmobedding Linogng E%M;Tpa?\?'oann’ da(gd];[fh?ln?gprr:;@gsgre giﬂmhﬂp;ta-
algorithms based on pairwise affinitiesHere, a dataset (Nlog N) (N) - resp Y-

consisting ofN objects is represented by a weighted graphals.O have known error boupds (Baxter and Roussos, 2002),
L . . while the Barnes-Hut algorithm does not (Salmon and War-

where each object is a vertex and weighted edges indi-

P . : . ren, 1994). Unfortunately, both types of methods scale
cate similarity or distance between objedtgnlinear em- . . . .

. . . . _poorly with the latent-space dimensionalify However,
beddings (NLE)such as stochastic neighbor embedding . .

e . they work well ford < 3, which makes them suitable for
(SNE; Hinton and Roweis, 2003),SNE (van der Maaten visualization applications, and we focus on that here
and Hinton, 2008) or the elastic embedding (EE; Carreira- PP ' '
Perpian, 2010), are particularly desirable because theyrhe contributions of this paper are as follows. We review
produce embeddings that are much better than those @isting NLE methods ani¥-body methods that can be ap-
linear (such as PCA) or spectral methods (such as Laplgslicable to them. We then propose a linear-time algorithm
cian eigenmaps or LLE; Belkin and Niyogi, 2003; Roweis based on FMMs and compare it to the Barnes-Hut approxi-
— mation and the exact computation. Finally, we evaluate the
Appearing in Proceedings of th&'" International Conference on role of noisy gradients and propose the use of increasing
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik, gchedules for the accuracy parametef\obody methods

{Eglre;r.ld. JMLR: W&CP volume 33. Copyright 2014 by the in order to speed up the optimization. This enables us to
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handle million-point datasets in three hours’ runtime.
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1.1 Review of Nonlinear Embedding (NLE) Methods
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Many NLE methods can be written in the following generic _ 0 .
form (Vladymyrov and Carreira-Pefigin, 2012). Given a Figure 1: Left for /D > 6, the cell is subdivided into
symmetric nonnegative affintynatrix W defined for a set smaller subcells. Otherwise, the interaction is computed

of input high-dimensional data poin¥ = (yi,...,yn~), approximately. Right speedup and relative error for dif-
we find ad x N matrix of low-dimensional pointX = ferent values ofl. The gray area corresponds to the region
(x1,...,xy) by minimizing the objective function with no speedup. Notice the log/log plot.

E(X,)) = ET(X) + AE™(X), A20, (1) Tree-based Methods Here, we build a tree structure
whereE* is an “attractive” term that pulls points together around the pointX, such asid-trees, ball-trees or range-
in X-space if they were close in the origing+space, and trees (Friedman et al., 1977; Samet, 2006), and we query
E~ is a “repulsive” term that drives all points apart from tree nodes rather than individual points. Each node of
each other. Optimal embeddings balance both forces. Spéhe tree represents a subset of the data containediin a
cial NLE cases include E& dimensional cell, usually a box aligned with the coordinate
B(X,\) = ZN Wam [%n — X H2 axes. The roo.t.node represen'Fs the whole data;et and e:ach
’ n,m=1"nm I=n m new level partitions the space into subsets (e.g. in the mid-
+ )\Zﬁfm:l exp(— [|xn — xm|/?), (2)  dle of the largest-variance dimension) until there is only
one point left in each leaf node. The tree can then be used
and s-SNE and-SNE’: to locate points within a given distance of a query point
E(X,\) = Zﬁmzl W 10g K (|| %0 — xm||?) without exhaustive search on the entire dataset. For faster
N 9 approximate calculations, we replace many point-point in-
+ Mog (X et K(Ixn —xml), 3)  taractions with point-node interactions, by pruning nodes
whereK is a Gaussian or a Student’kernel, respectively. too far away or by subsuming all points in a small cell into
The gradient of (1) iV E(X) = 4X (L — AL) with graph  one interaction. In machine learning, this idea has been
Laplacians defined as: used to speed up various nonparametric models, such as re-
) N ~ ) N o~ —~ gression with locally weighted polynomials (Moore et al.,
L = diag (3_,—; wnm)—W L =diag (3_,_; Wnm)-W 1997) or Gaussian processes (Shen et al., 2006). Dual-trees
where the weightS¥ depend on the embeddir§ and  (Gray and Moore, 2001) yield further speedups by building
have elementd,,,,, given by: trees for both target and query points, which allows node-

9 node interactions besides point-node ones.
exp(— [Ixn — Xm|l")

N 2 We focus here on the Barnes and Hut (1986) (BH) method.
Zk,l:l exp(— |lxx — xi[|")

This first constructs a quadtree in 2D (octree in 3D) around

EE: e Ixn—>nl®  s.SNE:

rong: Lt xn — Xpl|*) 2 ' the set of target points. Then, for every query poipt it
SV (U [x — x| P) 1 traverses the tree down from the root until the cell can be
’ considered approximately as a single point because itdis suf
1.2 Review ofN-Body Methods ficiently small and far fronx,, as follows. For a cell of size

I, let D be the distance between the cell's center of neass

All fast computation methods faN-body problems pro- andx, (see fig. 1 left). If the fraction/ D is smaller than a
duce approximate, rather than exact, values for sumaser-defined parametéythen all the interactions between
of O(N?) interactions. They are generally based onx, and the points inside that cell are approximated by a sin-
tree structures, such as iV log V) Barnes-Hut (BH)  gle interaction withc. If the fraction is bigger tha#, the
method; or on series expansions, such as@i&/’) fast  algorithm continues to explore the children of the node. If
multipole method (FMM) and fast Gauss transform (FGT),we reach a leaf, the interaction is computed exactly, since i
which besides have bounds for the approximation error. contains only one point, otherwise an approximation error

lComputing the affinities efficiently from the input data is an is incurred. As a function oV, the construction O_f the tree
important problem that we do not consider here. At present, ap€0StsO(IV log IV) and for each of theV query points, the
proximate nearest neighbor methods are one possible solution. interaction is computed in expectélog V) time. Thus,

’EE additionally has negative affinities;,,, inside the repul-  the overall cost reduces fro@(N?) to O(N log N).
sive term. In this paper we take them equal to 1.
3The original, equivalent formulation of s-SNE aneSNE  The user parametércontrols the trade-off between the ac-

was given in terms of KL divergences and useé 1. curacy of the solution and the runtime speedup. Increas-
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ing 6 means we approximate cells that are bigger or closerl: B - cl B,AL—//* C
to the query point. This reduces the runtime because we %\3 57{\ — .
prune the tree earlier, but also increases the approxima- ]

tion error. Fig. 1(right) shows the relative error and the SQUrces | [targets sources targets
speedup compared to the exact computation for different!!" B — C|IV:B C
values off. Good speedups with small relative error occur R o s ‘%%
1;)0rr0 i lin[lo.& 2], roughly, but this region does vary with each sources targets sources targets

. o Figure 2: Different FGT approximations. |: exact interac-
Tree-based algorithms have some limitations. Most cruyion (4) (few points in both boxes); II: expansion arousd
cially, the tree size grows exponentially with the dimen- many source points); Il expansion aroutid(many tar-
siond, thus limiting their use to problems with low dimen- get points); IV: expansion aroungk, then Taylor expan-

sionality. Second, the approximation quality declinesmwhe gjgn to the Hermite functions (many points in both boxes).
the interaction scale (e.g. the Gaussian kernel bandwiilth)

too big or too small. The hierarchical fast Gauss transform

(Lee et al., 2006) somewhat alleviates the second problemis, We can use a Taylor expansion around the cemntef

by combining dual trees with fast multipole methods, butthe boxC the targett belongs to. Finally, we can further

it still does not work well whenl > 3. Finally, it is hard ~ approximate the Hermite expansion by also expanding the

to estimate the approximation error, which in fact can betermhg (t) in (5). The approximation comes from truncat-

unbounded (Salmon and Warren, 1994). ing the series (5) to terms of up to orderwhich reduces
the cost fromO(N?2) to O(Np?) (since there arp terms

Fast Multipole Methods (FMM) These were initially —per dimension). Strain (1991) has also extended the FGT to

used in astrophysics to compute gravitational interastion the case of variable bandwidths for source and target points

between many particles (Greengard and Rokhlin, 1987Petailed approximation formulas appear in the supplemen-

and have since enabled large particle simulations in manfary material.

areas. The idea of FMMs is to do a series expansion of thgpg chojce of whether to use the direct evaluation or to ap-
interactions locally around every point such that the po'mproximate it with a series, and which series to use, depends
pair decouples in each term of the se_ries. _Truncating then the number of points in a given box (see fig. 2). Green-
series reduces the cost from quadratic to Imgar. The fa%jard and Strain (1991) propose the following algorithm: if
Gauss transform (FGT, Greengard and Strain, 1991) appe number of points is smaller than a certain threshdid
plies this to compute sums of Gaussian interactions the interaction is computed exactly between all the points
N 2 in that box. Otherwise, it is computed using the censgrs
Qxn) = Xy Gm XP(= [ = xm) /o [7) - (4) and/ortc. To gain additional speedup we can use the fast
for a set of points,,, n = 1,..., N and a bandwidtl. It decay of the Gaussian and compute the interaction to tar-
has been applied to accelerate problems such as kernel deget points that are located no further thAnboxes away
sity estimation (Raykar and Duraiswami, 2006) and matrixfrom the box with the source point. However, note that the

inversion and eigendecomposition (de Freitas et al., 2006fMM is still O(N) with heavy-tailed kernels such as the
in machine learning. gravitational interaction.

In the FGT, we normalize the dataset to lie in the unitThe main drawback of FMMs and the FGT is that they are
box [0, 1]¢ and subdivide this into smaller boxes parallel limited to small dimensiong (due to thep” cost). The im-

to the axes of sidg/20r (for somer < 1/2). To compute proved FGT (Yang et al., 2003) uses clustering and other
the sum (4), we write each Gaussian interaction between #&chniques to grid the data into data-dependent regiods, an

source poink and a target point as a Hermite expansion & modified Taylor expansion so the costi$d” N). This
around the centesy of the box23 thats belongs t6: allows for somewhat larger dimensions, but the issue still

remains, and the IFGT needs careful setting of various pa-
o llt=s) /0l _ Z 1 he, (s - SB) (t - SB)": (5) rameters (Raykar and Duraiswami, 2007), or otherwise the
! o o overhead is so large that computing the exact interaction is
actually cheaper. In this paper, we focusdr 3 and the
where h,(t) = e %" H,(t) are Hermite functions with plain FGT with parameters = 1/2, My = 5, K = 4,
Hermite polynomials,, (t). The algorithm decouples the so that the quality of the approximation is controlled using
evaluation of the exponent into two separate computationgust the order of the expansign

one betw_ees andsg, and an_other betvv_ee@ andt. Anal- FMMs do have important advantages over BH: their cost is
ogously, instead of a Hermite expansion around the centgfver (O(N) vs O(N log N)), they work well on a wide

“We use multi-index notationax > 0 = a,...,aq > 0; range of kernel bandwidths, and they have known bounds
al=aq! aght* =151 t54 fora € N4 t € RY for the approximation error as a functionaf
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While in this paper we concentrate on the Gaussian kernélhe computation of the attractive term can be mitigated by
(and the FGT), it is possible to use FMMs for virtually any the nature of the matriXV: in most practical applications
kernel, for example the “kernel-independent” FMM (Ying it is sparse and thus can be computed in linear time. The
et al., 2004; Fong and Darve, 2009) needs only numericalepulsive term is not sparse and involvesfésbody prob-
values of the kernel. lem as a sum of kernel similarities between all point pairs.
For the gradient, the first term involves the graph Laplacian
1.3 Work on Fast Training of Nonlinear Embeddings ~ L» Which has the same sparsity patternsand can be
computed efficiently. The second term involves the graph
Until recently, NLEs were usually trained with variations LaplacianL. = D—W, which depends oX through a ker-
of gradient descent that were slow and limited the app”-ne' inW. Let us define the following kernel interactions:
cability of the methods to very small datasets. Fixed-point

iteration algorithms (Carreira-Pefjgin, 2010) can improve N 9
this by an order of magnitude. The currently fastest algo- SGen) = 21 Kllxn = xmll) (62)
rithm is the spectral direction of Viadymyrov and Carreira- S™(%n) = Yomey Xm K (%0 — xm[*).  (6b)

Perpfian (2012), which uses a sparse positive definite Hes-

sian approximation to “bend” the true gradient with the cur-Now we can rewrite the objective function and the gradient
vature of the spectral part of the objective, at a negligibleof EE and s-SNE as follows:

overhead. This i40-100x faster than previous methods N 5 N

and beats standard large-scale methods such as conjugé’zéx) = 2onm=1 Wam [Xn = X"+ A2 20—y F(S(xm))
gradients and L-BFGS. However, each iteration of all theseZZ = 4XL — 4\Z(X)X diag (S(X)) + 4AZ(X)S* (x,,)
methods scales quadratically dh

N
N-body problems also arise in the graph drawing literatureWheref(z) = logz, Z(X) = 1/5_,_, S(xy) for s-SNE

where the goal is to visualize in an aesthetically pleasin ndf(x) = 1 Z(X) =1 f_or EE. G'VenS(X”.) ands®(x,)
way edges and vertices of a given graph, which is typicall oth the pbject[ve function and the gradient can be com-
unweighted and sparse (Battista et al., 1999). This is simpUted in linear time.

ilar to dimensionality reduction given an affinity (or adja- The BH method can be applied to compute approximately
cency) matrix. One of the most successful algorithms forthe kernel interactions (6). We get

graph drawing are force-directed methods (Battista et al.,

1999; Fruchterman and Reingold, 1991), which try to bal- S(x,) ~ ZﬁlemK( llem — XnH2)

ance attractive and repulsive forces on the graph vertices . 5 )

in a similar formulation to that of NLEs (eq. (1)). Each 5% (xn) & Zm:lech( l[em — x| )

iteration of the force-directed method requires the compu- .

tation of interactions between every pair of points, whichWhere N, ande,, form = 1,..., N are the number of

is O(N'2) for a graph withV vertices. Fast, approximate points and the centers of mass of the cells, respectively,

graph drawing is done with the BH algorithm (Quigley and for'which we negd to cqmpute the interagtion. For.the
Eades, 2000; Hu, 2005) ifi(N log N) runtime. weighted kernel interactio”(x,,) we require an addi-
tional approximation of each weight,,, due to its depen-

Recently, the BH algorithm has been used to speed up thgence onn. Fortunately, when we compute the approxi-
training of NLEs (van der Maaten, 2013; Yang et al., 2013)mation between the cell and the query point, the cell size
in a similar way to the work in graph drawing. The use of js small (compared to the distance to the query point) and

dual trees and FMMs to speed up gradient descent trainingyys can be approximated by its center of mass.
of stochastic neighbor embedding (SNE) was also proposed

by de Freitas et al. (2006), as a particular case of their work©r the FGT,S(x,,) can be obtained by taking = 1 and
on N-body methods for matrix inversion and eigendecom-¢» = 1in (4) foralln = 1,..., N. 57(x,) is recovered
position problems in machine learning. Our work providesPY t@kinge = 1 andg,, =z, and computing the formula
a more thorough study of-body methods and the FGT dtimesfork =1,....d.

for NLEs and demonstrates it in million-point datasets.  For --SNE we cannot apply the FGT, because the former
uses the-Student kernel. However, a FMM approximation

2 Applying N-body Methods to Embeddings could be derived with a suitable series expansion, or with a
kernel-independent FMM method (section 1.2).

For NLEs the N-body problem appears in the computa- Out-of-Sample Mapping The N-body approximation
tion of the objective function and the gradient, where thecan also be used to obtain a fast out-of-sample mapping.
interactions between all point pairs must be evaluated. IICarreira-Pergian and Lu (2007); Carreira-Pefjin (2010)
particular, the objective function (1) involves twd-body = compute the projection of a new test paynby keeping the
problems, one for each of the attractive and repulsive termgrojection of the training pointX fixed and minimizing
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the objective function of the NLE wrt the unknown projec- we would move from the previous iteratg ; to the cur-
tion x (the mapping of a new point toy-space is defined rent onex; without error. However, if using an inexact

analogously). For example, for EE: gradient, we would move t®, + €, incurring an errog.
o N ) In our casegy, is caused by using an approximate method
min E'(x,y) =230, (w(y,yn)lIx — x| and is a deterministic function of,_; and the method pa-

+ Nexp ( —x-x H2 )) ) rameters. I__et us quelk as a zero-mean Gaussian with
" variance¢? in each dimension. The fundamental assump-

For M new test points the formula above can be approxition is that, althougle;, is deterministic at each iterate, over

mated inO(M + N) using N-body methods (iterating all a sequence of iterates we expect it not to have a preferred

M minimizations synchronously), instead@f N M) with  direction (i.e., no systematic error). The value¢oforre-

the exact computation. sponds to the accuracy level of the method, wigere 0

means no errof(= 0, p — o0). In practice£ will be quite

Optimization Strate Since exact values of the objec- .
P 9y ] small. Then we have the following result.

tive function and gradient are not available during the-opti
mization, it makes sense not to use a line search (it might b&heorem 3.1. Let E(x) be a real function withx € R™.
possible to use line searches with the FGT because it dod€3all A E(x) andd E(x) the absolute and relative error, re-
give us an interval for the true value). This also saves timespectively, incurred at point € R upon a perturbation
since the line search would require repeated evaluations aff x that follows a Gaussian noise mod#l(0, £21). Call

the objective function. So the onli¥-body problem we pa(x) = (AE(x)), va(x) = ((AE(x) — (AE(x)))?),
need to solve per iteration is the gradient. ps(x) = (6E(x)) andvs(x) = ((6E(x) — (0E(x)))?)
T . . : the expected errors and their variances under the noise
Our problem has similarities with stochastic gradient de odel. Assumé has derivatives up to order four that

scent, for which a convergence theory exists (Spall, 200 . L : .

ch. 4.3), which leads to Robbins-Monro schedules that de@re continuous and have finite expectations L;nder the noise

crease the step size over iterations in a specific way. How"0d€l- Callg(x) = VE(x) and H(x) = V*E(x) the
gradient and Hessian at that point, respectively, dpgdx)

ever, NLE training is different in that the number of param_thedxd\]acobian matrix of the Hessian diagonal elements
eters is proportional to the number of training points and. '
brop gp 1.e., (JH(X»” = 8hii/8xj = 83E(X>/8$728$J Then,

the characteristics of the “noise” in the gradient (the ap . . . 4.
proximation error) are not well understood. As far as Wethe expected errors and their variances satisty.c R*:
know, no convergence theory exists for NLEs. We provide
an initial study of the role of this noise in section 3.

2 2
In pilot runs, we found that schedules that decrease the steif?(x) =& g)II" +¢* <% Gl + 1TJH<X)g<X))
size over iterations can improve the performance, but they + 0O(£%)
are difficult to use in a robust way over different problems. 9
Thus, in this paper we use a constant step gizehosen ps = pafE(x)  vs =va/E(x)".
sufficiently small, which is simpler.

pa = 5& tr (H(x)) + O(¢")

If HH(X)1||
lual < 3

< M Vx € R?for someM > 0, thenvx € R?

2
2dM.

3 Analysis of the Effect of Approximate

Gradients in the Optimization The proof is given in the supplementary material. While
this noise model is probably too simple to make quanti-

Yative predictions, it does give important qualitative -pre
curacy and the speedup aefor BH andp for FGT. A dictions: (1) adding noise will be beneficial only where

higher value ofp (or lower of §) increases the accuracy, the mean curvatur% b (VQE(X)) is negative: (2) when

but so does the runtime. Clearly, the speed at which th(?he mean curvature is positive, the lower the accuracy the

optlmlzauon progresses and whether it converges depenvc\j/orse the optimization; (3 / tr (V2E(x)) should take
crucially on these accuracy parameters. Here, we try tQ . . S
. . . - . an approximately constant value over iterates which is re-
gain some understanding of this by considering the iterat ) : .
. w2 ated to the accuracy level; and @A) (x) will vary widely
updates as noisy, where the “noise” comes from the ap- L N .
L : : at the beginning of the optimization and become approxi-
proximation error incurred and has a variance that grows

2 ini-
with p. In order to solve the mathematical derivations, Wemfe\tely co_nst:_int and equa_l t%f tr (H(x)) near a mini

. : . L mizer. This gives suggestions as to how to tune the accu-
will assume zero-mean Gaussian noise, which implies that

. ) S racy @ or p). Let us assume that the optimization algo-
the error is not systematic, as one might intuitively expect . L .
L . . rithm decreases the objective function, at least on average
This will allow us to derive some expressions that seem t

. . o 0Thus, we expect that the early iterates will move through a
hold in experiments, at least qualitatively. . . ”
region that may have negative or positive mean curvature,
At iterationk during the optimization of an objective func- but eventually they will move through a region of positive
tion £(x) with x € R, if using exact gradient evaluations, mean curvature, as they approach a minimizer. A higher

The parameters that quantify the trade-off between the a
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Figure 3: Minimization of4 000 points from the Swissroll dataset using EE with gradientdaswith different accuracy
parameterslLeft two plots the number of iterations is limited f@00 iterations.Right plot we run FGT forp =1,...,10
(blue lines) and run one exact step after each iterationeoFtBT (black lines). Compare with the exact run (red line).

accuracy will be necessary in the later stages of the opti-
mization. As for the early stages, we can be more specific
by looking at the Hessian trace for some embedding mod-
els (see Vladymyrov and Carreira-Pdigm, 2012 for the
exact formulas):

!
)

=
o

Error wrt exact
=
o

e EE: tr (V2E(x)) = 4dtr (L), whereL is the N x N 010"+ EéaTCtp P EEZ zf
graph Laplacian corresponding to the affinities in the ¢ -~ - FGT,p=3 — BH,0= 1/2/
high-dimensional space antlis the dimension of the g 10" - FGTp=4 =
low-dimensional space. S
@ 1g73E ]
o S-SNE, t-SNEtr (V?E(x)) = 4d tr (L) — 16 [|XL|%, 0 o oF o
whereL? is aN x N graph Laplacian corresponding to N

the affinities learned in the low-dimensional space. Figure 4: Error with respect to the exact computatitapy

For the gr%}oh Laplacian in the input space, we haveand runtime vs. the number of pointsotton).
tr (L) = >, 4, Wnm, Which is a positive constant. Thus,
the mean curvature is always positive for EE, so we do n
expect the noise to help anywhere. For s-SNE and t-SN
the mean curvature can be negative| XL? ||§ is large
enough, but this will likely not happen if, as is commonly
done, one initializeX from small values. In summary,
it seems unlikely that the mean curvature will be nega-Theorem 3.1 tries to be as independent as possible of
tive during the optimization, and therefore the inexagbste the particular approximation method (FMM, BH, etc.) and
caused by the BH or FMM methods will reduce the objec-NLE (SNE, t-SNE, EE, etc.). The FGT bounds of Baxter
tive less than exact steps on average. However, it is likehand Roussos (2002) and Wan and Karniadakis (2006) only
that the mean curvature will become more positive as thepply to Gaussian sums with the FGT method andirare
optimization progresses, which suggests starting with-rel dependent of the iterate (they only depend on the number
tively low accuracy and increasing it progressively. Itisti of termsp, dimension of latent spacéand box widthr).

may make sense to try to benefit from the noise wheneverence, these FMM bounds can be coarse, and do not dis-
the mean curvature does become negative. Since the Hesaguish between early and late stages of the optimization,
sian trace for s-SNE and t-SNE can be computed in lineaso they do not help to design adaptive schedules for the ac-
time in the number of parametel&d in the embedding, curacy level.

one (.:O“Id detec_t when itis negative and use very low aCCUI':ig. 3 shows the effect of different settings of the accu-
racy in the gradient evaluations.

racy. We run EE (with\ = 10~%) using gradient descent
Practically, there are two more reasons why it is benefiwith FMM approximation for4 000 points from the Swiss
cial to start with low accuracy and increase it further on.roll dataset. We fixed the step sizesfjo= 0.3. First, we
First, it is cheaper to compute the low-accuracy value, saun the optimization fod 00 iterations only (left two plots)
the runtime is smaller. Second, inexact gradient valuesnd tried four different accuracy schedules: keep the accu-
may increase the value of the objective function at someacy atp = 3, atp = 10, or decrease it everyo itera-
iterations. Thus, using the accuracy as an inverse tempetions fromp = 10 to p = 1, or increase it fronp = 1 to
ature may give our algorithm the advantages of simulategh = 10, respectively. Increasing the accuracy gives almost

o%mnealing: a low accuracy in the beginning facilitates some
Edegree of wandering in parameter space, which may help to
ilentify good optima. As we proceed in the optimization,
the accuracy should be increased to reduce the wandering
behavior and eventually converge.
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Figure 5: Speedup of the EE algorithm using BH and FGT6fod00 MNIST digits using gradient descent (GD), fixed
point iteration (FP) and L-BFGS. Learning curves as a famctf the number of iterations (left) and runtime (right).eTh
optimization follows almost the same path for the exact meé#ind both approximations, however BH and FGT are about
100x and400x faster respectively. Note the log plot in the X axis and tremirshowing the BH and FGT curves.

the same decrease per iteration as the approximation witRGT and BH for the EE algorithm (with = 10~*) using

p = 10 terms, however the runtime in the former case isgradient descent (GD), fixed point iteration (FP; Carreira-
faster. Both using a crude approximatign=€ 3) and de-  Perpfian, 2010) and L-BFGS algorithms. For BH, we
creasing the accuracy does not achieve the same decreassed our own C++ implementation; for FGT, our code was
in the objective function. Second, on the right plot, we based on the implementation availablewatw.cs.ubc.

used the same dataset, but now rutditimes for500 iter-  ca/ ~ awll/nbody_methods.html . We used fixed step
ations with differenpp = 1,...,10 (blue lines on the plot). sizes in the line searchy = 0.1 for GD, n = 0.05 for
After each approximate step we also evaluate the exact gr&P andy = 0.01 for L-BFGS. We tried several values and
dient to see the difference between exact and approximaihose the ones that gave greatest steady decrease of the ob-
steps (black dashed lines). First, as the gradient approxjective function, without frequent increases in the objyect
mation improves, the objective function decrease is greatefunction. For the accuracy schedule, for BH we started with
Second, the exact steps are always better than the appro&-—= 2 and logarithmically decreased it o= 0.1 for the
imate ones, which agrees with theorem 3.1. Third, the erfirst 100 iterations. For FGT, we started with= 1 term

ror between the exact and the approximate step becomés the local expansion and logarithmically increased it to
smaller as the approximation improves. Eventually, it bep = 10 terms after the first00 iterations. We kept the last
comes identical to the exact run of the method (red line). approximation parameter fixed for subsequent iterations.

In the first experiment we use60 000 digits from the
MNIST handwritten dataset (fig. 5). We use a sparse affin-
In all experiments, we reduce dimensionde= 2. First, ity graph with200 nearest neighbors for each point. We use
we show that the performance of the methods matches thntropic affinities (Hinton and Roweis, 2003; Vladymyrov
theoretical complexity. Fig. 4 shows the error and run-and Carreira-Perfian, 2013) with a perplexity (effective
time of the exact method compared to those of BH andlumber of neighbors) 050, that is, Gaussian affinities
FGT as the number of points grows. We approximated thavhere the local bandwidth of each point is set so it de-
S(x,) sum for uniformly distributeck,, € R2. The the- fines a distribution over its neighbors having an entropy of
ory estimates that the logarithm of the runtimshould be log(50). If we consider the decrease per iteration disregard-
O(2log N) for exact methods®(log N + loglog N) for ing the runtime (left plot), the methods go down in groups
BH and O(log N) for FGT. Thus, in the log/log plot, the of three: one for GD, FP and L-BFGS respectively. This
exact method and FGT should appear linearly with slopegnéans the decrease per iteration is almost the same for the
2 and1 respectively and BH should appear almost linear.€xact methods compared to the approximations, suggest-
Indeed, the slope of the exact metho@i82, the slope of  ing that the optimization follows a similar path. However,
FMM is 0.89+0.08 (averaging over differentvalues) and  taking the runtime into account (right plot), we see a clear
the slope of BH is.17 4 0.06 (averaging ovef), whichas ~ Separation of FGT (green) from BH (blue) and the exact
expected is slightly bigger than linear. computation (red). Overall, BH is abowu®0x faster and

) FGT is aboutt00 x faster than the exact method. Note the
We compared the performance of the exact algorithms to

4 Experiments
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Figure 6: Embeddings of 020 000 digits from the infinite MNIST dataset using the elastic eddirg algorithm with
FGT and BH, optimized with gradient descent (GD), fixed-pdiration (FP) and L-BFGSTop objective value change
with respect to the number of iterations and runtinBattom left two plotsembedding of FGT and BH with L-BFGS
after 3 hours of optimization. The inset shows that, in additiongpagating digits, the embedding has also learned their
orientation.Bottom right plot out-of-sample projection afd 000 digits using the embedding of L-BFGS as a training set.

objective function values shown in the plot are not neededhe result of L-BFGS after 3 hours of optimization as the
in the optimization and are computed exactly offline. training data and initialized each test point to the trainin
point that is closest to it. We obtained the embedding of

Next, we used an infinite MNIST dataset (Loosli et al., o . :
. . the test points in justl minutes and the embedding agrees
2007) wher&60 000 handwritten digits were generated us- _ . L
with the structure of the training dataset.

ing elastic deformations to the original MNIST dataset. To-
gether with the. original MNIST Qigits the data_set c_C)r)s_ists5 Conclusion

of 1020000 points. For each digit the entropic affinities

were constructed from the set of neighbors of the originalVe have shown that fast multipole methods, specifically the
digit and their deformations using perplexitp. We run  fast Gauss transform, are able to make the iterations of non-
the optimization forl1 hours using GD, FP and L-BFGS linear embedding methods linear in the number of training
for EE with FGT and BH approximations. Fig. 6 shows Points, thus attacking the main computational bottlendck o
the objective function decrease per iteration and per sedJLES. This allows existing optimization methods to scale
ond of runtime. Similarly to the previous experiment, BH UP to large datasets. In our case, we can achieve reasonable
and FGT show similar decrease per iteration (right plot),€mbeddings in hours for datasets of millions of points. We
but FGT is much faster in terms of runtime (left plot). On have also shown the FGT to be considerably better than the
average, we observe FGT being 5-7 times faster than BH3arnes-Hut algorithm in this setting. Based on theoretical
Below, we show the embedding of the digits after 3 hoursand experimental considerations, we show that starting at
of L-BFGS optimization using FGT and BH. The former low accuracy and increasing it gradually further speeds up
looks much better than the latter, showing clearly the sepathe optimization.

ration between digits. We also tried the exact computatiofye think there is much room to design better algorithms
on this dataset, but aftérhours of optimization the algo-  that combine specific search directions, optimization-tech
rithm only reached the second iteration. niques andN-body methods with specific NLE models.

We also generateh 000 test digits and used the FGT ap- Another important direction for future research is to char-

proximation of the out-of-sample mapping (7). We usedacterize the convergence of NLE optimization with inexact
gradients obtained fronV-body methods.
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