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Abstract

We consider the problem of estimating sparse
precision matrix of Gaussian copula distributions
using samples with missing values in high di-
mensions. Existing approaches, primarily de-
signed for Gaussian distributions, suggest using
plugin estimators by disregarding the missing
values. In this paper, we propose double plu-
gin Gaussian (DoPinG) copula estimators to es-
timate the sparse precision matrix correspond-
ing to non-paranormal distributions. DoPinG
uses two plugin procedures and consists of three
steps: (1) estimate nonparametric correlations
based on observed values, including Kendall’s
tau and Spearman’s rho; (2) estimate the non-
paranormal correlation matrix; (3) plug into ex-
isting sparse precision estimators. We prove that
DoPinG copula estimators consistently estimate
the non-paranormal correlation matrix at a rate

of O((lié) 1057”
missing values. We provide experimental results
to illustrate the effect of sample size and percent-
age of missing data on the model performance.
Experimental results show that DoPinG is sig-
nificantly better than estimators like mGlasso,

which are primarily designed for Gaussian data.

), where § is the probability of

1 Introduction

In recent years, considerable effort [1, 6, 17, 18, 4, 3, 14,
25] has been invested in obtaining an accurate estimate of
the precision matrix based on the sample covariance ma-
trix, especially when the true precision matrix is assumed
to be sparse [25]. Suitable estimators and corresponding
statistical convergence rates have been established for a va-
riety of settings, including distributions with sub-Gaussian
tails, polynomial tails [18, 4, 14].

Although these sparse precision estimators are primarily
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designed to deal with fully observed data, recently, they
have also been generalized to handle data with missing val-
ues [11, 19, 16, 15, 9], which often occur in real world
applications, e.g., drop-outs of sensors in a sensor network
or missing measurements of temperature or rain in climate.
To deal with data with missing values, a variety of methods
apply expectation maximization (EM) algorithms on im-
puted data, which are iterative methods but lack theoretical
guarantees [11, 19]. In particular, [19] proposed an EM
algorithm named MissGlasso to deal with missing values
using Glasso. MissGlasso first imputes the missing values
in the E-step and then solves the Glasso problem on the
imputed data in the M-step. As EM converges to a local
optimum, it is difficult to establish theoretical guarantees
for the MissGlasso procedure. Without using the EM al-
gorithm, [15] employed projected gradient descent to solve
a sequence of regression problems or PGlasso to estimate
the sparse precision matrix of incomplete data. Theoret-
ical guarantees are also established for the PGlasso esti-
mator. [9] introduced a simple plug-in procedure for in-
complete data which simply applies existing estimators to
the observed data by disregarding the missing values. Such
simple plug-in estimators for missing values can leverage
existing theoretical results and thus still have similar statis-
tical guarantees, including rate of convergence and consis-
tency. However, these sparse precision estimators rely on
the Gaussian assumption, which may not be appropriate for
real datasets which are usually non-Gaussian.

To deal with non-Gaussian data, [12] proposed Gaussian
copula graphical models where existing estimators can be
generalized to the non-paranormal distributions simply us-
ing one additional procedure, i.e., estimating nonparamet-
ric correlations. Non-paranormal distributions can be con-
sidered as a non-parametric extension of the normal distri-
bution where suitable univariate monotone transformations
of the covariates are jointly distributed as a multivariate
Gaussian. It has also been shown that the nonparanormal
is equivalent to Gaussian copula distribution [13, 21, 20].
Therefore, the estimated correlation matrix of the data af-
ter transformation can be plugged into the standard sparse
precision estimators with Gaussian assumption. The plug-
in procedure can leverage existing theoretical results and
achieve the optimal statistical rate of convergence. A simi-
lar procedure has also been studied independently by [24].
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However, whether Gaussian copula graphical models can
deal with missing values and maintain the optimal statisti-
cal rate of convergence is still unknown.

In this paper, we propose Double Plug-in Gaussian (DoP-
inG) copula estimators to deal with missing values, which
estimates the sparse precision matrix corresponding to the
non-paranormal distribution. DoPingG copula estimators
essentially combines two plug-in procedures for dealing
with missing values [9] and non-Gaussian data [12], yield-
ing a fairly rich family of estimators to deal with incom-
plete data from the non-paranormal family. Such estima-
tors consider the following three steps: (1) estimate non-
parametric correlations, such as Kendall’s tau and Spear-
man’s rho, between all pairs of covariates by suitably dis-
regarding missing values; (2) estimate the non-paranormal
correlation matrix using the Kendall’s tau or Spearman’s
rho correlation matrix; (3) plug the estimated correla-
tion matrix into existing sparse precision estimators, e.g.,
graphical LASSO [1, 6], Dantzig selector [25], CLIME [4],
etc.

Our analysis follows the development in [12] with one im-
portant difference: the samples we consider can have miss-
ing values. We investigate how missing values affect the
accuracy of covariance estimation, and in turn precision
estimation. In particular, the theoretical analysis of DoP-
inG copula estimators considers two probability spaces,
i.e., probability over samples and probability over missing
values. We assume that the data is missing completely at
random (MCAR) [9], where any element is missing with
probability 6. We prove that DoPinG copula estimators
consistently estimate the non-paranormal correlation ma-

trix at a rate of O( (1i5) k’ip).

For estimating the precision matrix, one can use any of the
available estimators, such as the graphical lasso [1], graph-
ical Dantzig selector [25], as discussed in [12, 9]. We
consider the CLIME estimator [4] for our analysis. The
CLIME estimator has strong statistical guarantees for con-
sistency along with rates [4], and also comes with inherent
computational advantages [23]. In particular, a large scale
distributed algorithm has been developed in [23], which
can scale up to millions of dimensions and trillions of pa-
rameters, using hundreds of cores. We provide experimen-
tal results to show the effect of sample size and percent-
age of missing data on the model performance. Experi-
mental results show that DoPinG is significantly better than
estimators like mGlasso, which are primarily designed for
Gaussian data.

The rest of paper is organized as follows. We propose non-
paranormal dual plug-in estimators with missing values in
Section 2. In Section 3, we give the theoretical guarantees
in terms of rates of convergences under element-wise L
norm. We present experimental results in Section 4, and
conclude the paper in Section 5.

2 Gaussian Copula Precision Estimation
with Missing Values

We consider a p-dimensional non-paranormal distribu-

tion [12]. For univariate monotone functions fq,..., fp
and a positive definite correlation matrix Y0 e RrxP,
a p-dimensional random variable X = (Xj,...,X,)7

has a non-paranormal distribution X ~ NPN,(f,X°)
if f(X) = (fi(Xa),oos fo(Xp)) ~ Np(0720), a p-
dimensional multi-variate Gaussian distribution with cor-
relation matrix X°. We focus on estimating the sparse
precision matrix Qp = X ! corresponding to the non-
paranormal distribution.

Let z1,...,2, € RP be samples drawn independently
from NPN,,(f,%%). We further assume that for dimen-
sion 7, z;; will be missing with probability § € [0, 1]. Let
bi; = 1if x;; is observed, and b;; = 0 otherwise. Thus,
P(bj; =1) =1 — 4. We assume the data is missing com-
pletely at random (MCAR) [9].

In order to estimate the precision matrix Q" using CLIME,
we need an empirical estimate S,, of the correlation ma-
trix 20, In particular, the elementwise L., norm between
the matrices need to be suitably bounded for norm consis-
tency of precision estimation. As shown in [12], S'n can
be efficiently computed from the empirical Kendall’s tau or
Spearman’s rho correlation matrix. Hereafter, for ease of
notation, we drop the subscript n on S and other sample
estimates.

DoPinG copula estimators consider three steps in esti-
mating the precision matrix. First, suitably generaliz-
ing the plug-in procedure for estimating non-parametric
correlations to handle missing values, pairwise Kendall’s
tau or Spearman’s rho correlation between covariates is
estimated. Second, the correlation matrix correspond-
ing to the non-paranormal distribution is estimated using
the Kendall’s tau or Spearman’s rho correlation matrices.
Third, the precision matrix is estimated by simply plug-
ging in the estimated correlation matrix into existing sparse
precision matrix estimators. We discuss each one of these
steps below.

2.1 Kendall’s tau with missing values

Given that samples have missing values, we compute the
Kendall’s tau for dimensions (j, k) using the n;, effective
independent samples which have values for both dimen-
sions. In particular, we estimate Kendall’s rho as:

1

’f‘jk = Z bljblkbl/Jbz/kSIgn((ZCz *(L'z/)(lf 7va/)) s

k(e — 1) <=
it
(1)

where n;;, = Z?zl bi;jb;r.. Note for the i-th sample, both
the j- and k-th dimensions should not be missing. In other
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words, the samples with missing values will not be consid-
ered in the estimation of the Kendall’ tau.

The second step is to estimate the correlation matrix di-
rectly based on the Kendall’s tau. Following [12, 10, 5],
we consider the following estimator S7 = [S’;k] for the
estimated correlation matrix X

{

2.2 Spearman’s rho with missing values

ifj £k
ifj=rk.

sin (g%jk)
1

ar

Jk

2

Similar to the estimation of Kendall’s tau for missing val-
ues, we also compute the Spearman’s rho for dimensions
(4, k) using the nj, effective independent samples which
have values for both dimensions. In particular, n;, =
S bijbik. Let 7! be the rank of 2 among the njj,
samples with values and 7, be the average, ie., 7j; =
ﬁlk Z:’L:l 77b;;bik. Spearman’s rho is defined as follows:

k

3

S (] = 7) (rF = Fi)bigba
[(r] = 750)2bi5bi] oy [(7F — 7k) 2bisbin]
3)

Pk = -
oo

which is the first step in DoPinG.

Based on the estimate of the Spearman’s rho (3), follow-
ing [12, 24] , the second step is to estimate S* = [Sf .| for
the unknown correlation matrix 3°:

-

2.3 Plugin estimate for CLIME

ifj £k
ifj=k.

2 sin (%ﬁ]k)

1 4)

Having obtained S (S or §P), we can plugin it into any
sparse precision estimators, e.g., graphical lasso [1], graph-
ical Dagtzig selector [25], CLIME [4]. In particular, we
plugin S into the CLIME estimator [24]:

1SQ =T €Ay (3)

Q, = argming 10 s.t.

where A, is a tuning parameter and I is an identity matrix.
The CLIME estimator has strong statistical guarantees [4],
and also comes with inherent computational advantages.
The estimator can scale up to millions of dimensions and
can be run on hundreds of cores [23]. In [23], (5) is decom-
posed into solving [p/k] independent column block linear
programs where each column block contains k(1 < k < p)
columns. Denoting X € RP** be k columns of €, (5) can
be written as

st. [|[SP — Elloe < A, (6)

which can be solved by an inexact ADMM algorithm [2,
22] given in Algorithm 1 [23] where p, i) are parameters of

min | P,
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Algorithm 1 Column Block Inexact ADMM for CLIME

1: Input: 5‘, Ans Py 1)
2: Output: P
3: Initialization: P°, Z°,Y°, VO, V0 =0
4: fort =0toT — 1 do
5. X-update: P! = soft(Pt — V!, %), where
6:  Mat-Mul: U't! = Spi+!
7:  Z-update: Z'*t! = box(U*! + Y \,), where
8:  Y-update: Y!+! = Y! + Uttl — Zi+!
9:  Mat-Mul: Vi1 = Syt+!
10:  V-update: Vit1 = %(2\7”1 —Vt)
11: end for
ADMM and
SOfl‘(P7’}/) = Pij +v, if Pij < -7,
0, otherwise
Eij+)\; if f)ij_Eij > A,
bOX(P7E,)\n) = Pij s if |P” — Eij| S )\n 5
Eij—/\, if ]Dij—Eij < —/\n,

While steps 5, 7, 8 and 10 amount to elementwise opera-
tions, the most intensive computation is matrix multiplica-
tion in steps 6 and 9 which can be solved in parallel.

Note that the estimated correlation matrix S (S Tor S ?)
may be not positive semi-definite. Sparse precision estima-
tors do require the positive semi-definiteness assumption
in theory and most algorithms may fail if the input corre-
lation matrix is not positive semi-definite [12, 9]. The in-
exact ADMM algorithm for CLIME in Algorithm 1 does
not necessarily require S to be positive semi-definite. As
long as the linear programs (5) have solutions, Algorithm 1
still works, although there is no guarantee that the solution
is positive definite. Therefore, one may project the input
correlation matrix onto the cone of positive semi-definite
matrix in order to obtain a positive definite precision ma-
trix with high probability using Algorithm 1. We study the
effect of the two choices on the performance of DoPinG in
experiments in Section 4.

3 Theoretical Analysis

In this section, we present statistical guarantees for the pro-
posed DoPinG by leveraging existing analysis in [12, 4,
24]. Note that the consistency analysis of the CLIME es-
timate ) relies on obtaining a consistent estimate of the
covariance X0, defined in terms of the elementwise L
norm of the difference (S — EO). Therefore, we first an-

alyze sup S'Tk - Egk‘ for the Kendall’s tau (S = S7)

J

and Spearman’s tho (S = §») seperately. Our proof oper-
ates on two probability spaces, i.e., probabilities over the
samples Px and probabilities over the Bernoulli missing
values Pp. Then, we plug the results into the consistency
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analysis of the CLIME to obtain the optimal statistical rate Proof: Since ;5 is an unbiased estimator of Tz,

of convergence. E[7ji] = Tji. Using (2), we have
We first consider the probabilities over missing values in & 0
. ; ) . Px Sjk =2l >t
the following lemma which we need in the analysis of J
Kendall’s tau and Spearman’s rho: — Py ( sin (gf-jk) —sin (gTjk) ‘ > t)
— .. nx i 2
Lemma 3.1 Let B = [big] € {0,1}"*" be an binary <Px | 1Tk — il > =t
matrix. Assume b;; is i.i.d. with a Bernoulli distribution
where P(b;; = 0) = §d and P(b;; = 1) = 1 — 6. Let njxt?
njk = Z?:l bi;jbik. Foranym > 0, and any 0 < € < 1, < exp (_ 2 ) ) an
we have

where the last inequality uses the Hoeffding bound for the
U-statistics [12, 8]. Application of the union bound yields

Py Zexp{ n](kl_e)(m—l—2)logp)>

P S'T _EO >t
< exp (_(6 (1-9) n/?—?logp)) , (7) X (Sﬁp’ Jjk jk‘ )

Njk
Proof:  Since ny, is a sum of n independent Bernoulli ran- = Z eXPp ( —0)2(1—e)n (m +2)log p) » (12)
dom variables b;;b;, with P(b;jbix, = 1) = (1 — §)?, by
linearity of expectation and independence of samples, we
have E[njx] = 1| E[b;;bix] = n(1 — §)%. By standard

Chernoff bounds, for any € < 1, we have

where we have substituted ¢ = ;%5 ,/2E2 | /1022 The

bound in the above form is itself a random variable, and the
elements of the sum are identically distributed but are not

P (nji < E[nji)(1—€) < exp (—€*(1—6)*n/2) independent.
Njk 1 By considering probabilities over the missing values and
=P - 2) 1 >
B (exp { (1-9)2(1—e)n (m +2) ng} - pm+2) using Lemma 3.1, we have
< exp (~e2(1— 0)%n/2) ®) : |
Pp | Px | sup ’S}k — E?k‘ <t|> (1 — )
where we have substituted the expectation E[n;]. By con- ik P
sidering probabilities over the missing values, we have > 1 — exp (_(62(1 — 8)%n/2 — 2log p)) _ (13)
njk 1 Noting that the random variables (X, B) are independent
Pp ZGXP{ ﬁ(m +2) logp} > o completes the proof. [
Nk 1
< ZPB (eXp{ “02(1—em (m +2)logp } > pm+2) 3.2 Spearman’s Rho with Missing Values
< p?exp (—€*(1—6)%n/2) As we work on the n;j, effective samples wth values by
— exp (_( (1 - 8)2n/2 — 2log p)) ’ 9) Fiisregarding missing values, we can leverage the.analysis
in [12] except nj is a random variable. Following [12],
which completes the proof. m  (3)can be rewritten as [7, 12]:
P ,k_32?=122212?=1sign(x5 — a3 N@f — 2} Pijbirbs;bsrbe;bn
k= 3
3.1 Kendall’s Tau with Missing Values ik = Mk
N — 2 3
. ; . = B SUjk+ ——— T (14)
The following theorem shows that sup,;, |S7, — X5 | < njr +1 Nk + 1

O(+/log p/n) with high probability. where 75, is Kendall’s tau statistics and Uy, is a 3rd-order
U-statistics

Theorem 1 For any n > 1, for any m > 0, and any 0 < & &

€ < 1, with probability at least (1 — p}n )(1—exp(—(e?(1— Uyp = 32 itart s1gn(x — a)(xf — 7 )bijbinbs;bskbeber .

5)?n/2 — 2logp)), we have gk (ngr — 1)(ng1 — 2)

s)

sup ’Sﬂc E < m+2 1og (10) Note nj, = Z?:l bijbs; is a sum of n independent
S7o sVi—eV i i i = (1-6)n.

Bernoulli random variables b; ;b5 with E(n,;) =
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Theorem 2 Foranym > 0,0 < e < 1, and

S 36
“(m+2)1-¢)(1 -

T

with probability at least (1 — —)(1 — exp(—(3(1 —
8)?n/2 — 2logp)), we have

- dT m+2 [logp
St —20‘< .7
w8 -] < 77 TR 0D

Proof: Let(0 < a < 1. According to (14), we have

Px(1pjx — E(pjr)| > t) < Px(|Ujk —

3
+P
X("ﬂc+1

E(Uji)| > at)

‘fjk _Tjkl > (1 —a)t) .

(18)
Since —1 < 7, < 1, |75 — Tjk| < 2, then
P (— i — il > (1 — )t
X njk+1 7k Jk
<P >(1—a)t] . 19
- X(lekJrl ( )> (9)

Applying Hoeffding’s bound for U-statistics, we have

Px(|Ujr — E(Uji)| > at)

242 242
Nk | a’t Nt

< _o | Ik — _ )

_exp( 2{ 3 J 36 ) exp< 54 ) (20)

Combining (19) and (20) yields
njpat?
54

> (l—a)t) .Q@D

x (Ipje— E(pjr)| > 1) < exp <_

6
+P
X(njk—l—l

In particular, if n;, > Tt a) +s the second term on the RHS
is 0. Since p;, is a biased estimator, following [12], we use
the following bias equation [26]:

6 0

Epj = ————
Pik = g, + 1)

(22)

Note we only use 7 effective number of samples. Thus,

. T A
Z?k = 2sin (gEij + ajk) , (23)
where
wEpjk — 2arcsin(2‘;k) T
e = < —. (24
ik 2(nyx — 2) lask] < o —2 @

arcsin(Z?k) + (njx —2) arcsin(%k)

If njp > 67” + 2, |ajx] < é. Therefore, the analysis is

simplified if inf ;5 n;, > co where

6 (%
> —_— — 4+ 25 . 2
co_max{(loé)t7 . + } 25)

Setting o = M = Ar, [mi2, Jl8P e have
6 241
<6156 /1
(1—-a)t t —|—2 logp
67 3(1—-946 1—c¢ n
T io= )./ .
t 2 m+ 2\ logp

Therefore, we choose

=6(1 _6)\/5

Define an event Z = {inf;xnjx > co}, and let Z be
the complement of the event. Further, the event of inter-

i — ot _ v0 Am_ m+2 log p
estis ¥ = {S‘lpj,k ‘Sjk ij‘ <15 \/:\/ S }

Then, the probability of the event of interest can be lower
bounded as:

\ A

. (26)
logp

P(Y|Z)P(Z)
> P(Y|Z)P(Z) . 7)

Next, we focus on getting lower bounds to both P(Z) and
P(Y|Z).

Note nj;, = > i, bijbir, and E[nji] = (1 — 6)?n, using
Chernoff bounds,

Pp (nji < (1—€)(1—0)°n) < exp (—€*(1 —0)°n/2) .

(28)
By the union bound,
Pg (iﬁfnjk <(1—-¢€(1— 5)2n>
< exp (—62(1 —6)°n/2 +2 logp) , (29)
which is equivalent to
Py (mfnjk (I1—-¢)(1- 5)2n>
>1—exp(—€e*(1—6)*n/2+2logp) . (30)
If (1 —€)(1—98)*n>cp,ie.,
36 G1)

= (m+2)(1—¢€)(1—4§)2logp’

then

Pp (H}ﬂfn]k > c0> >1—exp(—€*(1—6)*n/2+2logp) ,
J
(32)
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which gives a lower bound to P(Z) as desired. Now, con-
ditioned on Z, i.e., inf;; nji > co, we have |aji| <

6?
s >(1—a)t|Z
fies (31) and using (21), (23), we have

and Px (n = (0. Assuming n satis-

Py (Sjk =20 >t ‘Z)

!

2sin (%ﬁgk) — QSin(%Eﬁjk + ajk)‘ >t 'Z)

T T
§pjk — ngjk — 2ajk >t ‘Z)
3t
=Px pjk—Eka— ajk >? Z

6
i
a0

’)

« 3t
<Px (| JkEpjk>ﬂ_‘

29

2t
1pjk — Epji| > —

<o (2255

where the conditioning on Z, ie., {inf;rn;; > co},
has been dropped in the last inequality yielding an upper

bound. Setting o = %,t = by the

union bound, we have

Px <sup|3§k — 2% >t ‘Z)
jk
< ZeXp < Tk

—0)2(1—e)n
which is the same as (12) Using Lemma 3.1, we then have
PY\|Z) > (1 — ). The result of the theorem then fol-
lows from (27) and (30).

<r (
(
(
<r

2n Nk t2

2772 53

log p

Jes

4r

1-6

n ’

(m+ 2)10gp> , (34)

3.3 Plug-in CLIME Estimator

Since S (ST or SP) satisfies (10) or (17) with high prob-

7T||Q HLl /logp or \, >

m+2
—e

v/ logp ensures that the conditions for
consistency of the CLIME estimate ) are satisfied. The
CLIME estimator considers the following family of pre-
UM, g,50(p) = {2 : @ ~

0.1z, < Mmaxicic, S lwigl? < so(p)}. for
0 < g < 1. Then, the CLIME estimator has the follow-
ing guarantees:

ability, choosing \,, >

47TIIQ IILl m+2

cision matrices U = =

Theorem 3 Ler g € U(M,q,s0(p)). If M

v
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190l , max; [Gn,ij —

10 — Qoo < 4)0]|L, A (35)
120 — Qoll2 < Cso(p)(4]|QllL,) "IN, (36)
1 4
=12 — QollF < Cso(P)(Al1Q0]lL,) >~ A7, (37
p

where C' < 2(1 + 2179 + 3179) is a constant.

Note that deterministic bounds in Theorem 3 for precision

estimation relies on |X,, — Xg|oo = max; j |Gn.ij — 00,i5]-

4 Experimental Results

We present experimental results of DoPinG on both syn-
thetic datasets and real datasets to illustrate model perfor-
mance. The first set of experiments on synthetic data il-
lustrate the effect of sample size and percentage of missing
data on model performance. Then we compare DoPinG
with mGlasso on both synthetic data and climate dataset.

4.1 Synthetic Data

To generate synthetic data, we use the procedure described
in [12]. First, a d-dimensional sparse graph G = (V, E)
is generated as follows: Let V' = {1,...,p} correspond

to variables X = (Xi,...,Xy). We associate each in-
dex j with a bivariate point Y; = (Yj(l),Yj(Q)) € [0,1]?
where each Yj(k) ~ Unif[0,1], k = 1,2, j € {1,--- ,d}.

An edge is associated between vertices (¢, ) with prob-

ability of P ((i,j) € E) = \/%exp (7%) where
y; = (?/j( ),y§2)) is the observation of Yj and || . || de-

notes the Euclidean distance. The maximum degree of the
graph is limited to 4. Thereafter, n samples are drawn from
NPNy(f° %% where f9 is the Gaussian CDF Transfor-
mation with mean 0.05 and standard deviation 0.4. Here,
we choose n = 200, p = 100, and 6 € {0.1,0.2,0.3}. The
final results shown below are averages over 10 experimen-
tal runs for both Kendall’s tau and Spearman’s rho. The
ROC curve is generated by varying the tuning parameter
A in the CLIME and calculating the corresponding False
Positive Rate (FPR) and True Positive Rate (TPR) [12].

First, we directly run Algorithm 1 using S (ST or 5°)
estimated using Kendall’s tau and Spearman’s rho. The
ROC curve with different probabilities of missing values
is plotted in Figure 1. We observe that the performance of
Kendall’s tau and Spearman’s rho is almost the same for the
same percentage of missing values. Note that the tuning pa-
rameter A\ controls the sparsity of the estimated graph, i.e.,
a small value of A provides a dense graph. When A is large
enough the predicted edges are all among the correct edges
leading to a zero FPR. By decreasing ), false edges that are
not in the original graph are added, i.e., increasing FPR and
saturating TPR. It shows that the estimator is conservative
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Figure 1: (a,b) ROC curves without projection (S need not be positive semi-definite), (c,d) ROC curves with projection S
is positive semi-definite) with n = 200 and under different missing probabilities (6 = 0.1 — 0.3). By increasing number of
observed data (smaller §), the ROC curve approaches the ROC curve of no-missing data (§ = 0).
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Figure 2: ROC curve with § = 0.1,0.2,0.3, p = 100, and different number of samples (n). For a fixed value of §, with
increasing number of samples, the higher TP rates is obtained.

in adding edges. Figure 1 also illustrates that increasing
number of missing values (increasing &) deteriorates model
performance, while increasing variance of estimate.

As mentioned in section 2.3, the estimated correlation ma-
trix S may be not positive semi-definite. Therefore, we
project S into the positive semi-definite (PSD) cone, and
execute Algorithm 1 using the PSD matrix. Figures 1 (c,d)
plot the ROC curve with projection for Kendall’s tau and
Spearman’s rho respectively. For small §, e.g. § = 0.1, to
some degree, the performances with and without projection
are similar. However, when more values are missing, PSD
projection greatly improves performance. Increasing per-
centage of missing values lead to more and larger negative
eigenvalues in S, and performance worsens for higher .
Note that our analysis shows that the effective sample size
is (1 — &)?n, and decrease of the recovery rate (TPR) with
decreasing effective sample size is in accordance with our
analysis. In other words, for a fixed n the effective sample
size is smaller for a larger value of ¢ and therefore, DoPinG
has a worse performance with larger value of 4.

Figure 2 shows the effect of sample size n with different
value of § on the performance without projection. Under
higher percentage of missing values (Figure 2(c)), the per-
formance of the method suffers much more with low sam-
ple size, compared to data with lower percentage of miss-
ing entries (Figure 2(a)). In particular, with a sample size
n = 200 and 30% of missing data, the effective sample size
is ~ 100 while with 10% of missing data, the effective sam-
ple size is ~ 160. As a result, to achieve similar recovery
rates (TPR,FPR), higher sample size is needed when more
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Figure 3: ROC curve of mGlasso with n = 200 and dif-
ferent missing probabilities. mGlasso has a worse perfor-
mance on non-Gaussian data compared to DoPinG (Figure

1).

percentage of the data is missing.

We compare DoPinG with mGlasso [9] on the synthetic
data. The ROC curve of mGlasso is plotted in Figure 3.
Since mGlasso is designed primarily for Gaussian data,
Figure 3 clearly illustrates that mGlasso is not suitable
for non-Gaussian data. We also plot the precision and
recall curve with different probabilities of missing values
(6 = 0,0.1,0.2) in Figure 4. The performance of DoPinG
is significantly better than mGlasso.

4.2 Climate Data

We compare DoPinG (Spearman’s rho) and mGlasso on
Climate data. The climate dataset that we use is obtained
from the CMIPS archive, where we use the temperature
predicted over land locations by a climate model. We re-
duce the resolution of the data, since we use it only for illus-
trative purposes, so that the data contains 500 locations (di-
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Figure 4: Precision and Recall Curve with different . DoPinG is significantly better than mGlasso for non-Gaussian data.

(a) DoPinG (12240 edges) (b) mGlasso ( 8778 edges) (c) mGlasso ( 11860 edges)

Figure 5: The graph discovered by DoPinG and mGlasso.

directly estimating nonparametric correlations, including
Kendall’s tau and Spearman’s rho. DoPinG uses two plugin
procedures, leveraging existing sparse precision estimators.
DoPinG consists of three steps: (1) estimate nonparametric

Table 1: Edges dicovered by DoPinG and mGlasso on Cli-
mate Data. > denotes the number of edges in DoPinG
graph but not in mGlasso graph. < is on the contrary.

mensionality), and yearly averaged samples over 100 years
(sample size =100). We randomly remove § = 20% of the
entries. We try different A and report the results which have
similar number of edges. In particular, we pick the graph
with 12740 edges for DoPinG (A = 0.02) as illustrated in
Figure 5(a). We pick two graphs for mGlasso. One has
8778 edges (A = 0.001) and the other has 11860 edges
(A = 0.002), as shown in Figure 5(b) and 5(c) respectively.
It seems that DoPinG discovers some interesting sparsity
patterns while mGlasso graphs are messy. In Table 1, we
present the difference between DoPinG graph and mGlasso
graph. With similar total number of edges, DoPinG graph
shows more structure than mGlasso graph. We plan to fur-
ther investigate this behavior in future work.

5 Conclusions

In this paper, we propose double plugin Gaussian (DoP-
inG) copula estimators to deal with non-Gaussian data with
missing values. DoPinG estimates the sparse precision
matrix corresponding to non-paranormal distributions by
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'Edge No. Edge Diff correlations by disregarding missing values; (2) estimate
DoPinG | mGlasso > < the non-paranormal correlation matrix directly based on
12240 8778 7942 | 4480 nonparametric correlations like Kendall’s tau and Spear-
12240 11860 | 7534 | 7154 man’s rtho; (3) plug the estimated correlation matrix into

existing sparse precision estimators to yield the sparse pre-
cision matrix. We prove that DoPinG copula estimators
consistently estimate the non-paranormal correlation ma-

(1i5) \/@ ), where § is the probabil-
ity of missing values. Through experiments we illustrate

that by increasing number of missing values (increasing 0),
the performance of the method get worse and the standard
deviation is increasing in consistent with the theory. The
performance of Kendall’s tau and Spearman’s rho is almost
the same for the same percentage of missing values. Ex-
perimental results on non-Gaussian data show that DoPinG
is significantly better than estimators like mGlasso, which
are primarily designed for Gaussian data.

trix at a rate of O(
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