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Additional Details for Proof of Theorem 3.1 The empirical risk, as shown in the Proof of Theorem
3.1, can be expressed:
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We focus solely on the maximization term, which can be equivalently expressed by introducing new variables
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where the variables λ1
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all k > j, one optimal solution for the indicators is λj
k = 1, as the indicator 1gj(xj)≤0 = 1. Additionally, for
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be eliminated and the maximization to be expressed:
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Substituting into
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produces the empirical risk as shown in (6).

Details of Proposition 4.1 The linear program in (8) introduces new variables to replace the max-
imization functions in the reformulated empirical risk and the hinge losses. In particular, the vari-
able γi replaces the maximization maxk∈{1,...,K} . . ., the variables βk

i captures the hinge-loss maximiza-

tion max(1 − gk(xk
i ), 0) ≥ 1gk(xk

i
)≤0, and the variables κk

i captures the hinge-loss maximization max(1 +

gk(xk
i ), 0) ≥ 1gk(xk

i
)≥0. Introducing the variables γi, β

k
i , κ

k
i allow the maximizations to be replaced with con-

straints. Additionally, we drop the constant terms in the optimization as these do not affect the functions
g1, . . . , gK found by solving the optimization.


