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Additional Details for Proof of Theorem 3.1 The empirical risk, as shown in the Proof of Theorem
3.1, can be expressed:
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We focus solely on the maximization term, which can be equivalently expressed by introducing new variables
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where the variables A}, ..., A are constrained Z?:l A, = 1. Consider the first j such that ¢/(27) < 0. For
all k > j, one optimal solution for the indicators is )\i =1, as the indicator 1 (,i)<o = 1. Additionally, for
all k& < j, the solution )\z = 1 is a valid solution. Restricting the solutions of A1, ..., A to this form forces
the solution to lie on a hyperplane. We can enforce this constraint, which allows the variables A, ..., A% to
be eliminated and the maximization to be expressed:
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Substituting into
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produces the empirical risk as shown in (6).

Details of Proposition 4.1 The linear program in (8) introduces new variables to replace the max-
imization functions in the reformulated empirical risk and the hinge losses. In particular, the vari-

able ; replaces the maximization maxye(y, .. xy-.., the variables Bf captures the hinge-loss maximiza-
k

tion max(1 — g*(x¥),0) > L gk (xky<o, and the variables x7 captures the hinge-loss maximization max(1 +
g*(xF),0) > L (xky>0- Introducing the variables 7, % kP allow the maximizations to be replaced with con-
straints. Additionally, we drop the constant terms in the optimization as these do not affect the functions

g',...,g¥ found by solving the optimization.



