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Abstract

Approximate Bayesian computation (ABC)
methods are used to approximate posterior
distributions using simulation rather than
likelihood calculations. We introduce Gaus-
sian process (GP) accelerated ABC, which we
show can significantly reduce the number of
simulations required. As computational re-
source is usually the main determinant of ac-
curacy in ABC, GP-accelerated methods can
thus enable more accurate inference in some
models. GP models of the unknown log-
likelihood function are used to exploit conti-
nuity and smoothness, reducing the required
computation. We use a sequence of models
that increase in accuracy, using intermediate
models to rule out regions of the parameter
space as implausible. The methods will not
be suitable for all problems, but when they
can be used, can result in significant compu-
tational savings. For the Ricker model, we
are able to achieve accurate approximations
to the posterior distribution using a factor of
100 fewer simulator evaluations than compa-
rable Monte Carlo approaches, and for a pop-
ulation genetics model we are able to approx-
imate the exact posterior for the first time.

1 Introduction

Approximate Bayesian computation (ABC) is the term
given to a collection of algorithms used for calibrating
complex simulators (Csilléry et al. 2010, Marin et al.
2012). Suppose f(θ) is a simulator that models some
physical phenomena for which we have observations
D ∈ IRd, and that it takes unknown parameter value
θ ∈ IRp as input and returns output X ∈ IRd. The
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Bayesian approach to calibration is to find the pos-
terior distribution π(θ|D) ∝ π(D|θ)π(θ), where π(θ)
is the prior distribution and π(D|θ) is the likelihood
function defined by the simulator.

ABC algorithms enable the posterior to be approxi-
mated using realizations from the simulator, i.e., they
do not require knowledge of π(D|θ). They have be-
come popular in a range of application areas, primarily
in the biological sciences (Beaumont et al. 2002, Toni
and Stumpf 2010, Beaumont 2010). This popularity
stems from their universality (it is nearly always pos-
sibly to use some form of ABC algorithm) and their
simplicity (complex likelihood calculations are not re-
quired). The simplest ABC algorithm is based on the
rejection algorithm:

1. Draw θ from the prior: θ ∼ π(θ)

2. Simulate a realization from the simulator: X ∼
π(X|θ)

3. Accept θ if and only if ρ(D,X) ≤ ε

where ρ(·, ·) is a distance measure on IRd. The toler-
ance, ε, controls the trade-off between computability
and accuracy. When ε = ∞ the algorithm returns
the prior distribution. Conversely, when ε = 0 the
algorithm is exact and gives draws from π(θ|D), but
acceptances will be rare.

Accuracy considerations dictate that we want to use a
tolerance value as small as possible, but computational
constraints limit what is feasible, and it is dealing with
this limited computational resource that is the key
challenge for ABC methods. If the simulator output
is complex, then for small tolerance values (and thus
high accuracy) the simulator output will rarely be close
enough to the observations, and we will thus require a
large number of simulator runs to generate sufficient
accepted parameter values to approximate the poste-
rior. Even if the simulator is computationally cheap,
an ABC algorithm may still require many hours of
computation to approximate a posterior distribution,
even to moderate accuracy. Extensive work has been
done on developing algorithms that more efficiently ex-
plore the parameter space than rejection-ABC. There
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are ABC versions of MCMC (Marjoram et al. 2003),
sequential Monte Carlo (SMC) (Sisson et al. 2007, Toni
et al. 2008), and many other Monte Carlo algorithms
(Marin et al. 2012). These algorithms all share the
following properties: (i) They sample space randomly
and only learn from previous simulations in the lim-
ited sense of using the current parameter value to de-
termine which move to make next; (ii) They do not ex-
ploit known properties of the likelihood function, such
as continuity or smoothness. These properties guaran-
tee the asymptotic success of the algorithms. However,
they also make them computationally expensive as the
algorithm has to learn details that were known a pri-
ori, for example, that the posterior density is a smooth
continuous function.

In this paper we use Gaussian process (GP) models of
the likelihood function to accelerate ABC methods and
thus enable more accurate inference given limited com-
putational resource. The approach can be seen as a
natural extension of the synthetic likelihood approach
proposed in Wood (2010) and the implicit inference ap-
proach of Diggle and Gratton (1984), and follows the
example of Rasmussen (2003) who used GPs to accel-
erate hybrid Monte Carlo methods.We use space fill-
ing designs rather than random sampling, and use the
idea of sequential history matching (Craig et al. 1997,
Vernon et al. 2010) to successively rule out swathes of
the parameter space as implausible. We are thus able
to build accurate models of the log-likelihood function
that can be used to find the posterior distribution us-
ing far fewer simulator evaluations than is necessary
with other ABC approaches.

2 GP models of the ABC likelihood

Wilkinson (2013) showed that any ABC algorithm
gives Monte Carlo exact inference, but for a different
model to the one intended. If we replace step 3 in the
rejection algorithm by ‘Accept θ with probability pro-
portional to π(D|X)’, where π(D|X) is an acceptance
kernel, we get a generalized ABC (GABC) algorithm.
If we make the choice π(D|X) ∝ IIρ(D,X)≤ε, then we
are returned to the uniform rejection-ABC algorithm
above. The GABC algorithm gives a Monte Carlo ex-
act approximation to

πGABC(θ|D) =

∫
π(D|X)π(X|θ)dXπ(θ)

π(D)

where we can interpret this as the posterior distribu-
tion for the parameters when we believe π(D|X) rep-
resents a statistical model relating the simulator out-
put to the observations. For example, π(D|X) might
model a combination of measurement error on the ob-
servations and the simulator discrepancy. The special

case π(dD|X) = δX(dD), i.e., a point mass at X, rep-
resents the situation where we believe the simulator is
a perfect model of the data, and gives the posterior
distribution π(θ|D) ∝ π(D|θ)π(θ).

We can approximate the GABC likelihood function
πGABC(D|θ) =

∫
π(D|X)π(X|θ)dX by the unbiased

Monte Carlo sum

π̂GABC(D|θ) =
1

M

M∑
I=1

π(D|Xi) (1)

where X1, . . . , XM ∼ π(X|θ), and by repeating for dif-
ferent θ we can begin to build a model of the likelihood
surface as a function of θ. The idea is related to the
concept of emulation (Kennedy and O’Hagan 2001),
but whereas they emulate the simulator output (pos-
sibly a high dimensional complex function), we instead
emulate the GABC likelihood function (a one dimen-
sional function of θ).

Often in ABC algorithms a summary function S(·)
is used to project the data and simulations into a
lower dimensional space, and then instead of find-
ing πGABC(θ|D) we instead find πGABC(θ|S(D)), i.e.,
the posterior for θ based on the summary statistics,
rather than the full data (Equation (1) becomes the
sum of π(S(D)|S(X)) terms). Wood (2010) proposed
a related approach, and assumed a Gaussian synthetic
likelihood function

π̂GABC(S(D)|θ) = φ(S(D); µ̂θ, Σ̂θ) (2)

where φ is the multivariate Gaussian density func-
tion and µ̂θ and Σ̂θ are the mean and covariance of
S(X) estimated from the M simulator evaluations at
θ. Drovandi et al. (2014) have recently reinterpreted
this as a Bayesian indirect likelihood (BIL) algorithm,
and drawn links with indirect inference (ABC-II). In
BIL and ABC-II a tractable auxiliary model for the
data is proposed, p(D|ψ) say, and simulations from
the model run at θ are used to estimate ψ for the aux-
iliary model. The approach demonstrated here is to
learn the mapping from θ to ψ in the specific case of
Wood (2010), but can be used to accelerate ABC-II
and BIL approaches more generally.

2.1 Gaussian process models of the likelihood

For many simulators and choice of acceptance kernel, if
not the majority, the GABC likelihood function will be
a smooth continuous function of θ. If so, then the value
of πGABC(D|θ) is informative about πGABC(D|θ + h)
for small h. This allows us to model πGABC(D|θ) as
a function of θ. Other ABC methods and the ap-
proach of Wood (2010), do not assume continuity of
the likelihood function, and the algorithms estimate
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πGABC(D|θ) and πGABC(D|θ+h) independently. More-
over, if the algorithm returns to θ (for example in an
MCMC chain), they generally re-estimate πGABC(D|θ)
despite having a previous estimate available.

We aim to reduce the number of simulator evalua-
tions required in the inference by using a model of
the unknown likelihood function. Once the model has
been trained and tested, we can then use it to cal-
culate the posterior. The likelihood function is dif-
ficult to work with as it varies from 0 to very small
values, and is required to be positive. We instead
model the log-likelihood l(θ) = log πGABC(D|θ) which

we estimate1 by l̂M (θ) = log π̂GABC(D|θ). We model
l(·) as a Gaussian process and assume a priori that
l(·) ∼ GP (mβ(·), cψ(·, ·)) where mβ(·) and cψ(·, ·) are
the prior mean and covariance functions respectively
(see Rasmussen and Williams 2006, for an introduc-
tion to GPs). For some models, using a linear model
for the mean function of the form

mβ(θ) = β0 + θTβ1 + diag(θθT )β2,

provides more accurate results with fewer situations.
The quadratic term is included as we expect l(θ) →
−∞ as θ → ±∞, and so inclusion of θ2 improves the
prediction of the GP when extrapolating outside of the
design region. More complex mean functions are used
on a problem specific basis, with the choice guided by
diagnostics plots.

We use a covariance function of the form

cψ(θi, θj) = τ2cλ(θi, θj) + v2IIi=j

where cλ is usually taken to be of a standard form such
as a squared exponential or Matérn covariance func-
tion, with a vector of length scales, λ, that needs to be
estimated. The nugget term is included because l̂M (θi)
are noisy observations of the likelihood l(θi), with the
nugget variance, v2, taken to be the sampling variance
of l̂M (θ). We estimate v2 by using the bootstrapped
variance of the terms in the log-likelihood estimate,
which helps avoid non-identifiability in the estimation
of the other GP parameters. We use a conjugate im-
proper normal-inverse-gamma prior π(β, τ2) ∝ 1/τ2

for these parameters, which allows them to be inte-
grated out analytically and use a plug-in approach for
the length-scale parameters, λ, estimating them using
maximum likelihood. The posterior distribution of the
GP given the training ensemble E (see below), then has
a multivariate t-distribution with updated mean and
covariance functions m∗(θ) and c∗(θ, θ′). Details can
be found in Rasmussen and Williams (2006).

1To avoid numerical underflow, we use the log-sum-exp
trick log

∑
eai = log

∑
eai−A + A, where eai = π(D|Xi)

and A = max ai.

2.2 Design

To train the GP model, we use an ensemble E =
{(θi, l̂N (θi))

N
i=1} of parameter values and estimated

GABC log-likelihood values. The experimental de-
sign {θi} at which we evaluate the simulator is care-
fully chosen in order to minimize the number of design
points (and thus the number of simulator evaluations)
needed to achieve sufficient accuracy (Santner et al.
2003). We use a p-dimensional Sobol sequence to gen-
erate an initial space filling design on [0, 1]p. This is
a quasi-random low discrepancy sequence which uni-
formly fills space (Morokoff and Caflisch 1994). The
advantage of Sobol sequences over other space fill-
ing designs, such as maxi-min Latin hypercubes, is
that they can be extended when required. The use
of quasi-random numbers in Monte Carlo sampling
has been recently explored by Barthelmé and Chopin
(2014) and Gerber and Chopin (2014), who used low-
discrepancy sequences to reduce the Monte Carlo error
in (expectation-propagation) ABC and SMC.

To generate a design that fills the space defined by
the prior support Θ0 = supp(π(·)), in a manner that
places more points in the more (a priori) likely regions
of space, we translate the Sobol design on [0, 1]p into
Θ0. If π(θ) is a product of uniform distributions, this
can be done with a simple linear transformation. If
the prior is non-uniform, but each parameter is a pri-
ori independent, then we apply the inverse cumulative
density function (CDF) to each parameter. Depending
on whether the prior is misspecified or not, it may be
necessary to expand the design outwards, by inflating
the variance used in the inverse CDFs.

3 Sequential history matching

For most complex inference problems, this approach
alone will not be sufficient as the log-likelihood of-
ten ranges over many orders of magnitude. For the
Ricker model described in Section 4, the estimated
log-likelihood varies from approximately −5 to −103

and most models will struggle to accurately model
l(θ) over the entire input domain Θ0. However,

only values of l(θ) within a certain distance of l(θ̂),

where θ̂ is the maximum likelihood estimator, are im-
portant for estimating the posterior distribution. If
exp(l(θ)+log π(θ)) is orders of magnitude smaller than

exp(l(θ̂) + log π(θ̂)), then the posterior density π(θ|D)
will be approximately 0. Thus, we do not need a model
capable of accurately predicting l(θ), only one capable

of predicting that l(θ) is small compared to l(θ̂).

We use the idea of sequential history matching (Craig
et al. 1997) to iteratively rule out regions of the param-
eter space as implausible (in the sense that the param-
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eter could not have generated the observed data). We
build a sequence of GP models, each of which is used
to define regions of space that are implausible accord-
ing to the criterion below. Models are then defined
only on regions of space not already ruled implausible
by the previous model in the sequence.

3.1 Implausibility

Suppose that we have a Gaussian process model η(·)
of l(·) built using training ensemble E , and that the
prediction of l(θ) has mean m and variance σ2. We
define θ to be implausible (according to η) if

m+ 3σ < max
θ∈E

l̂M (θ)− T, (3)

where T > 0 is a threshold value, chosen so that if
l(θ̂) − l(θ) > T , then π(θ|D)/π(θ̂|D) ≈ 0 and θ can
be discounted2. The right-hand side of Equation (3)
describes a log-likelihood value below which we be-
lieve the posterior will be approximately zero. The
left-hand side is the GP prediction of l(θ) plus three
standard deviations (so that the estimated probability
of l(θ) exceeding m + 3σ is less than 0.003). Thus,
the implausibility criterion rules out points for which
the GP model gives only a small probability of the
log-likelihood exceeding the threshold at which θ is
important in the posterior. A point which is not ruled
implausible by Equation (3), may still have a posterior
density close to zero (i.e., it may not be plausible), but
the GP model currently in use is not able to rule it out.

The degree of conservatism of the criterion in rul-
ing points implausible or not, is controlled by the
choice of threshold T , and by the multiplier of σ on
the left-hand-side of the equation. For the exam-
ples considered below, the choice T = 10 is found to
provide a reasonable trade-off between accuracy and
allowing sufficient space to be ruled as implausible,
as exp(10) > 104, and so using the approximation

π(θ|D) = 0 if l(θ) < l(θ̂) − 10 causes only a small
error in the approximation to the posterior.

3.2 Sequential approach

We aim to rule out an increasing proportion of prior
input space Θ0 in a sequence of waves. Each wave in-
volves extending the design, determining the implau-
sible region, running the simulator at not-implausible
points, building a new GP model, and running diag-
nostics. We start with ensemble E1 = {(θi, l̂M (θi))

N1
i=1}

where {θi}N1
i=1 are the first N1 points from a Sobol se-

quence dispersed to fill Θ0 as described in Section 2.2.
We denote the GP model fit to E1 by η1(·).

2Implausibility is defined only for uniform prior here,
but can easily be extended to non-uniform distributions.

The design is then extended by drawing N2 additional
points in Θ0. For each new point in the design we
apply the implausibility criterion (3) using the mean
and covariance function of η1 to determine whether
it is implausible or not, defining the not implausible
region according to η1, denoted Θ1. The simulator is
then run at all the new design points that were ruled
to be not implausible. Collected together with the
points from E1 that were not implausible, this gives a
new ensemble E2. We use E2 to build GP model η2(·).
Note that η2 will only give good predictions for θ ∈ Θ1.

For the ith wave, we extend the design by a further Ni
points in Θ0. To judge whether θ is implausible, we
first decide if θ ∈ Θ1 using η1, and if so, we then use η2
to test if θ ∈ Θ2, and so on. Parameter θ is only judged
to be not-implausible if Equation (3) is not satisfied
for all i − 1 GP models fit in previous waves. It is
necessary to use the entire sequence of GPs, as earlier
GPs are only trained on the not-implausible region
at that wave, and so are unable to usefully predict
outside of this region, i.e., η1 is unlikely to give poor
predictions of l(θ) if θ ∈ Θ0\Θ1.

The motivation for this sequential approach is that the
size of the not implausible region Θi decreases with
each iteration, and more importantly, the value of l(θ)
is less variable in Θi than in Θi−1. This helps the GP
model to achieve superior accuracy in later waves, and
in particular, the variance of the predictions decreases
(as there are more design points in the region of in-
terest). While it is possible to reduce the threshold
T at each wave, we keep it fixed, and instead use the
decreasing uncertainty in the improved GP fits to rule
out increasingly wide regions of space.

The values of Ni can be chosen either in advance,
or by extending the design a point at a time until
the number of not-implausible design points for the
next wave is sufficiently large. To determine the num-
ber of waves needed, detailed diagnostics (Bastos and
O’Hagan 2009) can be used to judge whether each GP
model fit is satisfactory. For most problems, we have
found 3 or 4 waves to be sufficient. Beyond this num-
ber, the need to iteratively use the entire sequence of
GP models η1, . . . , ηi to judge implausibility becomes
increasingly burdensome. For some problems, partic-
ularly if the prior support Θ0 includes regions with
very large negative l(θ) values, it may be necessary to
model log(−l(θ)) in the first wave, in order to cope
with the orders of magnitude variation seen in the log-
likelihood function. In these cases, the implausibility
criterion will need to be suitably modified.

Once we have a GP model, ηI(·) say, that accu-
rately predicts l(θ) within the not-implausible region
ΘI−1, we can find the posterior distribution. We use
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Figure 1: Diagnostics plots for the fitted GPs with one column per wave. A slice through the likelihood surface
at θ = (3.8, 0.3, 10.0) is taken for each parameter in turn. The black line is the estimate of l(θ) (or log(−l(θ)) for
the first wave) obtained from additional simulator runs. The red lines show the mean and 95% credible interval
for the GP prediction of l(θ). Predictions in wave i are only made in the not-implausible region Θi−1.

a Metropolis-Hastings (MH) algorithm with random
walk proposal. The acceptance step iteratively uses
GPs η1, . . . , ηI−1 to predict if the proposed parame-
ter, θ′, is implausible. If θ′ ∈ ΘI−1, then we use ηI to
predict l(θ′). We use a random realization (not just
the GP mean) to account for the error in the likeli-
hood prediction, and then use the MH ratio to decide
whether to accept θ′ or not. Note that the MCMC
does not require any further simulator evaluations.

4 Ricker model

The Ricker model is used in ecology to model the num-
ber of individuals in a population through time. De-
spite its mathematical simplicity, this model is often
used as an exemplar of a complex model (Fearnhead
and Prangle 2012, Shestopaloff and Neal 2013) as it
can cause the collapse of standard statistical methods
due to near-chaotic dynamics (Wood 2010). Although
the model is computationally cheap, allowing the use
of expensive sampling methods such as ABC, it is used
here to demonstrate how GP-accelerated methods can
dramatically reduce the number of simulator evalua-
tions required to find the posterior distribution.

Let Nt denote the unobserved number of individuals
in the population at time t and Yt be the number of
observed individuals. Then the Ricker model is defined
by the relationships

Nt+1 = rNte
−Nt+et , Yt ∼ Pois(φNt), et ∼ N(0, σ2)

where the et are independent and the Yt are condi-
tionally independent given the Nt values. We use
prior distributions log r ∼ U [3, 5], σ ∼ U [0, 0.8], and
φ ∼ U [4, 20], and aim to find the posterior distribution
π(θ|S(y1:T )) where θ = (log r, σ2, φ) is the parameter
vector and y1:T = (y1, . . . , yT ) is the time-series of ob-
servations.

We apply the synthetic likelihood approach used in
Wood (2010), and the GP-accelerated approach de-
scribed here and compare their performance. We re-
duce the dimension of the data and simulator output,
by using a vector of summaries S(y1:T ) which contain
a collection of phase-invariant measures, such as coeffi-
cients of polynomial autoregressive models (described
in Wood 2010). We use the Gaussian synthetic like-
lihood (Equation 2) and run the simulator 500 times
at each θ in the design to estimate the sample mean
and covariance µ̂θ and Σ̂θ. We use a simulated dataset
obtained using θ = (3.8, 0.3, 10.0).

For the GP-accelerated inference we model log(−l(θ))
in the first wave, and l(θ) in later waves, and find
that the best results are obtained using a total of four
waves. We use a quadratic mean function for the GP
model in the first three waves and a sixth order poly-
nomial mean function in the final wave. After initial
exploratory analysis to determine the rough shape of
the log-likelihood function, we set the threshold value
to be T = 3 in the first wave (on the log(−l(θ)) scale),
and T = 10 for waves two to four, as these thresholds
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Figure 2: The evolution of the experimental design through four waves of history matching (one column per
wave). Each plot shows the projection of the design in the not-implausible region, Θi−1, onto two dimensions.
The proportion of the prior support Θ0 ruled out increases every wave and is reported in the figure. Note that
the projection of the volume onto two dimensions acts to disguise the amount of space that has been ruled out.

were predicted to lead to negligible truncation errors.
The minimum value of the nugget variance for each
GP was taken to be the variance of the estimate of
log π̂GABC(S(y1:T )|θ) (or log(− log π̂GABC(S(y1:T )|θ))),
estimated using 1000 bootstrap replicates of the sam-
ple mean and covariance matrix. Detailed diagnostic
plots were used to guide these choices, a selection of
which are shown in Figure 1. The accuracy of the GPs
improves with each successive wave, which is reflected
in the decreasing cross-validation errors (reported in
the figure). Note that for earlier waves, it is only the
ability to predict which regions are implausible that is
important, not the absolute accuracy.

Through the application of the thresholds, each wave
of modelling rules out an increasing proportion of the
prior support Θ0 as implausible. Figure 2 shows the
design used in each wave, and the proportion of space
ruled out. Wave one rules out 45% of Θ0, and by wave
four, over 97% of space has been deemed implausible.

Figure 3 shows the posterior distributions estimated
using the synthetic likelihood approach and the GP-
accelerated approach. The GP-accelerated approach
required a total of 3.5 × 105 model evaluations. We
ran the MCMC chain in the Wood method for 105 it-
erations (which is probably too few), which required a
total of 5× 107 simulator evaluations, 140 times more
than required by the GP-accelerated approach. The
posterior distributions for log r and φ are very similar,

with the exception of an additional ridge in the poste-
rior for log r which may be genuine, or may be an arte-
fact of not running the synthetic likelihood MCMC for
sufficiently long. The marginal posterior for σ shows
a small difference between the two methods. Estimat-
ing scale parameters is harder than estimating location
parameters (Cox 2006), and it is usually when estimat-
ing scale parameters that the GP-accelerated approach
has been observed to have poor accuracy.

5 Estimating species divergence times

We now examine a model used in evolutionary biol-
ogy to estimate species divergence times using the fos-
sil record (Tavaré et al. 2002, Wilkinson and Tavaré
2009). This model has an intractable likelihood func-
tion and has been used to demonstrate various ad-
vances in ABC methodology (Marjoram et al. 2003,
Wilkinson 2007). The model consists of a branching
process representing the unobserved phylogenetic re-
lationships, which is randomly sampled to give a tem-
poral pattern of fossil finds that can be compared
to the known fossil record. We use data on pri-
mates (provided in Wilkinson et al. 2011), consist-
ing of counts of the number of known primate species
from the 14 geological epochs of the Cenozoic, de-
noted D = (D1, . . . , D14). To model these data, a
non-homogeneous branching process rooted with two
individuals at an assumed divergence time of 54.8 + τ

1020



Richard D. Wilkinson

3.0 3.5 4.0 4.5 5.0

0
1

2
3

log r

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

σ

D
en

si
ty

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

φ

D
en

si
ty

Figure 3: Marginal posterior distributions for the Ricker model. The solid black curve is the posterior obtained
using the synthetic likelihood approach with 105 MCMC iterations. The dashed red line is the posterior obtained
using the GP-accelerated approach. The constant black dotted line is the prior. The synthetic likelihood posterior
required 5× 107 simulator evaluations compared to only 3.5× 105 for the GP-accelerated approach.

million years (My) ago is used (the oldest known pri-
mate fossil is 54.8My old). Informally, the parame-
ter τ can be thought of as representing the tempo-
ral gap between the oldest primate fossil and the first
primate, and is the key parameter of interest. Each
species is represented as a branch in the process, with
the branching probabilities and age distribution con-
trolled by three unknown parameters ρ, γ and λ. Once
the branching process has been simulated, the num-
ber of species in each geological epoch are counted,
giving values N = (N1, . . . , N14). The fossil data,
D, are then assumed to be from a binomial distribu-
tion Di ∼ Bin(Ni, αi), with αi = αpi, where the pi
are known sampling fractions reflecting the differing
lengths of each epoch and the variation in the amount
of visible rock. This gives five unknown parameters,
θ = (τ, α, ρ, γ, λ), with primary interest lying in the
estimation of the temporal gap τ . We use uniform pri-
ors τ ∼ U [0, 100], α ∼ U [0, 0.3], ρ ∼ U [0, 0.5], γ ∼
U [0.005, 0.015], and λ ∼ U [0.3, 0.5] and try to find the
posterior distribution π(θ|D).

The basic rejection ABC algorithm is simple to ap-
ply. We use the metric defined by Marjoram et al.
(2003) with a tolerance of ε = 0.1, and generate 2000
acceptances from the algorithm given in Section 1,
which required 13.6 million simulator evaluations (re-
sults shown as dashed red lines in Figure 4). For the
GP-accelerated approach, we estimate the likelihood
for each θ in our design by

πABC(D|θ) ≈ 1

M

M∑
i=1

Iρ(D,D′)≤ε (4)

where D′ is a simulated dataset. Due to the very low
acceptance rate, we have to use a large value of M
to generate any acceptances, even when θ is near the
maximum likelihood estimate. Approximately 50% of
the prior input space led to no accepted simulations af-
ter 104 replicates, which we dealt with by leaving these

values out of the GP fit (alternatively, we can substi-
tute a value less than 10−4 for the ABC-likelihood).
An additional problem, is that the estimator of the
ABC likelihood (Equation 4) has large variance, mak-
ing the training ensemble a very noisy observation of
the log-likelihood surface, which necessitates the use of
a large nugget term in the Gaussian process. Surpris-
ingly, we still find that the GP-accelerated approach is
successful. Using two waves, with 128 design points in
total, gives the results shown by the blue dotted lines
in Figure 4. These results needed 1.28 million simu-
lator evaluations, a factor of 10 fewer compared with
the rejection ABC algorithm. The accuracy of these
results is good, and can be improved further by in-
creasing the value of M and by refining the GP model
of the log-likelihood surface.

The use of the discontinuous acceptance kernel (the 0-1
cutoff Iρ(D,D′)≤ε) in the ABC likelihood makes the log-
likelihood surface difficult to model. Using a smooth
GABC acceptance kernel π(D|N ), as in Equation (1),
makes the estimate of the log-likelihood values less
variable, and the surface easier to model. However,
rather than present those results, we instead note that
it is possible to approximate the exact posterior distri-
bution in this case. The simulator consists of tractable
and intractable parts. The distribution π(N|θ) is un-
known and can only be simulated from, but the obser-
vation likelihood given the phylogeny is

π(D|N ) =

14∏
i=1

(
Ni
Di

)
αDi (1− α)Ni−Di ,

and can be used to obtain log-likelihood estimates.
Using this expression in a likelihood based inference
scheme does not work well due to the extreme vari-
ance of the values obtained when N is drawn ran-
domly from the model. Applying the GP-accelerated
approach, is successful however. We used four waves,
with 32, 78, 100, and 91 new design points in each

1021



Accelerating ABC methods using Gaussian processes

0 20 40 60

0.
00

0.
05

0.
10

0.
15

τ

D
en

si
ty

0.0 0.1 0.2 0.3

0
1

2
3

4
5

6
α

0.0 0.2 0.4

0
2

4
6

8

ρ
0.004 0.010 0.016

0
20

40
60

80
10

0

γ
0.30 0.40 0.50

0
2

4
6

8

λ

Figure 4: Marginal posterior distributions for the species divergence model. The solid black line shows the
GP-accelerated approximation to the exact posterior. The dashed red line is from the rejection ABC approach.
The dotted blue line is the GP-accelerated approximation to the ABC distribution. The dot-dash cyan line is
from using a local-linear regression adjustment on the rejection ABC posterior.

wave, using a constant mean GP at each stage. At
each design point 105 simulator replicate were used to
estimate π(D|θ) = ENπ(D|N ). The results are shown
by the solid black lines in Figure 4. These distribu-
tions are an estimate of the posterior we would obtain
if we could run ABC with ε = 0 (i.e., the true poste-
rior). The GP-accelerated results differ from the ABC
results (red line) because they approximate a different
distribution, but they are consistent with our expec-
tations. If one plots the ABC marginal posterior for τ
for various values of ε, then as ε decreases the posterior
moves from a flat prior distribution, to an ever more
peaked distribution with mass near smaller values of
τ . Also shown in Figure 4 (cyan dot-dashed lines) are
the posteriors obtained using the local-linear regres-
sion adjustment proposed by Beaumont et al. (2002).
This approach estimates the posterior we would ob-
tain if we could set ε = 0 and can substantially im-
prove the accuracy of rejection ABC. Note that the
estimated posterior is somewhere between the rejec-
tion ABC posterior and the (possibly exact) GP pos-
terior. As this curve is an extrapolation of the trend
observed as ε decreases, we expect the GP-ABC poste-
rior to be more accurate. We cannot quote any com-
putational savings for the GP-accelerated approach,
as to the best of our knowledge, it is impossible to
obtain this (‘exact’) posterior distribution using any
other approach.

6 Conclusions

For computationally expensive simulators, it may not
be feasible to perform enough simulator evaluations to
use Monte Carlo methods such as ABC at the accuracy
required. GP-accelerated methods, although adding
another layer of approximation, can provide compu-
tational savings that allow smaller tolerance values to
be used in ABC algorithms, thus increasing the overall

accuracy. Although the method is not universal, as it
requires a degree of smoothness in the log-likelihood
function, nevertheless, for a great many models this
kind of approach can lead to large computational sav-
ings. The method requires user supervision of the GP
model building and it is important that detailed diag-
nostic checks are used in each wave of the GP model
building. Just as poor choices of tolerance, summary
and metric in ABC can lead to poor inference, sim-
ilarly, poor modelling and design choices can lead to
inaccuracies in the GP-ABC approach.

Using GPs raises other computational difficulties, as
GP training has computational cost O(N3), where
N is the number of training points, with complexity
O(N) and O(N2) for calculating the posterior mean
and variance respectively. This cost means that this
approach will not produce time savings if the simulator
is very cheap to run. The cost of using GPs can be re-
duced to O(M2N) for training (and O(M) and O(M2)
for prediction) by using sparse GP implementations
(Quiñonero-Candela and Rasmussen 2005), which rely
upon finding a reduced set of M � N carefully chosen
training points and using these to train the GP.

Finally, the method presented here can be extended in
several ways. For example, the optimal choice of the
number of simulator replicates, the error induced by
thresholding the likelihood, and the location of addi-
tional design points have not been studied in detail. In
conclusion, we have lost the guarantee of asymptotic
success provided by most Monte Carlo approaches, in
exchange for gaining computational tractability. De-
spite these drawbacks, GP-accelerated methods pro-
vide clear potential for enabling Bayesian inference in
computationally expensive simulators.
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