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Abstract

Markov Random Fields, or undirected graph-
ical models are widely used to model high-
dimensional multivariate data. Classical in-
stances of these models, such as Gaussian
Graphical and Ising Models, as well as re-
cent extensions (Yang et al., 2012) to graph-
ical models specified by univariate expo-
nential families, assume all variables arise
from the same distribution. Complex data
from high-throughput genomics and social
networking for example, often contain dis-
crete, count, and continuous variables mea-
sured on the same set of samples. To model
such heterogeneous data, we develop a novel
class of mixed graphical models by specify-
ing that each node-conditional distribution
is a member of a possibly different univari-
ate exponential family. We study several in-
stances of our model, and propose scalable
M -estimators for recovering the underlying
network structure. Simulations as well as an
application to learning mixed genomic net-
works from next generation sequencing and
mutation data demonstrate the versatility of
our methods.

1 Introduction

Markov Networks, or undirected graphical models, are
a popular tool for modeling, visualization, inference,
and exploratory analysis of multivariate data with
wide-ranging applications. The Gaussian Graphical
Model, for continuous (Gaussian) variables, and the
Ising / Potts model, for binary / categorical variables,
are two widely used classes of Markov Networks. Re-
cently, Yang et al. (2012) extending Besag (1974) in-
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troduce a more general class of graphical models con-
structed by assuming the node-conditional distribu-
tions arise from a univariate exponential family distri-
bution. While this work permits graphical modeling
for varied types of variables such as count data (e.g.
Poisson graphical models) or left-skewed data (e.g. ex-
ponential graphical models), the models assume that
all variables belong to the same type. There are many
big-data examples, however, in economics, marketing,
and advertising, among others, where observations are
collected on a set of mixed variables, or variables of
many different types. Consider high-throughput ge-
nomics, for example, where for a given biological sam-
ple, technologies can measure gene expression (contin-
uous variables from microarrays or counts from RNA-
sequencing), point mutations (binary variables from
SNP-arrays), copy number variation (categorical vari-
ables after processing CGH-arrays), and epigenetic
data (continuous variables from methylation arrays).
Scientists are interested in studying relationships both
between and within these different types of genomic
markers to better understand the genetic basis of dis-
ease. To this end, new classes of mixed graphical mod-
els are needed that construct Markov Networks for sets
of heterogeneous variables.

Existing models for mixed graphs are limited to one
particular case: a Gaussian and Ising mixed model.
This model was initially proposed by Lauritzen and
Wermuth (1989) (and further studied in (Fryden-
berg and Lauritzen, 1989; Lauritzen, 1992; Lauritzen
et al., 1989; Lauritzen, 1996)), where they formulated
a Markov Network over nodes with a subset of con-
tinuous variables and a subset of discrete categorical
or binary variables. The construction of this model
is simple and assumes that the continuous variables
conditioned on all possible configurations of the dis-
crete vector are distributed as multivariate Gaussian.
This model specification however scales exponentially
with the number of discrete variables, and accordingly
several others have proposed specializations of this
Gaussian-Ising mixed graphical model. Lee and Hastie
(2012) considered a specialization involving only pair-
wise interactions between any two variables, while
Cheng et al. (2013) further allowed for three-way inter-
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actions between two binary and one continuous vari-
able. In addition to these specializations, these recent
Gaussian-Ising models are limited to allowing variables
to one of two specific types (binary/Ising, and contin-
uous/Gaussian).

In this paper, we propose a general class of mixed
graphical models that permits each variable to belong
to a potentially different type. Our construction is a
natural extension of that of the Gaussian-Ising model
and the class of exponential family MRFs (Yang et al.,
2012). Suppose the conditional distribution of each
variable conditioned on other variables belongs to an
arbitrary and potentially different univariate exponen-
tial family distribution. Two key model specification
questions arise: (1) Do these node-conditional distri-
butions jointly form a proper density over the nodes
and if so, what is the form of this density? and, (2)
What is the natural parameter space of these models,
or in other words, under what conditions are mixed
graphs normalizable? We carefully study both of these
questions, showing that there indeed exists a proper
joint distribution over variables of mixed node types;
we call this the class of mixed exponential MRFs. We
also show that there exist general conditions under
which certain classes of these mixed graphical mod-
els are normalizable. Thus, for the first time, our work
provides a general class of mixed graphical models, be-
yond the Gaussian-Ising instance, to encompass varied
types of heterogeneous variables.

While our construction of general mixed graphical
models is a natural extension of that of Markov Ran-
dom Fields for variables of one type, there are possi-
bly other ways of jointly modeling variables of mixed
types. First, there has been much recent interest in
non-parametric extensions of graphical models using
things like copula transforms (Dobra and Lenkoski,
2011; Liu et al., 2012) or robust estimators of relation-
ships between variables such as with Spearman’s or
Kendall’s Tao rank-correlation (Xue and Zou, 2012).
While such approaches could be employed for mixed
types of variables, non-parametric approaches in gen-
eral might not adequately account for differing do-
mains of mixed variables and likely have less statistical
power than parametric methods for recovering graph
structure in high-dimensional settings. Second, our
construction is closely related to that of conditional
random field (CRF) models (Lafferty, 2001), and par-
ticularly CRFs constructed via node-conditional expo-
nential families as recently investigated by Yang et al.
(2013a). Deriving a mixed MRF from such CRFs by
taking a product of a conditional CRF distributions
and marginal MRF distributions however, has a key
disadvantage in that the resulting distribution ends
up with much more complicated terms. (A discussion

of such formulations is given in the appendix). Third,
relationships between variables of different types could
be approached via types of multi-response regression
models (Cai et al., 2013); these are particularly popu-
lar approaches for eQTL mapping of point mutations
to gene expression, for example (Lee et al., 2010).
While these approaches may be effective at finding
connections between two sets of variables, they can-
not model relationships within sets of variables, are
limited to only two types of variables, and do not cor-
respond to a coherent joint probabilistic model.

In this paper, we make several major contributions in-
cluding: (1) Construction of a general class of mixed
graphical models that permits each node to belong to
a potentially different variable type, thus broadly gen-
eralizing the applicability of mixed statistical models;
(2) Careful discussion of the conditions on the natu-
ral parameters under which these graphical model ex-
ist for paired sets of variables; (3) Development of an
M -estimator to learn the structure of mixed graph-
ical models via neighborhood selection. We demon-
strate the applicability of our models through both
simulation studies as well as a real high-throughput
genomics example jointly learning a breast cancer ge-
netic network of mutations (binary) and gene expres-
sion (counts via RNA-sequencing).

2 Mixed Graphical Models

Suppose we have a p-variate random response vector
X = (X1, . . . , Xp), with each response variableXr tak-
ing values in a set Xr. Suppose also that G = (V,E) is
an undirected graph over p nodes corresponding to the
p response variables. Given the underlying graph G,
and the set of cliques (fully-connected sub-graphs) C of
the graph G, the corresponding Markov random field
(MRF) is a set of distributions over the random vec-
tor X, that satisfy Markov independence assumptions
with respect to the graph G. By the Hammersley-
Clifford Theorem (Lauritzen, 1996), any such distri-
bution, when positive also has the following specific
factored form. Let {φc(Xc)}c∈C denote a set of clique-
wise sufficient statistics, so that φc only depends on
variables Xc corresponding to the clique c ∈ C. Then
any strictly positive distribution over the random vec-
tor X within the Markov random field family takes the
following factored form:

P (X) ∝ exp
{∑

c∈C
φc(Xc)

}
. (1)

The sufficient statistics {φc(Xc)}c∈C are typically
specified according to the type and properties of the
random vector; the Ising model for instance corre-
sponds to linear and quadratic sufficient statistics over
binary data, while the Gaussian MRF corresponds to
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linear and quadratic sufficient statistics over contin-
uous real-valued data. Mixed Markov random fields
(MRFs) would correspond to the setting where the
random variables belong to heterogeneous domain sets,
so that the sets {Xr}r∈V are potentially all distinct.
There is however a lack of any substantial model spec-
ification and statistical theory (beyond the references
noted in the introduction) for such mixed MRFs. A
key reason for this is the difficulty in setting ap-
propriate sufficient statistics {φc(Xc)}c∈C specifying
the MRFs over such heterogeneous random variables,
some of which could be discrete, and others could be
continuous with disparate properties.

Interestingly, when considering the heterogeneous ran-
dom variables individually, we do have considerable
understanding in specifying univariate distributions
over these varied types of variables, discrete as well as
continuous. A popular class of univariate family of dis-
tributions for instance is the exponential family class
of distributions: P (Z) = exp(θ B(Z) + C(Z)−D(θ)),
with sufficient statistics B(Z), base measure C(Z),
and log-normalization constant D(θ). Such expo-
nential family distributions include a wide variety of
commonly used distributions over varied continuous
and discrete data, such as Gaussian, Bernoulli, multi-
nomial, Poisson, exponential, gamma, chi-squared,
beta, any of which can be instantiated with particular
choices of the functions B(·), and C(·). Such univari-
ate exponential family distributions are thus popularly
used to model a heterogeneous variety of data types in-
cluding skewed continuous data and count data. Ad-
ditionally, through generalized linear models, they are
used to model the response of various data types con-
ditional on a set of covariates. The key question is
whether we can combine multiple such univariate ex-
ponential family distributions into a single mixed MRF
distribution over heterogeneous multivariate data.

We consider the following generalization of the con-
struction in Besag (1974); Yang et al. (2012). Note
that the conditional distribution of a variable condi-
tioned on the rest of the variables can be specified by
a univariate distribution. Accordingly, suppose that
the node-conditional distributions of variables Xr con-
ditioned on the rest of the response variables, XV \r
is given by an arbitrary univariate exponential family
that depends on the node r ∈ V :

P (Xr|XV \r) (2)

= exp
{
Er(XV \r)Br(Xr) + Cr(Xr)− D̄r(XV \r)

}
.

Here, the functions Br(·), Cr(·) are specified by the
choice of a univariate exponential family, and the pa-
rameter Er(XV \r) is an arbitrary function of the all
variables except Xr. Note that the exponential family
for each variable Xr could be distinct.

Consider the joint MRF distribution as in (1) with
arbitrary sufficient statistics {φc(Xc)}c∈C . Would the
node-conditional distributions as specified in (2) be
consistent with a joint MRF distribution, possibly un-
der some restriction over the choice of the exponential
families, over the functions {Er(·)}r∈V specifying the
node-conditional distributions?

Theorem 1. Consider a p-dimensional random vec-
tor X = (X1, X2, . . . , Xp), with each variable Xr tak-
ing values in a potentially distinct set Xr. Consider
the node-conditional distributions, of each variable Xr

conditioned on the rest of random variables, as spec-
ified in (2) by heterogeneous univariate exponential
family distributions. These are consistent with a joint
MRF distribution over the random vector X, as in (1),
that is Markov with respect to a graph G = (V,E) with
clique-set C of size at most k, if and only if the func-
tions {Er(·)}r∈V specifying the node-conditional dis-
tributions have the form:

θr +
∑

t∈N(r)

θrtBt(Xt) + . . .+
∑

t2,...,tk∈N(r)

θr t2...tk (X)
k∏

j=2

Btj (Xtj ),

where θr· := {θr, θrt, . . . , θr t2...tk} is a set of param-
eters, and N(r) is the set of neighbors of node r ac-
cording to an undirected graph G = (V,E). Moreover,
the corresponding consistent joint MRF distribution in
turn has the following form:

P (X; θ) = exp

{∑

r∈V

θrBr(Xr) +
∑

r∈V

∑

t∈N(r)

θrtBr(Xr)Bt(Xt)+

. . .+
∑

(t1,...,tk)∈C
θt1...tk

k∏

j=1

Btj (Xtj ) +
∑

r∈V

Cr(Xr)−A
(
θ
)}
, (3)

where A
(
θ
)

is the log-normalization constant.

Theorem 1 states that one could choose arbitrary and
potentially different exponential families for each of
the node-conditional distributions, and yet obtain a
valid consistent joint MRF distribution if and only if
the functions Er(XV \r) specifying the canonical pa-
rameter in the univariate exponential family distribu-
tions (2) have a specific form. Then, not only is there
is a corresponding consistent joint MRF distribution,
it has the specific form as specified in (3). We term
this class of MRFs specified in Theorem 1 as the class
of mixed exponential MRFs.

This class of mixed exponential MRFs allows us, for
the first time, to specify joint distributions over var-
ied heterogeneous random variables. We note that it
recovers the exponential MRF family of (Yang et al.,
2012) over homogeneous multivariate data, by setting
all the exponential families to be the same. Theorem 1
can thus be understood as an extension of their frame-
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work to the heterogeneous setting where the exponen-
tial distributions comprising the node-conditional dis-
tributions could all be distinct, thus being able to si-
multaneously model variables from disparate domains
with disparate characteristics, such as discrete, contin-
uous, skewed-continuous, etc.

An important special case of the mixed exponential
MRF family is when the joint distribution has clique
factors of size at most two.The joint distribution in (3)
would take the form:

P (X; θ) = exp

{∑

r∈V

θrBr(Xr) +
∑

(r,t)∈E

θrtBr(Xr)Bt(Xt)

+
∑

r∈V

Cr(Xr)−A
(
θ
)}
, (4)

with the log-normalization term given by
A
(
θ
)

:= log
∫
Xp exp

{∑
r∈V θrBr(Xr) +∑

(r,t)∈E θrtBr(Xr)Bt(Xt) +
∑
r∈V Cr(Xr)

}
.

In order to build the joint distribution under this
framework (3), we only need to specify Br(·) and Cr(·)
for each random variable r ∈ V . As an example, con-
sider the pairwise MRF with three types of random
variables: Gaussian, Ising and Poisson. Let (VG, EG)
be the sub-graph corresponding only to Gaussian vari-
ables. (VI , EI) and (VP , EP ) are defined similarly. We
also have sets of cross-edges; denote EGI as the set
of edges between Gaussian and Ising variables, and so
on. Then, the mixed MRF distribution in (3) takes
the form:

P (X) ∝ exp

{ ∑

r∈VG

θgr
σr
Xr +

∑

r′∈VI

θirXr +
∑

r′′∈VP

θprXr

+
∑

(r,t)∈EG

θggrt
σrσt

XrXt +
∑

(r′,t′)∈EI

θiir′t′Xr′Xt′ +
∑

(r′′,t′′)∈EP

θppr′′t′′Xr′′Xt′′

+
∑

(r,r′)∈EGI

θgirr′

σr
XrXr′ +

∑

(r,r′′)∈EGP

θgprr′′

σr
XrXr′′ +

∑

(r′,r′′)∈EIP

θipr′r′′Xr′Xr′′

−
∑

r∈VG

X2
r

2σ2
r

−
∑

r′′∈VP

log(Xr′′ !)

}
.

An important question that arises, particularly given
interactions between heterogeneous types, is under
what constraints on the parameters θ is the mixed
MRF distribution in (3) well-defined, so that A

(
θ
)
<

∞, and the distribution is normalizable. We will study
this further in the next section.

3 Manichean Graphical Models

An important subclass of our mixed exponential MRF
family in (4) is when the random variables belong to
just one of two types. Specifically, suppose the set of
random variables {X1, . . . , Xp} is partitioned into two

groups: {Y1, . . . , YpY } of variables Yr taking values in
a set Y; and {Z1, . . . , ZpZ} of variables Zr taking val-
ues in a set Z where p = pY + pZ . Collating these
groups into random vectors Y := (Y1, . . . , YpY ) and
Z := (Z1, . . . , ZpZ ), and X := (Y, Z), consider the
mixed MRF family over X = (Y,Z) from (4) where
the exponential families for the node-conditional dis-
tributions of variables in {Y1, . . . , YpY } are specified by
the sufficient statistic BY (·) and base-measure CY (·),
and those for the variables in {Z1, . . . , ZpZ} are speci-
fied by the sufficient statistic BZ(·) and base-measure
CZ(·). With these choices of the univariate exponen-
tial families, we then obtain the following sub-class of
mixed MRF distributions:

P (Y,Z; θ) ∝ exp

{ ∑

r∈VY

θyrBY (Yr) +
∑

r′∈VZ

θzr′BZ(Zr′)+

∑

(r,t)∈EY

θyyrt BY (Yr)BY (Yt) +
∑

(r′,t′)∈EZ

θzzr′t′ BZ(Zr′)BZ(Zt′)+

∑

(r,r′)∈EY Z

θyzrr′ BY (Yr)BZ(Zr′) +
∑

r∈VY

CY (Yr) +
∑

r′∈VZ

CZ(Zr′)

}

(5)

where VY , VZ are the sets of nodes corresponding to
variables in Y and Z respectively; and EY are the
set of edges restricted to nodes in VY , EZ are the
set of edges restricted to nodes in VZ , and EY Z is
the set of “heterogeneous” edges between nodes in
VY and VZ . We term the subclass of joint distribu-
tions in (5) as Manichean mixed exponential MRFs, or
Manichean MRFs in short (after the philosophy that
loosely, places elements into one of two types).

Past work (Lauritzen, 1996; Lee and Hastie, 2012;
Cheng et al., 2013) in modeling joint MRFs over het-
erogenous random variables has been restricted to this
dual-type setting, where the random variables belong
to one of two types. Indeed, it has been specifically
focused on the setting where one set of variables is bi-
nary or discrete, and the other set of variables is con-
tinuous; and the resulting mixed MRFs were either a
Gaussian-Ising or Gaussian-discrete MRF, which can
be seen as special cases of our Manichean exponential
MRF family. In illustrating our class of mixed MRFs
via examples, we thus largely focus on this Manichean
setting. We interleave our discussions with an anal-
ysis of the normalizability conditions over the model
parameters for such mixed MRFs. We delineate two
settings of such Manichean MRFs: one where at least
one of the domains Y or Z is finite, and the other
where both the domains are infinite.

3.1 When one of the domains is finite

We first focus on the case when at least one of the
domains Y or Z is finite. Let us assume without loss
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of generality that Z is finite, and that both the max-
imum and minimum values in Z are finite; max{z :
z ∈ Z} < ∞ and min{z : z ∈ Z} > −∞. As we will
show, such a setting allows an easier specification of
the normalizability conditions for (5).

We first note that given the pairwise joint distribu-
tion in (5), the conditional distribution P (Y |Z) can
be derived as follows:

P (Y |Z) ∝ exp

{ ∑

r∈VY

θyrBY (Yr) +
∑

(r,t)∈EY

θyyrt BY (Yr)BY (Yt)

+
∑

(r,r′)∈EY Z

θyzrr′BY (Yr)BZ(Zr′) +
∑

r∈VY

CY (Yr)

}
. (6)

The distribution (6) can be understood to belong to
an exponential family with node-wise sufficient statis-
tics BY (Yr) for r ∈ VY , and pairwise sufficient statis-
tics BY (Yr)BY (Yt) for (r, t) ∈ EY . The canon-
ical parameters θ̄yr (Z) corresponding to the node-
wise sufficient statistics are linear functions of the
conditioned random vector Z, given by θ̄yr (Z) =
θyr +

∑
r′∈N(r) θ

yz
rr′BZ(Zr′). The canonical parameters

θ̄yyrt (Z) for the pair-wise sufficient statistics are sim-
ply constants independent of Z: θ̄yyrt (Z) := θyyrt . The
log-partition function (denote AY |Z(·)) of (6) is some
function of θ̄y(Z) := {θ̄yr (Z)}r∈VY

and θ̄yy(Z) (see
Yang et al. (2013a) for further details of such exponen-
tial conditional graphical models, also known as condi-
tional random fields (CRFs)). Note that we can obtain
higher-order interaction terms by considering higher-
order interactions in the corresponding joint distribu-
tion beyond the pairwise terms in (5).

The following theorem shows that the normalizability
condition for the joint distribution in (5) can be ex-
pressed in terms of the conditional log-partition func-
tion AY |Z(·):
Theorem 2. The Manichean MRF joint distribution
in (5) is normalizable iff

EZ′
[

exp
{
AY |Z′(θ̄

y(Z ′), θ̄yy)
}]

<∞,

where EZ′ [·] is the expectation with respect to a random
vector Z ′ that follows the pairwise MRF distribution:

P (Z ′) ∝ exp

{ ∑

r′∈VZ

θzr′BZ(Z ′r′) +
∑

r′∈VZ

CZ(Z ′r′)

+
∑

(r′,t′)∈EZ

θzzr′t′ BZ(Z ′r′)BZ(Z ′t′)

}
,

where the parameters θzr′ , θ
zz
r′t′ , the sufficient statistics

BZ(·), the base measure CZ(·) and the node/edge sets
(VZ , EZ) are as specified in the Manichean MRF joint
distribution in (5).

The following corollary of Theorem 2 then addresses
the normalizability of the joint distribution in (5) for
the case where one of the domains is finite.

Corollary 1. Suppose that the domain Z is finite,
with max{z : z ∈ Z} <∞ and min{z : z ∈ Z} > −∞.
Suppose also that the conditional distribution (6) given
Z is well-defined (i.e. normalizable) for all Z ∈ Z.
Then, the log-partition function is finite, and the joint
in (5) is well-defined and normalizable as well.

Example: Gaussian - Ising The Gaussian - Ising
mixed graphical model (Lee and Hastie, 2012; Cheng
et al., 2013) can be seen to be a special case of the
mixed MRF family in (5) with univariate Gaussian
and Bernoulli distributions as the exponential family
distributions. Specifically, suppose that the domain
of the variables {Yr} is Y = R, and that their corre-
sponding choice of a univariate exponential family is
the univariate Gaussian distribution with known σ2, so
that the sufficient statistics and base measure are given

by BY (Yr) = Yr

σr
, and CY (Yr) = − Y 2

r

2σ2
r
, respectively.

Suppose also that the univariate exponential family
corresponding to variables {Zl} is the Bernoulli distri-
bution, so that Z = {−1, 1}, and the sufficient statis-
tics and base measure are given by BZ(Zr′) = Zr′ ,
CZ(Zr′) = 0 for all r′ ∈ VZ . Substituting these in (5),
we obtain the following mixed MRF distribution:

P (Y,Z) ∝ exp

{ ∑

r∈VY

θyr
σr
Yr +

∑

r′∈VZ

θzr′Zr′ +
∑

(r,t)∈EY

θyyrt
σrσt

YrYt

+
∑

(r′,t′)∈EZ

θzzr′t′ Zr′ Zt′ +
∑

(r,r′)∈EY Z

θyzrr′

σr
Yr Zr′ −

∑

r∈VY

Y 2
r

2σ2
r

}
.

The conditional Gaussian distribution given Z,
P (Y |Z) is well defined as long as Θ ≺ 0 where Θ

is a matrix defined as [Θ]rt =

{ − 1
σ2
r

if r = t

θyy
rt

σrσt
otherwise.

Thus, from Corollary 1, the joint Gaussian - Ising dis-
tribution is normalizable so long as Θ ≺ 0.

Example: Poisson - Ising We can define a mixed
Poisson - Ising model as follows. Suppose that the
domain of the variables {Yr} is Yr = {0, 1, 2, . . .}. The
natural choice of an exponential family distribution
for such over count-valued domain is the univariate
Poisson distribution, with sufficient statistic and base
measure are given by BY (Yr) = Yr, and CY (Yr) =
− log(Yr!), respectively. Suppose that the remaining
variables {Zr} are binary with Zr′ = {0, 1}, so that the
corresponding natural univariate exponential family is
the Bernoulli distribution, with sufficient statistics and
base measure are given by BZ(Zr′) = Zr′ , CZ(Zr′) =
0. Substituting these in (5), we obtain the following
mixed MRF distribution:
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P (Y,Z) ∝ exp

{ ∑

r∈VY

θyrYr +
∑

r′∈VZ

θzr′Zr′ +
∑

(r,t)∈EY

θyyrt YrYt+

∑

(r′,t′)∈EZ

θzzr′t′ Zr′ Zt′ +
∑

(r,r′)∈EY Z

θyzrr′ Yr Zr′ −
∑

r∈VY

log(Yr!)

}
. (7)

As a specialization of Corollary 1 to this setting, we
obtain the following corollary for the normalizability
of the Poisson - Ising distribution:

Corollary 2. The Poisson-Ising distribution (7) is
well-defined iff θrt ≤ 0 all (r, t) ∈ EY (i.e., for the
pairwise terms over count-valued variables).

The condition specified in the corollary is the one re-
quired for normalizability of any conditional distribu-
tion P (Y |Z) of the count-valued variables conditioned
on the binary variables (Yang et al., 2013a). The corol-
lary then follows from an application of Corollary 1.

3.2 When both domains Y and Z are infinite

Now consider the setting where both domains Y and
Z are infinite, with sup{z : z ∈ Z} = ∞ or inf{z :
z ∈ Z} = −∞; and with the same for Y. Instances
of variables with such infinite domains include real-
valued variables (e.g. the Gaussian exponential fam-
ily) or count-valued variables (e.g. the Poisson expo-
nential family). The following proposition provides a
necessary condition when the joint mixed MRF distri-
bution is normalizable under such a setting:

Proposition 1. Suppose that both domains Y and Z
are infinite. Then, if the mixed MRF distribution (5)
is normalizable, it necessarily holds that unnormalized
mass in (5) should converge to zero. That is, letting
X := (Y, Z), for all r, t ∈ V := VY ∪ VZ , there exists
(x0, x1) ∈ Xr ×Xt, so that it necessarily holds that

θrBr(Xr) + θtBt(Xt) + θrtBr(Xr)Bt(Xt)

+ Cr(Xr) + Ct(Xt) < 0,

for all values (Xr, Xt) ∈ Xr × Xt s.t. |Xr| ≥ |x0| and
|Xt| ≥ |x1|.

Note that the node indices r and t range over any
variable in X := (Y, Z), and thus over any of the two
types of variables in Y or Z.

In the sequel, we focus on a popular exponential fam-
ily setting of linear sufficient statistics Br(Xr) = Xr

(which includes popular instances such as Gaussian,
Poisson, Bernoulli, exponential, etc.). In the following
theorem, we derive necessary conditions in order for
the normalizability condition in Proposition 1 to be
satisfied.

Theorem 3. Suppose that both domains Y and Z
are infinite, and that Br(Xr) = Xr, r ∈ V , for

X := (Y,Z) and V := VY ∪ VZ . Then the mixed MRF
distribution expression over X := (Y,Z) in (5) is not
normalizable if neither of the following conditions are
satisfied for all r, t ∈ V with non-zero θrt:

(a) both Xr and Xt are infinite only from one side, so
that sup{x : x ∈ Xr} < ∞ or inf{x : x ∈ Xr} >
−∞, with the same for Xt.

(b) for ∀α, β > 0 such that −Cr(Xr) = O(Xα
r ) and

−Ct(Xt) = O(Xβ
t ), it holds that (α−1)(β−1) ≥ 1.

3.2.1 Example: Gaussian - Poisson

Suppose that the domain of the variables {Yr} is
Y = R, and that their corresponding choice of a
univariate exponential family is the univariate Gaus-
sian distribution with known σ2 as discussed earlier,
with sufficient statistics and base measure given by

BY (Yr) = Yr

σr
and CY (Yr) = − Y 2

r

2σ2
r

respectively. Also

suppose that the remaining random variables {Zr}
are count-valued so that Z = {0, 1, 2, . . .}, and that
the corresponding choice of the univariate exponen-
tial family is the Poisson distribution, with sufficient
statistic and base measure are given by BZ(Zr′) = Zr′ ,
CZ(Zr′) = − log(Zr′ !) respectively. Substituting these
in (5), we obtain the following mixed MRF:

P (Y,Z) ∝ exp

{ ∑

r∈VY

θyr
σr
Yr +

∑

r′∈VZ

θzr′Zr′

+
∑

(r,t)∈EY

θyyrt
σrσt

YrYt +
∑

(r′,t′)∈EZ

θzzr′t′ Zr′ Zt′ +
∑

(r,r′)∈EY Z

θyzrr′

σr
Yr Zr′

−
∑

r∈VY

Y 2
r

2σ2
r

−
∑

r′∈VZ

log(Zr′ !)

}
. (8)

As we show in the following corollary however, there
can be no interactions between the continuous (corre-
sponding to Gaussian) and count-valued (correspond-
ing to Poisson) variables for the distribution to be nor-
malizable!

Corollary 3. The Gaussian-Poisson distribution (8)
is not normalizable unless θrt = 0 for all (r, t) ∈ EY Z .

Corollary 3 follows from an application of Theorem 3.
The Gaussian random variables are infinite in both di-
rections, so that they do not satisfy the first condition.
Moreover, −CY (Xr) = O(X2

r ), so that α = 2, while
log(Zr′ !) is no faster than Z1.5

r′ asymptotically, so that
β = 1.5, with (2 − 1)(1.5 − 1) < 1, so that the sec-
ond condition is also violated. Gaussian-exponential
mixed graphical models can also be analyzed along
similar lines.

How can we then model mixed MRFs over continu-
ous and count-valued variables? A useful distribu-
tion towards addressing this is provided by the uni-
variate Truncated Poisson distribution introduced by

1047



Eunho Yang, Yulia Baker, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

n=200

n=100

n=72

n=50

(a) Poisson-Ising

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

n=200

n=100

n=72

n=50

(b) Gauss-Ising
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(c) TPGM-Ising
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(d) TPGM-Gauss

Figure 1: ROC curves for different types of Manichean
graphical models when pY = 36, pZ = 36.

Yang et al. (2013b), which is a finite-domain distri-
bution (over a finite set of non-negative integers) that
has the shape of the Poisson distribution over its finite
domain. Consider the mixed MRF where the vari-
ables Zr′ of the random sub-vector Z := (Z1, . . . , Zl)
follows the univariate Truncated Poisson distribution
with values in the set Z = {0, 1, 2, . . . , R}, where R
is a fixed positive constant, a truncating parameter.
The sufficient statistics and base measure are given by
BZ(Zr′) = Zr′ , and CZ(Zr′) = − log(Zr′ !), respec-
tively. Then, appealing to results in the previous Sec-
tion 3.1 where one of the domains is finite, we would
conclude that the Gaussian-TPGM mixed models are
normalizable under the condition that Θ ≺ 0.

4 Learning Mixed Graphical Models

We now consider the task of learning a mixed expo-
nential MRF distribution given i.i.d. observations. We
focus on the two type Manichean case, with variables
(Y, Z) distributed as in (5) with unknown parame-
ters θ∗; given n i.i.d. samples D :=

{
Y (i), Z(i)

}n
i=1

drawn from this unknown mixed MRF, the task is to
recover the parameters, and in particular the under-
lying MRF graph structure. While regularized MLE
estimators would be a natural choice, these involve the
log-partition function of the mixed MRF (5), which
is typically intractable due to the summation or inte-
gration over the domains of varied types of variables.
Accordingly, we follow the node-neighborhood estima-
tion based approach of (Meinshausen and Bühlmann,
2006; Ravikumar et al., 2010; Yang et al., 2012, 2013a):
instead of maximizing the joint likelihood, we sepa-

rately learn node-wise conditional distributions at ev-
ery node, which would yield estimates of parameter-
sets {θ∗rt}t∈N(r), as well as node-neighborhoods N(r)
separately; these can be stitched together to obtain
the overall graph structure, as in Meinshausen and
Bühlmann (2006); Ravikumar et al. (2010); Yang et al.
(2012, 2013a).

By Theorem 1, the node-wise conditional distribution
of Yr given the rest of nodes YVY \r and Z, has the form:

P (Yr|YVY \r, Z; θ∗) = exp
{
BY (Yr)η(YVY \r, Z; θ∗) +

CY (Yr) − D̄r

(
η(YVY \r, Z; θ∗)

)}
, which can be seen

to be a univariate exponential distribution with
canonical parameter η(YVY \r, Z; θ∗) = θ∗yr +∑
t∈VY \r θ

∗yy
rtBY (Yt) +

∑
r′∈VZ

θ∗yzrr′BZ(Zr′).

Hence, given i.i.d. samples from the joint mixed MRF
distribution P (Y,Z; θ∗), the corresponding negative
log-conditional-likelihood can be written as `(θ;D) :=

− 1
n log

∏n
i=1 P (Y

(i)
r |Y (i)

VY \r, Z
(i); θ). The correspond-

ing `1 regularized M -estimator of the conditional dis-
tribution parameters is then given as:

min
θ∈R1+(pY −1)+pZ

`(θ;D) + λY,n‖θyy‖1 + λZ,n‖θyz‖1, (9)

where λY,n, λZ,n are the regularization constants, and
could have different values. Given this M -estimator,
we can recover the homogeneous-neighborhood of Yr
(i.e. interactions with nodes in {Y\r}) as NY (r) =
{t ∈ VY \ r | θyyrt 6= 0}, and its heterogeneous-
neighborhood (i.e. interactions with nodes in {Zr′})
as NZ(r) = {r′ ∈ VZ | θyzrr′ 6= 0}. The node-
conditional distribution for Zr′ given the rest of
nodes, P (Zr′ |Y,ZVZ\r′ ; θ

∗), and its corresponding M -
estimator can also be defined similarly as above.

For the statistical analysis of the M -estimator above,
in particular its sparsistency, or consistent recovery
of neighborhood sets, we can directly appeal to re-
sults in Yang et al. (2013a) where they analyzed the
sparsistency of an M -estimator for a conditional ran-
dom field, and which has a similar form as the M -
estimator above; from which it can be shown that
the M -estimator in (9) recovers the neighborhood sets
NY (r) and NZ(r) exactly for all r ∈ V with high prob-
ability under standard incoherence conditions.

5 Numerical Experiments

Simulation Studies To study the performance
of our M -estimator for learning the mixed net-
work structures, we generate data via a Gibbs sam-
pler from four instances of our Manichean graphical
model: Gaussian-Ising, Gaussian-Truncated Poisson
(TPGM), Poisson-Ising, and Truncated Poisson-Ising.
A lattice graph connecting nearest neighbors on a two-
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Figure 2: Connected components of a breast cancer genetic network estimated by the Truncated Poisson and Ising
mixed graphical model for gene expression via RNA-sequencing (yellow nodes) and genomic mutations including
both point and copy number aberrations (blue nodes) measured on the same set of 697 breast cancer subjects.
Key highly mutated cancer biomarkers such as TP53 and PIK3C are found to have many inter-connections to
gene expression variables that are consistent with the cancer genomics literature.

dimensional grid with p = 72 variables, pY = 36 and
pZ = 36, is employed. In Figure 1, we report receiver-
operators characteristic (ROC) curves for recovering
the true edge structure of the graph by varying the
sparsity parameters, λY and λZ which are held at a
constant ratio, for four different sample sizes, n =50,
72, 100 and 200.

Results indicate that we are able to recover the graph
structure via neighborhood selection for instances be-
yond the existing Gaussian-Ising graph. Mixed graph
recovery, even in p > n cases, is indeed possible for all
pairs except the Truncated Poisson (TPGM) - Gaus-
sian model. In this instance, as the truncation level
increases, the strengths of connections is weakened be-
cause the TPGM tends towards the PGM for which the
paired Poisson-Gaussian model does not allow hetero-
geneous interactions as we had shown in the previous
section. (For properties of the truncated Poisson dis-
tribution, see Yang et al. (2013b)).

Genomics Example We employ our Manichean
graphical model on a high-throughput genomic exam-
ple to identify connections both between and within
gene expression biomarkers and genomic mutation
biomarkers for invasive breast carcinoma. Level III
RNA-sequencing data for 806 patients was downloaded
from The Cancer Genome Atlas (TCGA) (Cancer
Genome Atlas Research Network, 2012) and processed
according to techniques described in Allen and Liu
(2013). Level II non-silent somatic mutation and level
III copy number variation data was downloaded from
TCGA for 951 patients. Copy number data was seg-
mented using standard methods described in (Zhang)

and merged with the mutation data to form an indica-
tor matrix of whether a point mutation or copy number
aberration occurs in each gene biomarker. There are
n = 697 patients common to both data sets, and our
analysis considers the top 2% of genes filtered by ex-
pression variance across samples (pY = 329) and gene
aberrations that occurred in at least 15% of patients
(pZ = 177). As RNA-sequencing data is count-valued
and the mutation status is binary, we fit our Trun-
cated Poisson - Ising Manichean graphical model to
this data. Stability selection (Liu et al., 2010) was
used to determine the optimal level of regularization.
Results visualized in Figure 2 show highly connected
modules exhibiting within connections and identified
several between connections that are consistent with
the cancer genomics literature. For example, TP53 is
known to be highly mutated in breast cancer and a reg-
ulator of gene expression. Two such genes that have
been experimentally validated as influenced by TP53
mutations, DLK1 and THSD4 (Lin et al., 2010; Wu
et al., 2010), were identified as inter-connected neigh-
bors to TP53 in our graph. Overall, the formulation
of mixed graphical models via node-conditional expo-
nential family distributions permits us to learn connec-
tions between heterogeneous variables such as genomic
cancer biomarkers.
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