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Abstract

Exchangeable graph models (ExGM) are a non-
parametric approach to modeling network data
that subsumes a number of popular models. The
key object that defines an ExGM is often referred
to as a graphon, or graph kernel. Here, we make
three contributions to advance the theory of es-
timation of graphons. We determine conditions
under which a unique canonical representation
for a graphon exists and it is identifiable. We pro-
pose a 3-step procedure to estimate the canonical
graphon of any ExGM that satisfies these condi-
tions. We then focus on a specific estimator, built
using the proposed 3-step procedure, which com-
bines probability matrix estimation by Universal
Singular Value Thresholding (USVT) and em-
pirical degree sorting of the observed adjacency
matrix. We prove that this estimator is consis-
tent. We illustrate how the proposed theory and
methods can be used to develop hypothesis test-
ing procedures for models of network data.

1 INTRODUCTION

Network data are ubiquitous and research approaches to
network modeling have been gaining momentum in the past
few years (Goldenberg et al., 2009; Kolaczyk, 2009). Ap-
plications span a diverse range of scientific areas, from bi-
ology and genetics, to social sciences, economics, and in-
formation sciences. These applications raise challenging
questions about modeling, inference and computation.

Here, we focus on exchangeable graph models (ExGM; Al-
dous, 1981; Hoover, 1979; Kallenberg, 1989, 2005) and
discuss circumstances under which the graphons that define
them can be consistently estimated. A traditional way to
formulate this estimation problem is to focus on the proba-
bility matrix, which generates the observed adjacency ma-
trix in the sense of independent Bernoulli trials. Several re-
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cent papers focus on this direction (Bickel and Chen, 2009;
Miller, Griffiths, and Jordan, 2009; Lloyd, Orbanz, Ghahra-
mani, and Roy, 2012; Choi, Wolfe, and Airoldi, 2012;
Azari and Airoldi, 2012; Chatterjee, 2012; Tang, Sussman,
and Priebe, 2013; Wolfe and Olhede, 2013; Latouche and
Robin, 2013; Orbanz and Roy, 2013; Airoldi, Costa, and
Chan, 2013; Chan, Costa, and Airoldi, 2013; Chan and
Airoldi, 2014), but one of the deficiencies for this formu-
lation is that the resulting estimate always lacks the global
structural information to the generating graphon.

In this paper, we adopt an alternative way to formulate the
estimation problem for the generating graphon underlying
an ExGM. Our goal in this work is to adopt, an operate
within the constraints of, a fully functional form for the
unknown graphon, and develop a nonparametric estimation
strategy for the graphon that defines such an ExGM.

Contributions. We make three contributions in this pa-
per. First, we clearly discuss identifiability issues, when
pursuing a functional form estimation to the unknown
graphon. In other words, before we have a functional form
estimate, we need to uniquely define an estimand that is
also in a functional form. We formalize an identifiabil-
ity condition that requires an ExGM to have an absolutely
continuous degree proportion distribution. A similar con-
dition was originally implicitly leveraged by by Bickel and
Chen (2009) in a different form, which we explicitly state
and reformulate in our context. Under this condition, there
is always an uniquely defined canonical representation for
the generating graphons of an ExGM, which is the primary
estimand of interest in this work.

Second, for any ExGM satisfying the identifiability condi-
tion, we propose a 3-step procedure to construct a flexible
set of nonparametric estimates of the canonical graphon.
This procedure requires (i) a latent variables estimation
step, by empirical degree sorting, (ii) a probability matrix
estimation step, and finally (iii) an optional smoothing step.
This 3-step procedure allows the combination of any two
strategies for latent variable and probability matrix estima-
tion with a smoothing method. Leveraging this procedure,
researchers can flexibly design nonparametric estimates of
the canonical graphon, depending on their goals or willing-
ness to state assumptions about the quantities involved.

Third, we consider a specific estimator, designed according
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to the proposed 3-step procedure, by combining probability
matrix estimation by Universal Singular Value Threshold-
ing (USVT; Chatterjee, 2012) and empirical degree sorting
using the observed adjacency matrix. This combination,
which we refer to informally as the USVT-A procedure, is
proved to be consistent, only requiring continuity on the
true canonical graphon. The proposed USVT-A procedure
is both computationally efficient and easy to implement.
This makes simulation-based hypothesis testing of models
of network data practical.

Outline. The rest of this paper is organized as follows.
In Section 2, we discuss in details the identifiability issue
to propose a functional form estimate for the generating
graphon. In Section 3, we propose the 3-step procedure to
construct estimates of a graphon. In Section 4, we focus
on a specific choice of estimator and derive its theoretical
asymptotic properties. In Section 5, we demonstrate the
power of pursuing a functional form estimate in the context
of classical hypothesis testing. We offer some remarks in
Section 6.

2 IDENTIFIABILITY OF ExGM

Here we define some key notions. We then move on to the
discussion of the identifiability of graphons and conclude
with a special but flexible subclass of ExGM, which we
will focus on in the remainder of the paper.

2.1 Basic setup

Let Uy, ...,Un be i.i.d. uniform random variables on the
closed interval [0, 1], and let W : [0,1]> — [0,1] be an
unknown symmetric measurable function. The observed
data is an undirected simple graph described by an adjacent
matrix A, which is a N x N symmetric random matrix with
binary elements such that, for Uy = o (Uy, ..., Un),

Ay =
AijlUn

0 for each 7 and
Ber (W (U“UJ)) fori < 7,

where A;;’s are, conditionally on Uy, independent to each
other for ¢ < j. The unknown symmetric parameter matrix

P;
Py

£ 0 for each i and

= W(UZ,UJ) fori < j

is then called the probability matrix. This model specifi-
cation on the observed undirected graph is then called the
exchangeable graph model (ExGM), W is called a graphon
generating this ExGM, and Uy, ..., Uy are called the latent
variables for the observed graph.

The goal is to draw inferences about the unknown graphon
W from the observed adjacency matrix A. Researchers
typically formulate the estimation problem as follows:

Estimation problem 1 (P1). Build a matrix estimator P
of P, independently of any latent variable formulation.

Even though this is the most common way to formulate the
estimation problem, this approach often leads to an esti-
mator P that is unable to describe structural information
encoded by the generating graphon W, which then blocks
us from doing inferences on some interesting and practical
problems, like model similarity checking or prediction in-
ferences. Here, we pursue an alternative formulation of the
estimation problem as follows:

Estimagion problem 2 (P2). Build a nonparametric esti-
mator W (u,v) = W(a,0) of W (u,v), as a plug-in esti-
mator that relies on estimating latent variables.

However, there is an unavoidable well-posedness issues be-
fore we further study estimation problem no. 2. Due to the
highly symmetry structure resulted by the exchangeabil-
ity of ExGM, several graphons might generate the same
ExGM simultaneously, so estimation problem no. 2 won’t
be well-posed unless we can assign a unique and identifi-
able representation among those graphons generating the
same underlying ExGM. We say two ExGMs Py and P,
are the same if, for any binary and symmetric N x N ma-
trix realization A and any N € N, P; (4) = Py (A). We
discuss this issue next.

2.2 Identifiability of graphons

The discussion of the identifiability for estimation problem
no. 2 starts from a non-trivial statement, which seems to
be true at first glance, for any two graphons generating the
same ExGM. It is often stated that, for any measure pre-
serving mapping ¢ : [0, 1] — [0, 1],

W' (u,v) £ W (¢ (u), ¢ (v)) (1)

for almost everywhere! (a.e.) (u,v) € [0, 1]°, generates the
same ExGM as . Conversely, for a given EXGM P, is the
relationship above the only uncertainty about 1#7? In other
words, suppose that both W and W’ generate the same
ExGM P, does there exist a measure preserving mapping
 such that equation (1) holds?

The answer is negative, while the opposite wrong answer
has been often misused in the statistical literature about
ExGM. An intuitive counterexample proposed by Diaconis
and Janson (2008) is as follows,

uv and
(2u mod 1) (2v mod 1).

W (u,v) =
W (u,v) =

Then these two graphons will generate the same ExGM but
there exists no such a measure preserving mapping ¢ sat-
isfying equation (1). A more accurate condition for ideti-
fiability is given in Theorem 7.1 by Diaconis and Janson

"For [0,1] d space, we always refer the term almost everywhere
with respect to the complete Lebesgue measure on it.
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(2008), which states that W and W' will generate the same
ExGM if and only if there exist two—rather than one—
measure preserving mappings ¢ and ¢’ such that

W (p (u), ¢ () = W (¢ (u),¢' (v)) ae. (u,v) €0,1]7.

Note that an alternative and equivalent characterization that
ensures W and W' generate the same ExGM is

o (W, W') =0,
where d is the so-called cut-metric (Borgs et al., 2008).

However, the result by Diaconis and Janson (2008) doesn’t
mean that equation (1) should be fully abandoned. For such
a relationship to hold among graphons generating the same
ExGM, the following condition must be satisfied:

Definition 1 (Twin-free condition) There exists no such
a pair (ui,ug) in [0,1] such that W (u1,v) =
W (ug,v) fora.e. v € [0,1].

For any two twin-free graphons W; and W, generating the
same ExGM, Borgs, Chayes, and Lovasz (2010) proved
that there is actually a measure preserving bijection ¢, :
[0,1] — [0, 1] such that

Wi (u,v) = Wa (@45 (1), @19 (v)) forae. (u,v) €[0,1]%.

Thus, for those papers misusing equation (1) as the only
condition to define graphons generating the same ExGM,
a simple fix would be to rephrase the results by limiting
their interests to a subclass of ExGMs generated by twin-
free graphons, which we call twin-freely generated ExGMs.
Unfortunately, as of this writing, there is no known result
that states an appropriate way to choose a unique represen-
tation for graphons that generate a twin-free ExGM.

In oder to resolve this issue, in the rest of this paper we will
consider a relatively more restrictive subclass of ExGM,
following and expanding on the seminal paper by Bickel
and Chen (2009). They attempt to solve the identifiability
issue by claiming that, for any ExXGM P generated by a
graphon W, one can find a measure preserving mapping ¢
such that, for WE = W (o (u), ¢ (v)),

1
G () 2 / WE, (u,0) dv
0

is monotone non-decreasing for « € [0,1]. They also ar-
gued that the so-called canonical form WE | of the graphon
2

W is uniquely determined for a.e. (u,v) € [0,1]

We expand their condition by assuming the following:

Definition 2 (Degree-identifiability condition) Ler U be
a uniform random variable on [0, 1]. Then the degree pro-
portion

g(U)é/O W (U, v) dv

is an absolutely continuous random variable? on [0, 1].
In later work, Bickel et al. (2011) also rely on a similar
assumption to ensure identifiability of the graphon.

An easy example to check why this extension is necessary
is given by the following two graphons

W (u,v) Lig,1/912 (4, 0) + 1y /9452 (w,0)
W' (u,v) 2 Lio,1/21x (12,1 (U 0) + 11 /2. 110,172 (4, 0)
which give monotone non-decreasing g (u) = ¢’ (u) =

1/2, generate a same ExGM, yet are different for a.e.

(u,v) € [0,1]°. There is no canonical choice between W
and W’ in this example.

Therefore, estimation problem no. 2 stated above will be
well-posed as long as we focus on a subclass of ExGMs
generated by degree-identifiable graphons, and if we treat
the uniquely defined canonical graphon W[ associated
with a degree-identifiable ExGM P as the major estimand
of interest. The next section will discuss a strategy to de-

velop estimation procedures in this context.

Remark 1 Starting from the next Section, we will simply
write W and g to refer the canonical graphon of a degree-
identifiable ExGM and its marginal integral.

Remark 2 There are actually three equivalent characteri-
zations for a degree-identifiable ExGM P:

1. g (U) is an absolutely continuous random variable;
2. gF s strictly increasing on [0, 1].

3. The cumulative distribution function (CDF) of g (U)
is absolutely continuous and hence is continuous.

3 THREE-STEP ESTIMATION OF
DEGREE-IDENTIFIABLE ExGMs

In this Section, we will explain how, in a three steps pro-
cedure, to construct a flexible class of functional form or
nonparametric estimates for the canonical graphon gener-
ating a degree-identifiable ExXGM. Then we will conclude
with a special choice of nonparametric estimate.

The main idea behind the estimation procedure is to exploit
the degree-identifiable feature of the canonical graphon and
make use of empirical degree sorting to infer unknown la-
tent variables. We now describe how to proceed this three
steps procedure in the following paragraphs.

Step 1: Probability matrix estimation. Perform any P1
estimation P for the probability matrix P.

2We should note that the random variable g (U) here is
uniquely determined by the ExGM [P in the distribution sense.
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Step 2: Latent variables estimation. Construct an em-
pirical CDF of degree proportions using another P1 estima-
tion P’, which may or may not be the same as P, and then
let 0{5 be the estimators of the unknown latent variables
U;’s defined as the values of the empirical CDF evaluating
at the degree proportions of i-th node in P

The rationale of doing this Step 2 is explained here. Ac-
cording to some simulation evidences, the empirical CDF
F (z) of degree proportions seems to describe the CDF of
g (U), which we denote as g~ (z), quite accurately when
the number of nodes N is large enough. On the other
hand, the law of large numbers can somehow guarantee that

the degree proportions in P’ at i-th node, %Z;\Ll P,
will be a good approximation to g (U;) (assuming that
given Uj, Pi’j’s are roughly i.i.d. from the distribution
W (U;,U)). As for a degree-identifiable ExXGM, which
requires the canonical graphon marginal integral g to be

strictly increasing, we must have u = g~ (g (u)) for ev-
ery u € [0,1], so we can trust the estimation of the latent

. _ - - (1
variables U; = g~ (g (U;)) by U; & F <N Zjvzl Pi’j>.

Remark 3 In the descriptions above, we temporarily as-
sume that there is no overlapping for degree proportions in
P, that is, we assume that the elements of

1 -y N
A

1=1

are distinct. We will resolve this overlapping issue later
after we commit to a specific choice for P’.

Once we have conducted Step 1 anq 2, we can start to con-
struct a functional form estimate W (u,v). For now, we
already have a set of three dimensional points

(00,0, (00.0,)) £ (0.0, B)

which we should treat as a noisy realization® of the un-
known canonical graphon plane at (U,, U;, W (U;, Uj)).
To build a functional form estimation W (u, v) from those
three dimensional points, we can either use a linear inter-
polation or a stepwise approximation as the pre-smoothing
estimate. We majorly focus on the later one in this study,
so the pre-smoothing estimate now takes the form of a step
function

W(u0) & D0 Piliy,yyn ] (0;-1/n.0,) (00)
1<i <N

Step 3: Smoothing. (Optional.) Apply any smooth-
ing algorithm on the estimate to get a smoothed estimate,
which may or may not be in a form of step function.

3With noise coming from not only the z-direction, but also the
x- and y-directions as well.

Here are several notes related to this Step 3. First, it’s a an
optional step, and the choice of whether to include this step
or not and how to conduct it depends on researchers’ ulti-
mate goal for inferences on network data and acceptability
to those unavoidably additional assumptions on the canon-
ical graphon. A detailed investigation of adding this third
step in the estimation of canonical graphon is discussed in
a follow-up paper (Chan and Airoldi, 2014).

Because both the Step 1 and 2 above can take any kind of
estimator for problem no. 1 to proceed, we need to know
how to explicitly specify P and P'. Based on a compara-
tive simulation study, which we omit for the sake of space,
we select Universal Singular Value Thresholding (USVT)
Chatterjee (2012) as the solution estimation problem no. 1
(in Step 1), and the adjacency matrix A itself as the basis
for degree sorting (in Step 2). In the remainder of the pa-
per we focus on this combination for estimation in order
to seek the least assumptions on W; we refer informally to
this method as the USVT-A estimation procedure.

3.1 Comparative Simulation Study

In this Subsection, we demonstrate two simulations show-
ing the performance of different combinations of graphon
estimations constructed from the 3-step procedure.

In each simulation, we calculate the root of the mean
square error (RMSE) between the constructed estima-
tor (using N ranging from 300 to 3000) and the true
graphon, where only two cases are considered here: the
quadratic graphon W (u,v) = (u? 4 v?) /4 and the logis-
tic graphon W (u,v) = logistic (=5 + 5 (u + v)), where
logistic (z) £ (1 + exp (—z)) "

The simulation results are shown in Table 1 and 2.

In these Tables, the naming convention for each combina-
tion is to report the methods that were used for each of the
steps separated by a dash; for example, ”Step 1 method”-
”Step 2 method”-”Step 3 method”. The last smoothing step
is optional—for example, USVT-A-TVM method stands for
using USVT in Step 1 for probability matrix estimation, us-
ing the plain adjacency matrix A in Step 2 for the empirical
degree sorting, and finally using the total variation smooth-
ing (TVM) in Step 3. We also include the combination A-A
as a baseline estimation procedure.

From the two Tables, we see that, for Step 1, using USVT
is clearly better than using the vanilla A; for Step 2, sort-
ing according to USVT estimate gives approximately the
same result as (sometimes worse than) sorting according
to the plain A; for Step 3, TVM smoothing can be help-
ful and reduce some mean square errors. It’s interesting
that A-A-TVM method gives a fairly good performance
as both USVT-USVT-TVM and USVT-A-TVM methods.
This observation motivated recent follow-up work (Chan
and Airoldi, 2014).

While, adding a third smoothing step is helpful in these two
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N 300 900 1500

AA 0.344657 0.359469 0.357767
USVT-USVT 0.035505  0.024235  0.017006
USVT-A 0.037397 0.024614 0.017132
A-A-TVM 0.02453  0.013044  0.009418
USVT-USVE-TVM  0.040357 0.01202  0.008492
USVL-A-TVM 0.040601 0.011967 0.008526
N 1800 2400 3000

AA 0351921 0.360604 0.358457
USVT-USVT 001695  0.013922  0.012097
USVT-4 0.017059 0.013995 0.012168
A-A-TV 0.010491  0.00895  0.007025
USVL-USVL-TV ~ 0.009912 0.00813  0.006128
USVT-A-TV 0.009926  0.008101  0.006066

Table 1: RMSE Simulation for Quadratic Graphon

N 300 900 1500
A-A 038003 03812 0.383409
USVT-USVT 0.102721  0.065759  0.034483
USVT-A 0.106061  0.069602  0.034192
A-A-TVM 0.085428  0.034208  0.02423
USVL.USVL-TVM  0.084122 0.051107 0.023318
USVT-A-TVM 0.075824  0.043535  0.02324
N 1800 2400 3000
A-A 0380116 0.379474 0.379676
USVT-USVT 0.03164  0.024988 0.019176
USVT-A 0.031406  0.024771  0.019082
A-A-TVM 0.023198 0.019551  0.014232
USVT-USVL-TVM  0.023003 0.019187 0.014117
USVT-A-TVM 0.022963 0.019178 0.014113

Table 2: RMSE Simulation of Logistic Graphon

specific examples, we note that the histogram estimator re-
cently proposed by Chan and Airoldi (2014) requires an ad-
ditional smoothness assumption on the underlying canon-
ical graphon W. The proposed that USVT-A estimation
has only slightly larger RMSE than the histogram estima-
tor, and its decreasing rate on the RMSE as the number of
nodes increases is the same as that of the histogram estima-
tor. Thus the proposed USVT-A method has a fairly good
performance when compared with that of the histogram es-
timator, but its theoretical properties are achieved with less
constraints on the graphon.

In the remainder of the paper, we focus on the USVT-A
estimation in order to seek the least assumptions on W. Its
theoretical property is discussed in the next Section.

4 CONSISTENCY

In this Section, we study the theoretical consistency of the
USVT-A estimation procedure, which is defined through a
combination of probability matrix estimation using USVT

and the latent variables estimation using the empirical CDF
of observed degrees proportions in A.

The main theoretical result of this paper is as follows:

Theorem 1 (USVT-A Consistency) Assume that W is the
canonical graphon of a degree-identifiable ExGM. If W is
continuous on [0, 1), then the W constructed by the USVT-
A method is consistent for estimating W in the sense that

E(/Ol/ol (W(u,v)—W(u,v))zdudv> 0.

Here are two cornerstones that make our main result hold,
both of which correspond to the consistency of Step 1 and
Step 2 in our proposed three steps procedure in Section 3.

Theorem 2 (USVT Consistency) Let

e oy

i5{si>1.01VN}

slulu;[ and Pij £ ((MU) A 1) V 0,

be the USVT estimation of probability matrix P, where
le.vzl s;uiul is the singular value decomposition of ad-
Jjacency matrix A. Then

1 N
E W,Z

i,j=1

R 2

— 0. 2

See Chatterjee (2012) for a proof of the above theorem.

Here is some notation we are going to use throughout this
Section. Let the observed degree proportions in A to be

D, & ! NA
j=1

with their empirical CDF defined as

1 N
F(z) = N > Lp.<ay-
=1

Theorem 3 (Degree Sorting Consistency) Let the empir-
ical degree sorting estimate of the latent variables to be

U; £ F(Dy), 3)
but to avoid the overlapping issues we will instead use

0,20, -5t

“

in the proposed USVT-A estimation, where k;, given all
of U, is jointly distributed as follows: let C1,...,Cy; be
those unique values of D;’s, and, if D;) = --- =D, =
Cm, then ki, ...,k —are a uniform resampling of the
set {1,2,...,kn}. Then we have, for each i = 1,...,N,

U, — Uz‘ — 0 and ‘Ul — Ul — 0 in probability, and
U — U,

hence — 0 in probability.
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Theorem 3 describes the consistency of latent variables es-
timation via empirical degree sorting using the observed
adjacency matrix A. For the sake clarity, a detailed proof
of Theorem 3 is omitted, and can be found in a follow up
report (Yang et al., 2014). A proof for Theorem 1 using
the two key consistency results described above can also
be found in a follow up report (Yang et al., 2014).

S HYPOTHESIS TESTING

In this Section, we illustrate how the proposed USVT-A
estimator can help to develop a classical hypothesis testing
procedure for the analysis of network data. There is ample
room for improvement of the procedure we describe here.

Hypothesis testing is a powerful procedure with limited lit-
erature in network data analysis. Olding and Wolfe (2009)
presents likelihood ratio tests on three examples with a
novel flavor: (i) Erd6s-Rényi graph (Erdds and Renyi,
1959; Gilbert, 1959), (ii) stochastic blockmodel (Nowicki
and Snijders, 2001; Airoldi et al., 2008), and (iii) the fixed-
degree graph model (Blitzstein and Diaconis, 2006). How-
ever, such a method lacks the flexibility to cope with more
sophisticated models, such as exchangeable graph models.

There are mainly two reasons why it is difficult to extend
classical hypothesis testing theory to network data. The
first is that modeling network data often involves latent
variables. In case of ExGM, the U;’s are especially hard
to handle. The second reason is the high computational
cost of fitting existing methods, so it is often untenable to
get the sampling distribution of the test statistic under the
null hypothesis, using simulations. Instead, the proposed
USVT-A procedure captures the structure in exchangeable
graph models by design and is computationally efficient, so
that Monte Carlo can be employed for obtaining the sam-
pling distribution. A simple illustrative example follows.

Suppose that we observe network data represented by
an adjacency matrix A, which is generated by a degree-
identifiable ExGM with canonical graphon W. We want to
test the two hypothesis: for W (u,v) £ §(u? + v?),

Hy : W(u,v) = Wgo(u,v) versus H, : W(u,v) # Wg(u,v).

By Theorem 1, we will have the USVT-A estimate W is
getting closer and closer in the sense of mean square errors
to the true canonical graphon W when N is sufficiently
large. Thus we can choose the test statistic to be

11
\// / ‘WQ (u,v) — W (u,v) ’ dudv (5)
o Jo

HWQ—W ,

(1>

T

the L? distance between W, and W. Although we can’t
analytically know the sampling distribution of 7" under the
null hypothesis Hy, we can easily approximate it using a

large amount of simulations because of the fast implemen-
tation of our USVT-A method. Using 5000 Monte Carlo
samples for N = 3000, we get the histogram of 7" as in
Figure 1. We can see that the sampling distribution of T’
under H is right skewed. The mean and standard deviation
of the Monte Carlo samples are 0.0115 and 5.656 x 1074,
and the 95% quantile is 0.0126, so the rejection region is
T > 0.0126.

Given an observed adjacency matrix A, we can calculate its
corresponding W and 7', and then reject Hy if T > 0.0126.

6 DISCUSSION

Here we review some common ways to estimate the canon-
ical graphon W underlying a degree-identifiable ExGM,
and compare them to the proposed USVT-A estimator.

The first study of the properties of of an estimator for a
graphon W has been carried out for a specific family of
models; Bickel and Chen (2009) considered blockmod-
els with a fixed number K of blocks (Nowicki and Sni-
jders, 2001), explicitly write down the underlying graphon,
and show how the maximum likelihood estimator for the
blockmodel matrix (which parametrizes the graphon) is
consistent, while approaches based on modularity are not.
Their estimator has some disadvantages: (i) the computa-
tional cost is high, although in line with other estimators
for blockmodels, and (ii) the need to pre-specify a fixed
number of blocks, K, introduces a difficult model selec-
tion issue, in practice. Even though these authors formu-
late the estimation problem as P2, defined in Section 2.1,
they did restrict the estimation task to the parametric fam-
ily of blockmodels, thus coming short of defining a general
estimator I for the graphon W defining an ExGM.

To address some of the shortcomings in listed above, Rohe
et al. (2011) and Choi et al. (2012) consider a general-
ized blockmodel with a growing number of classes, K =
O (N 1/ 2). In this setting, inference does not need to have
K pre-specified, while at the same time empirically leads to
smaller model bias when compared with Bickel and Chen
(2009). However, these authors still consider a parametric
family of blockmodels, although less restrictive, and the
estimation task is computationally expensive.

Bickel et al. (2011) addresses the graphon estimation prob-
lem as a P2 formulation. These authors proposed a method
of moment estimator that takes advantage of the counts
of special subgraphs, referred to as wheels, in the ob-
served network. They theoretically characterize the un-
known graphon in terms of an abstract linear functional,
based on the moments. While this approach is elegant, and
leads to consistency in the absence of many assumptions on
the graphon underlying an EcGM, the implied estimator is
unfeasible, in practice. This happens because of the num-
ber of wheels is huge and counting the frequency of even
a small subset of them is impractical. In addition, even
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Figure 1: 5000 Monte Caro draws of T" under H

given these counts, solving the canonical graphon from the
characteristic linear functional described above is also chal-
lenging, because the need to compute the eigenvalues and
eigenvectors of the characteristic functional.

More recent work by Wolfe and Olhede (2013) also de-
velops a nonparametric estimator for a graphon underlying
an ExGM. These authors measure the error between the
true graphon and the estimated graphon via the cut-metric
(Borgs etal., 2008). The estimator is thus defined implicitly
by an equation that is solvable only in theory. Their results
do not allow explicitly numerical simulations to check the
performance of the estimation. In addition, the asymptotic
theory requires sophisticated assumptions, which may be
untenable in practice.

In contrast, the proposed USVT-A estimator is computa-
tionally efficient, easy to implement, and come with the
same consistency guarantees of existing methods, with lit-
tle assumptions on the underlying graphon.

6.1 Concluding remarks

In this paper, we have reformulated the existing literature
on estimation problems for exchangeable graph models
(ExGM), and dichotomized the existing approaches into
two formulations; P1, addressing only on the probability
matrix estimation, and P2, pursuing the fully functional
form estimate for the graphon underlying an ExGM.

We discussed the important issue of identifiability, which
must be addressed before any attempts on addressing the
P2 formulation of the estimation problem can take place.
We characterized a subclass of exchangeable graph mod-
els, referred to as degree-identifiable ExGMs, which entails
a uniquely-defined marginal degree function for the canoni-
cal graphon, and leads to a well-posed estimation problem.

Within this subclass of models, we proposed a general 3-
step procedure for constructing a flexible class of nonpara-
metric estimates of the canonical graphon, which allows a
large number of combinations of (i) probability matrix es-
timation methods, (ii) latent variable estimation methods,
and (iii) smoothing methods.

We then focused on a pre-smoothing estimate, which we
refer to as the USVT-A method. We theoretically proved
its mean square error consistency, under the only assump-
tion of continuity of the canonical graphon degree function,
which is easy to implement. Simulation results demon-
strate the computational efficiency of the proposed USVT-
A estimator, as well as its error properties, in practice. Our
results also suggest that, if the canonical graphon W is be-
lieved to be smooth, then a smoothing algorithm like total
variation minimization method (Chan, Khoshabeh, Gibson,
Gill, and Nguyen, 2011) could be applied to get a further
reduction of estimation errors (e.g., see Chan and Airoldi,
2014). However, simulation results also show that the re-
duction in RMSE obtained using total variation minimiza-
tion seems to be relatively small. Other combinations of
matrix estimators, latent variable estimators and smooth-
ing methods should be considered as a promising avenue
for future research.
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