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Abstract

We propose a fast and effective algorithm for
automatic hyperparameter tuning that can
generalize across datasets. Our method is
an instance of sequential model-based opti-
mization (SMBO) that transfers information
by constructing a common response surface
for all datasets, similar to Bardenet et al.
(2013). The time complexity of reconstruct-
ing the response surface at every SMBO iter-
ation in our method is linear in the number
of trials (significantly less than previous work
with comparable performance), allowing the
method to realistically scale to many more
datasets. Specifically, we use deviations from
the per-dataset mean as the response values.
We empirically show the superiority of our
method on a large number of synthetic and
real-world datasets for tuning hyperparam-
eters of logistic regression and ensembles of
classifiers.

1 Introduction

In order to get a machine learning algorithm to work
well in practice, there are often a number of hyper-
parameters that need to be tuned when training the
model, and the best hyperparameter setting is often
different for different datasets. Users are also faced
with non-trivial choices of which machine learning al-
gorithm to use for the problem at hand. Machine
learning experts can draw on their expertise and find a
reasonable setting for a new dataset relatively quickly,
although for a large dataset it is still imperative to get
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to the best setting with as few trials as possible. More
importantly, end users without much background in
machine learning often struggle to tune these hyper-
parameters.

Over the past few years, the machine learning commu-
nity has increased exploration into ways to simplify
hyperparameter tuning (Bergstra et al., 2011; Snoek
et al., 2012; Thornton et al., 2013). Surrogate based
model optimization is one promising approach that has
been shown to work well provided that we can run
enough trials for a given dataset. However, there are
many practical scenarios that require an algorithm to
return a good hyperparameter setting with very few
trials, often less than ten. For example, when pro-
viding a machine learning service, it is unattractive in
terms of user wait time and provider resource time to
run a large number of trials for each user.

One way to speed up the search process is by transfer-
ring information from previous trials on other datasets,
as has been explored in Bardenet et al. (2013). As
noted in their work, a key challenge is that evaluation
metrics (e.g., accuracies) are not comparable across
datasets. For example, a simple algorithm for a highly
skewed classification with 90 percent of the instances
from one class can yield 90 percent accuracy, whereas
the same algorithm on a harder task with a more bal-
anced class distribution might only yield 60 percent
accuracy. However, while the accuracies of the best
models may be different in these cases, the region of
a good hyperparameter setting may still be the same.
Brochu et al. (2010) consider a similar setup of learn-
ing from multiple sessions in the context of procedural
animation design.

The method proposed by Bardenet et al. (2013) is
based on a ranking surrogate to approximate the re-
sponse surface. One drawback of this approach is that
constructing the response surface requires running a
ranker inside the outer loop of sequential model-based
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optimization. The time complexity of constructing the
response surface is then equal to running a surrogate-
based ranking algorithm (e.g., SVM Rank (Joachims,
2002), GP-based ranking (Chu & Ghahramani, 2005))
on at most DChoose(T, 2) points, where D is the num-
ber of datasets and T is the number of trials for each
dataset. For example, the time complexity of learning
SVM Rank with a linear kernel and DChoose(T),2)
points is the number of iterations times O(DT?) with
the cutting-plane algorithm (Joachims et al., 2009).
As the number of stored datasets increases, recon-
structing the response surface may add significantly
to the time per trial.

In this work, we propose a novel method of transfer-
ring knowledge from previous experiments using de-
viations from the per-dataset mean. Our method is
simple and cheap, requiring only O(T') time to recon-
struct the response surface, without needing to run a
surrogate-based ranking algorithm. We demonstrate
our method’s superiority in terms of accuracy com-
pared to other methods that do not transfer knowl-
edge from previous experiments, and in terms of actual
runtime compared to the method of Bardenet et al.
(2013).

2 Background

2.1 Sequential model-based optimization

Sequential model-based optimization (SMBO) is a
framework for optimizing an expensive target function
by optimizing a surrogate that is cheaper to evaluate
(Hutter et al., 2011). There are two components that
need to be specified to use SMBO: the evaluation cri-
terion (acquisition function) and the surrogate model
S. For the evaluation criterion of SMBO, we can use:
Expected Improvement (EI) (Jones, 2001), maximum
probability of improvement (Jones, 2001), minimum
conditional entropy (Villemonteix et al., 2006), GP up-
per confidence bound (Srinivas et al., 2010), or a com-
bination of them (Hoffman et al., 2011). In this work,
we use Expected Improvement, one of the most com-
monly used criteria for SMBO, which has been shown
to give good empirical results for hyperparameter tun-
ing. EI is defined as:

El.(x,8) = [0 _max(y — y*,0)ps(y|x)d,

where x is the evaluation point, y* is the optimal value
found so far, and pg is the probability under model S.
Similar to other work on automatic hyperparameter
tuning (e.g., Bergstra et al. (2011); Snoek et al. (2012);
Bardenet et al. (2013), inter alia), we use a Gaussian
Process (Rasmussen & Williams, 2006) as the surro-
gate model §. Algorithm 1 outlines a typical SMBO
algorithm.

Algorithm 1 Sequential Model Based Optimization

Input: number of trials T, target function f
Sp = initial surrogate model
Oo = {}
fort=1to T do
x; = argmax, EI(x,S:1)
y+ = evaluate f(x;)
Or = (X, ¥i) i
Add y; and x; to S;_1 to get S;
end for

2.2 Gaussian Process

A Gaussian Process (GP) provides a convenient way
to define a distribution over functions. An important
characteristic that makes it attractive as a (surrogate)
model for sequential-based model optimization is that
it satisfies the consistency requirement (Rasmussen &
Williams, 2006). The posterior distribution of sam-
ples from a GP prior is still a GP. A GP is defined
by a mean function m(x) and a covariance function
k(x;,x;). If we assume that a function f(x) follows a
Gaussian Process:

f(x) ~ GP(m(x), k(x;,x;)),

the mean and covariance of the posterior distribution
at z (assuming the prior mean m(x) = 0, without loss
of generality) after ¢ > 4, j observations become:

m(z) = k(z,xl:t)TKflf(xl:t)
k(z,x;) = k(z,x;) — k(z,xlzt)TKflk(z,xlzt)

where K is the kernel matrix, f(x1.¢) = [f(x;)]i_; (i-e.,
f(x;) stacked t times to form a column vector), and
k(zv xl:t) = [k(Z, xl)]i:l

3 Transfer learning from previous
experiments

3.1 Problem Setup

Unlike Bardenet et al. (2013), we consider the stream-
ing setup where we see one dataset at a time, process
the dataset, and move to another dataset. We assume
that we cannot store the datasets that we have seen
in the past, except for high-level descriptive statistics
of these datasets (e.g., number of instances, number
of features, number of classes, etc.). In practice, this
turns out to be a realistic scenario since privacy and
memory concerns would prevent a system from storing
all prior datasets.

Notationally, dataset index d is always given as a su-
perscript, whereas trial index t is given as a subscript.
We assume that we are only allowed to run T trials for
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each dataset. The goal is to find a good hyperparame-
ter setting x for a dataset d to maximize f*(x) in as few
trials as possible. In addition to dataset statistics, we
are also allowed to store pairs of hyperparameter set-
tings and function evaluations resulting from previous
experiments (prior datasets and prior trials on the cur-
rent dataset) to be used by future experiments (future
datasets). We outline the main idea of our transfer
learning method in §3.2 and discuss it in more detail
subsequently.

3.2 Method

At each new dataset d, we fit a surrogate Gaussian
Process to a new black-box function fd, in order to
find max, f*(x). Instead of modeling f*(x) directly,
we use the deviations from the per-dataset mean as
the common response surface values. In our setup, we
are then able to directly retain the observations from
prior datasets in the surrogate function.

The response value that is used by our GP model is
simply:

yd = £ (xe) — pe

t od ’
where ;¢ and 0? are the dataset d mean and standard
deviation respectively. Since we do not know p¢ and

o, we use

= Y rx)

= \/12&%«0 — e

based on dataset trial results up to t. Therefore, sim-
ilar to Bardenet et al. (2013), at each iteration our
response surface changes.

Algorithm 2 outlines our transfer learning SMBO algo-
rithm and Figure 1 illustrates the target response sur-
face that we try to reconstruct using deviations from
the per-dataset mean.

While this work was under review, a related paper was
published by Swersky et al. (2013). In that work, the
authors proposed a multi-task Bayesian optimization
framework similar in spirit to our work. The main dif-
ference is that their method estimates posterior prob-
abilities of parameter estimates (the per-dataset mean
and variance) using Monte Carlo methods, whereas we
use maximum likelihood estimates.

3.3 Assumptions and Justification

Besides standard assumptions for GP-based methods,
we need one additional assumption to justify the above

Algorithm 2 Transfer Learning Sequential Model
Based Optimization

Input: surrogate model S~ number of trials T,
dataset d, target function f
Output: updated surrogate model S¢
SO — Sdfl
of = {}
fort=1to T do
x; = argmax, EI(x,8:_1)
Evaluate £4(x;)
Of = (xi, F(x.))_y
Update ¢ and 6¢
Reconstruct response surface: recompute y‘li:t
Replace y¢,, ; in the surrogate model S;_; with
the recomputed values
Add y¢ and x; to S;_; to get S;
end for
Output St

method: different datasets produce similarly looking
functions, although the location and the scale param-
eters can be different. If this assumption is satisfied,
one explanation of using deviation from the dataset
mean as the response surface is that we are using a
Gaussian Process model with different means for dif-
ferent datasets. The information transfer occurs from
reusing the covariance function across datasets. Let x4
and x4 be trial points for datasets d and d+1. Since
they are jointly Gaussian random vectors, we have:

[fff"fﬂ]wv {’“‘iﬂ} {K‘ff’x% KxfT,xfﬂ
7K K
M () K i x il

1T’x1T 1.7 %1

N———

where 4., denotes pu? stacked T' times to form a vec-
tor and Kya . a denotes the submatrix of K for all
trials pomts on dataset d. The conditional distribu-
tion of fH(x%4h) | f4(x¢.;) is therefore a Gaussian
distribution with mean:

K_l

d
Xl x{,pxt

p K (k) — )

and covariance:

~K o K} Koo a1

K d+1 d+1
x X XL xpex{r T XXy

l T *1:T
However, even if we take into account that different
datasets can have different means, the scales of the tar-
get function values can still vary greatly. Since covari-
ance is scale dependent, we need to divide f*(x,) — u?
by the dataset standard deviation o to obtain the re-
sponse value y¢, that is used by our GP model in
order to compare results from different datasets.

One key assumption of using GP as the surrogate
model is that the function f : R? — R is reasonably
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Figure 1: A toy example of a common response surface reconstructed by our method from response surfaces of
two datasets. Dataset 1 (left) and dataset 2 (center) produce similar-looking response surfaces, but they are on
very different scales. The right plot is an illustration of the common response surface constructed by our method

from sample points of these two datasets.

smooth in x € RP.! In the context of hyperparameter
optimization with an independent GP model for each
dataset, this assumption translates to nearby hyper-
parameter values have similar performance.

For hyperparameter optimization with transfer learn-
ing across datasets, in practice, we typically augment
the hyperparameter space with dataset features and
let x live in this extended space, i.e., x € RPT9, where
p is the number of hyperparameters and ¢ is the num-
ber of dataset features. This implies that we assume
that f(x) is also smooth in the dataset features (Bar-
denet et al., 2013). One drawback of this approach is
that the performance depends greatly on the dataset
features. It is also unclear what dataset features to
use, and further research is still needed to investigate
the best features. Furthermore, the response surface
that is constructed by transfer learning algorithms is
an approximation of the true response surface. In our
method, we only have access to 4% and ¢ instead of
u? and o, and this approximation might interact with
dataset features. We need an approach that is more
robust to poor estimates of the response surfaces of
some datasets.

We propose to lessen the dependencies on dataset fea-
tures by using multiple kernels, which we describe be-
low.

3.4 Multiple kernel framework

Having access to more information (trials from previ-
ous experiments) allows us to define a better kernel

'This is mainly true if we use the Automatic Rele-
vance Determination (ARD) kernel. There has been work
that has used other kernels such as the Matern 5/2 kernel
(Snoek et al., 2012). Our discussion focuses on the ARD
kernel since it is the most widely used kernel in hyperpa-
rameter optimization.

than typical kernels used for hyperparameter tuning,
and opens up the possibility to bring multiple kernel
learning framework into GP-based SMBO. For exam-
ple, in this work, we consider a convex combination
of two kernels, where the first is simply the squared
exponential kernel for points in the same dataset, and
the second is a nearest neighbor kernel that looks at
points from the n nearest neighbor datasets from pre-
vious experiments. In both kernels, we have x € RP
(i.e., only in the hyperparemeter space).

The first kernel (SQE) is:

1 Tip— Tj 2
k(x;,%x;) = 03 exp _5%—2111’)
P

We set 6y = 1 and optimize 6, by maximizing the
likelihood of the data. As a result, our SQE kernel is
an ARD kernel.

The second kernel is:

k(xi’xj) =

[l —; |l
1-— Tz
0

where ||x|l2 < B. In other words, the second kernel
is one minus the normalized Euclidean distance if the
point belong to one of the nearest neighbor datasets,
and zero otherwise. We find nearest neighbors by using
Euclidean distance in the dataset feature space RY.
The goal is to combine the power of nearest neighbor
search and squared exponential kernel with automatic
relevance determination.

if x; € nearest neighbor datasets
otherwise,

Notice that we only use the SQE kernel for points in
the same dataset, relying on the nearest neighbor ker-
nel to capture information from other datasets. As a
result, the transfer of information is more direct. We
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only use dataset features to find the nearest neigh-
bors — instead of estimating exactly how similar two
datasets are, which is harder and thus more error-
prone. Since each dataset in the nearest neighbors
contributes equally, it can also give the algorithm more
tolerance to error in approximating the response sur-
face of prior datasets.

We also need not assume that f(x) is smooth in dataset
features, although the actual function space becomes
more complex since we have a combination of kernels.
We view our work as a first step towards using multiple
kernel learning framework in hyperparameter tuning.

3.5 Time complexity

We assume that evaluating f(x) is the most expensive
step in the algorithm. Our method, similar to Bar-
denet et al. (2013), needs to reconstruct the response
surface at every iteration. Therefore, we want this step
to be as cheap as possible.

Our method is very effective since at each iteration ¢ we
only need to recompute the current dataset mean and
standard deviation. Therefore, the time complexity of
reconstructing the response surface is O(T'), where T
is the number of trials in one dataset.

On the other hand, Bardenet et al. (2013) needs to
run SVM Rank on pairwise differences for per-dataset
trials for all datasets. There can be DChoose(T,2)
such pairs in total, where D is the number of datasets
used to reconstruct the response surface. For ex-
ample, using the cutting-plane algorithm (Joachims
et al., 2009), the SVM-Rank-iteration time complexity
is O(DT?) with a linear kernel and O(D?T*) with a
non-linear kernel (e.g., RBF) without approximation.
Note that the actual time complexity of reconstruct-
ing the response surface is the number of SVM Rank
iterations times the per-iteration complexity above.
As we collect more samples from many datasets, this
step becomes prohibitively expensive, sometimes even
more expensive in practice than the function evalua-
tion step. One possible solution is to limit the number
of datasets that contribute to the reconstruction of the
response surface. We do not explore this option when
comparing our method to Bardenet et al. (2013).

4 Experiments

4.1 Setup

Dataset We collected 42 publicly available clas-
sification datasets from http://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/ (Chang & Lin,
2011). Out of time considerations, we restricted our-
selves to datasets that have fewer than 40,000 train-

ing instances and 300 features. We assume that the
datasets arrive in a fixed order and are processed one
by one. Since we do not know the true ordering of the
datasets, we randomly shuffle the order of the datasets
many times and average the results. For each dataset,
we extract the (log) number of instances, the (log)
number of features, and the number of classes to be
used as dataset features. We split each dataset into
training, development, and (blind) test sets. The hy-
perparameters are tuned on the development set. As-
sessing performance on only the development sets can
be misleading since we might overfit to the develop-
ment sets. We report the results in terms of perfor-
mance on both the development and test sets. Ta-
ble 1 offers descriptive statistics about our collection
of datasets.

Table 1:  Descriptive statistics about the datasets.
The dataset features in our experiments are the num-
ber of classes, the log number of features, and the log
number of training instances.

Number of Avg | Min | Max
classes 3.71 2 26

features 93.71 2 300

training instances || 5912.12 150 | 32,561

Baselines We consider three baseline methods for
comparison with our algorithm: random search
(Bergstra & Bengio, 2012), an SMBO model that
only uses information from current dataset (indepen-
dent GP), and an SMBO model that transfers knowl-
edge from previous experiments using surrogate-based
ranking (Bardenet et al., 2013). We implement Bar-
denet et al. (2013) method with SVM Rank as the
ranking algorithm. Due to runtime considerations, we
use a linear SVM Rank kernel instead of the isotropic
squared exponential kernel used in their paper. One
limitation of SVM Rank is that it introduces addi-
tional parameters, namely the convergence threshold
and another constant for the error penalty of the slack
variables. We set the values to 1072 and 1 after slight
tuning to get a reasonable trade-off between runtime
and performance. These parameters also require ex-
tensive tuning in order to get the best performance.
Our method, on the other hand, is parameter free and
can be applied without separate tuning of additional
hyperparameters.

For models that transfer knowledge from previous ex-
periments, we consider two kernels: a squared expo-
nential kernel with automatic relevance determination
(SQE) and the multiple kernel framework that we de-
scribe in §3.4 (MKL). Therefore, there are 6 models
in total that we compare in our experiments. For the
models with multiple kernels, we arbitrarily set the
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kernel weights to 0.3 (SQE) and 0.7 (20 nearest neigh-
bors). Future work can try to learn the optimal kernel
weights on the fly. We would also like to note that we
ran independent GP using the nearest neighbor ker-
nel on preliminary experiments and found that it gave
comparable performance to SQE, so we do not include
it here.

Evaluation metric Similar to Bardenet et al.
(2013), we use average rank as the evaluation metric.
Every method gets a rank for every dataset. The best
performing method gets rank 1, the second best 2, and
so on. Since there are 6 methods that we compare, for
every dataset, each method can get rank 1 to 6. Each
competing method is evaluated on every dataset that
is assumed to arrive in an unknown random order. We
compute the average for every run, where a run corre-
sponds to a random order of the datasets.

4.2 Synthetic datasets

In order to test our hypothesis that we can find a good
hyperparameter setting faster by using deviations from
the per-dataset mean, we perform an experiment us-
ing artificially generated datasets. For each of the
42 datasets that we collected, we create 5 perturbed
datasets. A perturbed dataset is created by randomly
removing features or instances from a source dataset.
As a result, we have 210 synthetic datasets, each 5 of
these are obviously related since they are generated
from one source dataset. If the methods that we use
are able to transfer information from previous experi-
ments, they will surely perform better than the inde-
pendent GP method and random search. The relation-
ships among synthetic datasets generated from differ-
ent real-world datasets are less clear. However, in this
experiment, if a method can make use of information
from previous datasets, we still expect a performance
improvement over non-transfer learning methods.

We run our experiment using logistic regression as the
classifier. Logistic regression is one of the most widely
used machine learning algorithms. In our setup, there
are four hyperparameters to tune: the ¢; penalty, the
{5 penalty, the maximum number of iterations, and
the objective value convergence threshold. Therefore,
our logistic regression is an elastic net (Zou & Hastie,
2005). For each dataset, each method gets 1+5 trials.
A trial corresponds to a function evaluation for a given
hyperparameter setting. We set the first trial point to
be always the same for non-transfer learning methods:
random search and independent GP. Transfer learning
methods can make use of information from previous
datasets for choosing the first trial point if they have
seen more than one dataset (d > 1), so the evaluated
point can be different. The goal of this experiment is

Table 2: Average ranks and standard deviations on the
development and test sets for logistic regression exper-
iments on synthetic datasets. They are averaged over
5 different random orders of the datasets. Note that
standard errors are /5 times smaller than standard
deviations here. The improvements for our methods
(MKL and SQE) over the independent GP method for
the test set are statistically significant (p < 0.05, stu-
dent’s t-test).

Logistic regression

Method Dev Test
Random 3.98 + 0.11]3.94 £ 0.12
Independent GP 3.55 +0.11{3.58 + 0.13
Bardenet et al., 2013 (SQE) |[3.76 + 0.19|3.75 + 0.17
Bardenet et al., 2013 (MKL) || 3.15 + 0.48|3.18 + 0.43
Our method (SQE) 3.36 + 0.14]3.34 £ 0.15
Our method (MKL) 3.17 +£0.22]3.19 £ 0.20

to simulate a machine learning service that receives nu-
merous requests and needs to obtain reasonably good
performance as fast as possible. We compute the av-
erage for 5 different random orders of the datasets (5
runs).

Table 2 shows the average rank of each competing
method on these synthetic datasets. The results
clearly indicate that deviations from the per-dataset
mean is an effective method to transfer information
from previous experiments. As we can see, both the
SQE and MKL variants of our method significantly
outperformed independent GP. The Bardenet et al.
(2013) method with MKL also performed well, but the
SQE variant did not. Notice also the high standard de-
viation of the MKL variant, indicating that it is less
robust to the dataset ordering.

Figure 2 shows the average rank over time for each
of the competing methods on one run of the experi-
ment. In general, we can see that after seeing about
75 datasets the average ranks level off. An interesting
observation is that the average rank of our method
with SQE kernel still decreases, whereas our method
with MKL does not. The MKL method only looks at
20 nearest neighbor datasets, so the effect of seeing
more datasets is not as significant as the SQE method
which looks at all datasets. One possible direction for
future work is to investigate the effect of increasing
the size of the nearest neighbors to take advantage of
more datasets.

4.3 Real-world datasets

We perform two experiments using 42 real-world
datasets described in §4.1. Note that unlike in the
synthetic dataset experiment, we have no idea before-
hand if any of these datasets are related and there is
information that can be transferred across them.
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Figure 2: Average ranks over time for one of the runs
on 210 synthetic datasets.

Logistic regression In the first experiment, we use
logistic regression as our classifier. Similar to the
synthetic dataset experiment, there are four hyper-
parameters to tune: the ¢; penalty, the {5 penalty,
the maximum number of iterations, and the objective
value convergence threshold. In this experiment, each
method gets 1410 trials for each dataset. The treat-
ment of the first trial for each method in each dataset
is similar to that in the synthetic dataset experiment.
Table 3 shows the average rank on 42 datasets, aver-
aged over 10 different random orders of the datasets
(10 runs), on the development set and the test set.

Ensemble of classifiers In the second experiment,
we consider an ensemble of seven classifiers; with 23
hyperparameters to tune. The classifiers that we con-
sider are: Winnow (Littlestone, 1988), perceptron, lo-
gistic regression, Naive Bayes, online Support Vector
Machines, an online passive-aggresive classifier (Cram-
mer et al., 2006), and IKPamir.?2 Each classifier has
one to six hyperparameters to tune. The classifiers
are combined using weighted majority voting, so in
addition to individual algorithm hyperparameters, we
also search for classifier voting weights. Therefore, we
have 30 hyperparameters in total; see Table 4 for de-
tails. Similar to the logistic regression experiments,
each method gets 1410 trials for each dataset. We
report average rank on 42 datasets over 10 different
random orders of the datasets (10 runs) in Table 3.

Results and discussion The results clearly demon-
strate the benefits of information from prior datasets,
especially in the MKL case. In the logistic regression
experiments, our method and Bardenet et al. (2013)
with the SQE kernel failed to improve over indepen-
dent GP. One possible explanation is that since there
are only 4 hyperparameters, 11 trials are sufficient.
Another possible explanation is that SQE kernel re-

2IKPamir is a combination of Crammer et al. (2006) and
Maji et al. (2008). (Hector Ye; personal correspondence).

Table 4: 23 hyperparameters in our ensemble of classi-
fiers experiments. The minimum and maximum values
were chosen with runtime and performance trade-off as
a criterion. There are additional 7 hyperparameters
corresponding to classifier weights in the probability
simplex for each of these classifiers.

Classifier Hyperparameter | Min Max
Winnow number of epochs 2 20
Winnow conv. threshold | 107* 1
Winnow | bias conv. threshold | 107* 1
Winnow margin | 107* 1

perceptron average 0 1

perceptron number of epochs 5 15
log. reg. {1 penalty 0 10
log. reg. {2 penalty 0 10
log. reg. max iteration 50 500
log. reg. conv. threshold | 1077 1073

naive bayes min probability | 107* 102
online SVM polynomial degree 1 20
online SVM polynomial bias | 1072 10
online SVM lambda 0.8 1.2
online SVM max iteration 100 | 20,000
online SVM mini batch size 1 5
online SVM {2 penalty 0 100

pass. aggr. sensitivity 0.5 1.5

pass. aggr. relaxation 0.5 1.5

pass. aggr. number of epochs 5 15
IKPamir number of bins 5 100
IKPamir learning rate 0.1 0.9
IKPamir number of epochs 3 8

quires a crucial assumption that the function is also
smooth in dataset features, as described in §3.3. We
only used three dataset features: (log) number of in-
stances and features, and number of classes, which
might not satisfy this assumption in practice. The
method based on multiple kernel learning, however,
is more robust since it only uses dataset features to
find nearest neighbors and does not use the features
directly in the GP kernel. We also found that for
our method, randomizing some elements in x (which
is returned after maximizing EI) improved the perfor-
mance. One difficulty in our method is obtaining good
estimates of the mean ¢ and standard deviation ¢
while not wasting trials. Simply using unperturbed
x¢., to estimate the dataset mean and standard de-
viation introduced bias, since the x that maximizes
the EI is biased towards points that are predicted to
have good performance (accuracy). The rationale for
randomization is to reduce the bias. For all our exper-
iments, we use uniform randomization with replace-
ment probability 0.25 (i.e., an element of x is replaced,
with probability 0.25, by a new value uniformly sam-
pled from the corresponding hyperparameter space).

Figure 3 shows runtime comparisons in CPU seconds
for one of the runs of logistic regression and ensemble
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Table 3: Average ranks and standard deviations on the development and test sets for logistic regression experi-
ments (left) and ensemble of classifiers experiments (right). They are averaged over 10 different random orders of
the datasets. Note that standard errors are v/10 times smaller than standard deviations here. The improvement
for our method (MKL) over the independent GP method for the test set is statistically significant (p < 0.05,

student’s t-test).

Logistic regression Ensemble of classifiers
Method Dev Test Dev Test
Random 3.93 £ 0.19 | 3.89 £ 0.16 || 3.85 & 0.13 | 3.77 £ 0.17
Independent GP 3.42 £ 0.09 | 3.43 £ 0.11 || 3.62 &£ 0.19 | 3.55 £ 0.29
Bardenet et al., 2013 (SQE) || 3.51 4+ 0.18 | 3.50 4+ 0.18 || 3.75 4+ 0.26 | 3.57 &+ 0.20
Bardenet et al., 2013 (MKL) || 3.20 £ 0.46 | 3.18 £ 0.40 || 3.11 £ 0.24 | 3.31 £ 0.24
Our method (SQE) 3.85 £ 0.31 | 3.78 = 0.20 || 3.58 & 0.13 | 3.50 £ 0.24
Our method (MKL) 3.08 £ 0.17 | 3.23 £ 0.21 || 3.10 &= 0.31 | 3.29 £+ 0.26
logistic regression ensemble of classifiers
g g
© B Random R B Random
w | B Independent GP / »n - B Independent GP
"g 8 i B Our method (MKL) / 'g 8 B Our method (MKL)
o S’r B Our method (SQE) o 8 b B Our method (SQE)
§ il B Bardenet et al, 2013 (MKL) § - B Bardenet et al, 2013 (MKL)
o 3 ]
- (\::77 T T T 1 - (\7 T T T 1
0 20 30 40 0 10 20 30 40
number of datasets number of datasets

Figure 3: Runtime comparisons (CPU seconds) for one of the runs in logistic regression experiments (left) and

ensemble of classifiers experiments (right).

of classifiers. We can see that the runtime of Bardenet
et al. (2013) grows significantly faster with the number
of datasets, whereas the runtime of our method grows
almost linearly. For example, in the logistic regression
experiment, increasing the number of seen datasets
from 20 to 40 leads to about five times increase in
time (~1,000 CPU seconds to x5,000 CPU seconds)
for Bardenet et al. (2013), whereas our method (MKL)
goes from =400 CPU seconds to ~1,000 CPU seconds.

In practice, running a surrogate ranking algorithm to
reconstruct the common response surface can be very
expensive with a large number of datasets. The goal
of SMBO is to optimize an expensive target function
by optimizing its surrogate that is cheaper to evaluate.
When constructing the surrogate becomes too expen-
sive, it nullifies the benefits of SMBO.

An interesting direction is to compare our method and
Bardenet et al. (2013) using a fixed computation re-
source budget (e.g., time, memory). Since our method
is more effective, it can make use of more datasets to
potentially provide better predictions. We leave this
for future work.

5 Conclusion

We proposed an algorithm for automatic hyperparam-
eter tuning that can generalize across datasets. Our
method is an instance of sequential model-based op-
timization that uses deviations from the per-dataset
mean as the response values. We theoretically and
empirically showed that the time complexity of recon-
structing the response surface at every iteration in our
method is significantly less than previous work, with
comparable performance. We demonstrated the supe-
riority of our method compared to non-transfer learn-
ing methods on a large number of synthetic and real-
world datasets for tuning hyperparameters of logistic
regression and ensembles of classifiers.

Acknowledgements

The authors thank anonymous reviewers, Thomas
Fu, abe research group, Nathan Schneider, Brendan
O’Connor, and Noah A. Smith for helpful comments
and discussions.

1084



Dani Yogatama®, Gideon Mann

References

Bardenet, Remi, Brendel, Matyas, Kegl, Balazs, and
Sebag, Michele. Collaborative hyperparameter tun-
ing. In Proc. of ICML, 2013.

Bergstra, James and Bengio, Yoshua. Random search
for hyper-parameter optimization. Journal of Ma-
chine Learning Research, 13:281-305, 2012.

Bergstra, James, Bardenet, Remi, Bengio, Yoshua,
and Kegl, Balazs. Algorithms for hyper-parameter
optimization. In Proc. of NIPS, 2011.

Brochu, Eric, Brochu, Tyson, and de Freitas, Nando.
A Bayesian interactive optimization approach to
procedural animation design. In Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation, 2010.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: a
library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2(3):
27:1-27:27, 2011.

Chu, Wei and Ghahramani, Zoubin. Preference learn-
ing with gaussian processes. In Proc. of ICML, 2005.

Crammer, Koby, Dekel, Ofer, Keset, Joseph, Shalev-
Shwarts, Shai, and Singer, Yoram. Onlive passive-
aggresive algorithms. Journal of Machine Learning
Research, 7:551-585, 2006.

Hoffman, Matthew, Brochu, Eric, and de Freitas,
Nando. Portfolio allocation for bayesian optimiza-
tion. In Proc. of UAI 2011.

Hutter, Frank, Hoos, Holger H., and Leyton-Brown,
Kevin. Sequential model-based optimization for gen-
eral algorithm configuration. In Proc. of LION-5,
2011.

Joachims, Thorsten. Optimizing search engines using
clickthrough data. In Proc. of KDD, 2002.

Joachims, Thorsten, Finley, Thomas, and Yu, Chun-
Nam John. Cutting-plane training of structural
SVMs.  Machine Learning Journal, 77(1):27-59,
2009.

Jones, Donald R. A taxonomy of global optimiza-
tion methods based on response surfaces. Journal
of Global Optimization, 21:345-385, 2001.

Littlestone, Nick. Learning quickly when irrelevant
attributes are abound: A new linear threshold algo-
rithm. Machine Learning, 2:285-318, 1988.

Maji, Subhransu, Berg, Alexander C., and Malik, Ji-
tendra. Classification using intersection kernel sup-
port vector machines is efficient. In Proc. of CVPR,
2008.

Rasmussen, Carl Edward and Williams, Christopher
K. I. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

Snoek, Jasper, Larrochelle, Hugo, and Adams, Ryan P.
Practical bayesian optimization of machine learning
algorithms. In Proc. of NIPS, 2012.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham,
and Seeger, Matthias. Gaussian process optimiza-
tion in the bandit setting: No regret and experi-
mental design. In Proc. of ICML, 2010.

Swersky, Kevin, Snoek, Jasper, and Adams, Ryan P.
Multi-task bayesian optimization. In Proc. of NIPS,
2013.

Thornton, Chris, Hutter, Frank, Hoos, Holger H., and
Leyton-Brown, Kevin. Auto-WEKA: Combined se-
lection and hyperparameter optimization of classifi-
cation algorithms. In Proc. of KDD, 2013.

Villemonteix, Julien, Vazquez, Emmanuel, and Wal-
ter, Eric.  An informational approach to the
global optimization of expensive-to-evaluate func-
tions. Journal of Global Optimization, 2006.

Zou, Hui and Hastie, Trevor. Regularization and vari-
able selection via the elastic net. Journal of the
Royal Statistical Society, Series B, 67(2):301-320,
2005.

1085



