
JMLR: Workshop and Conference Proceedings 34:49–63, 2014 Proceedings of the 12th ICGI

A bottom-up efficient algorithm learning substitutable
languages from positive examples

François Coste francois.coste@inria.fr

Gaëlle Garet gaelle.garet@inria.fr

Jacques Nicolas jacques.nicolas@inria.fr

Irisa / Inria Rennes - Bretagne Atlantique

Campus universitaire de Beaulieu

35042 Rennes, France

Editors: Alexander Clark, Makoto Kanazawa and Ryo Yoshinaka

Abstract

Based on Harris’s substitutability criterion, the recent definitions of classes of substitutable
languages have led to interesting polynomial learnability results for expressive formal lan-
guages. These classes are also promising for practical applications: in natural language
analysis, because definitions have strong linguisitic support, but also in biology for mod-
eling protein families, as suggested in our previous study introducing the class of local
substitutable languages. But turning recent theoretical advances into practice badly needs
truly practical algorithms. We present here an efficient learning algorithm, motivated by
intelligibility and parsing efficiency of the result, which directly reduces the positive sam-
ple into a small non-redundant canonical grammar of the target substitutable language.
Thanks to this new algorithm, we have been able to extend our experimentation to a com-
plete protein dataset confirming that it is possible to learn grammars on proteins with high
specificity and good sensitivity by a generalization based on local substitutability.

Keywords: (local) substitutable languages, learning algorithm, canonical grammar, pro-
teins

1. Introduction

Based on Harris’s substitutability criterion, the recent definitions of classes of context-free
substitutable languages have led to interesting polynomial learnability results for expressive
formal languages. These classes are also promising for practical applications: in natural
language from the linguistics motivation of the definitions but also in biology to learn
grammars modeling protein families, as suggested in our previous study introducing the
class of local substitutable languages. To turn theory into practice, we present here an
efficient learning algorithm, motivated by intelligibility and parsing efficiency of the result,
which directly reduces the positive sample into a small non-redundant canonical grammar
of the target substitutable language. We introduce first the definitions of substitutable
languages and a first algorithm learning them in section 2, before introducing our algorithm
in section 3 and showing its interest experimentally on artificial and applicative datasets in
section 4.

c© 2014 F. Coste, G. Garet & J. Nicolas.

Coste Garet Nicolas

2. Learning substitutable languages

2.1. Formal languages and substitutability

We introduce briefly here the definitions and notations related to substitutable languages.
Let Σ be a non-empty finite set of atomic symbols. Σ∗ is the set of all finite strings over

the alphabet Σ. We denote the length of a string x by |x|, the empty string by λ, the set
of non-empty strings Σ∗ \ {λ} by Σ+ and the set of strings of length k {x : |x| = k} by Σk.
For a language L ⊆ Σ∗, the set of its substrings is Sub(L) = {y ∈ Σ∗ : x, z ∈ Σ∗, xyz ∈ L}
and the set of its contexts is Con(L) = {〈x, z〉 ∈ Σ∗ × Σ∗ : y ∈ Σ∗, xyz ∈ L}. The empty
context is 〈λ, λ〉.

The distribution of a string y ∈ Σ∗ with respect to a language L is defined to be its
set of contexts in L: DL(y) = {〈x, z〉 ∈ Σ∗ × Σ∗ : xyz ∈ L}. Two strings y1 and y2 in Σ∗

are syntactically congruent for a language L, denoted y1 ≡L y2, iff DL(y1) = DL(y2).
The equivalence relation ≡L defines a congruence on the monoid Σ∗ since straightfor-
wardly y1 ≡L y2 implies ∀x, z in Σ∗, xy1z ≡L xy2z. We denote the congruence class of
y by [y]L = {y′ ∈ Σ∗ : y ≡L y′} and the concatenation of two languages L1 and L2 by
L1L2 = {y1y2 : y1 ∈ L1, y2 ∈ L2}. The congruence class [λ] is called the unit congruence
class. The set {y : DL(y) = ∅} = Σ∗\Sub(L), when non-empty, is called the zero congruence
class. A congruence class is non-zero if it is a subset of Sub(L). Note that for any strings
y1, y2 in Σ∗, [y1y2]L ⊇ [y1]L[y2]L.

Interested by learnability of natural languages and inspired by distributional learning,
Clark and Eyraud (2007) introduced the substitutable languages as a simple formal class
of languages based on Harris’s substitutability criterion. Two non-empty strings y1 and
y2 are said to be weakly substitutable in a language L, denoted y1

.
=L y2, iff there exists

x, z ∈ Σ∗, such that xy1z ∈ L∧xy2z ∈ L. Substitutable languages are those such that weak
substitutability implies syntactic congruence, i.e. such that y1

.
=L y2 implies y1 ≡L y2 (or

equivalently, such that DL(y1) ∩DL(y2) 6= ∅ implies DL(y1) = DL(y2)). At the word level,
we get the following definition:

Definition 1 (Clark and Eyraud, 2007) A language L is substitutable iff
for any x1, y1, z1, x2, y2, z2 ∈ Σ∗, y1, y2 6= λ :

x1y1z1 ∈ L ∧ x1y2z1 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L).

Carrying on an analogy between substitutability for context-free languages and reversibil-
ity introduced by Angluin (1982) for regular languages, Yoshinaka (2008) introduced the
hierarchy of k, l-substitutable context-free language as the counterpart of the k-reversible
hierarchy for regular languages. In this hierarchy, expressiveness increases with the param-
eters k and l by restricting substitutability to occur only in same right and left contexts of
respective length k and l. Just as for substitutable languages, one can define two non-empty
strings y1 and y2 to be weakly k, l-substitutable in context 〈u, v〉 ∈ Σk × Σl in a language
L, denoted uy1v

.
=L uy2v, iff there exists x, z ∈ Σ∗, such that xuy1vz ∈ L ∧ xuy2vz ∈ L.

The k, l-substitutable languages are those such that weak substitutability in a context from
Σk ×Σl implies syntactic congruence in the same context, i.e. such that uy1v

.
=L uy2v im-

plies uy1v ≡L uy2v (or equivalently, such that DL(uy1v)∩DL(uy2v) 6= ∅ implies DL(uy1v) =
DL(uy2v)):

50

Efficient algorithm learning substitutable languages from positive examples

Definition 2 (Yoshinaka, 2008) A language L is k, l-substitutable iff
for any x1, y1, z1, x2, y2, z2 ∈ Σ∗, u ∈ Σk, v ∈ Σl, uy1v, uy2v 6= λ :

x1uy1vz1 ∈ L ∧ x1uy2vz1 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L).

The definition of the substitutable strings y1 and y2 above are based on common global
contexts. In Coste et al. (2012), we introduced for the characterization of proteins a less
stringent criterion based on common local contexts that applies to more practical cases.
Introducing the parameters k and l to set the minimal length of the left and right local
contexts, two non-empty strings y1 and y2 are said weakly (k, l)-local substitutable in a

language L, denoted y1
.
=k,l

L y2, iff there exists x1, x2, z1, z2 ∈ Σ∗,u ∈ Σk, v ∈ Σl, such
that: x1uy1vz1 ∈ L ∧ x2uy2vz2 ∈ L. The k, l-local substitutable languages are those such
that weak (k, l)-local substitutability implies syntactic congruence, i.e. such that y1

.
=k,l

L y2

implies y1 ≡L y2 (or equivalently if we define Dk,l
L (y) as {〈u, v〉 ∈ Σk × Σl : uyv ∈ Sub(L)},

such that Dk,l
L (y1) ∩Dk,l

L (y2) 6= ∅ implies DL(y1) = DL(y2)):

Definition 3 (Coste et al., 2012) A language L is k, l-local substitutable iff
for any x1, y1, z1, x2, y2, z2, x3, z3 ∈ Σ∗, u ∈ Σk, v ∈ Σl, uy1v, uy2v 6= λ :

x1uy1vz1 ∈ L ∧ x3uy2vz3 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L).

And by crossing the local extension with the extension by Yoshinaka (2008), we get the
definition of the k, l-local contextually substitutable languages:

Definition 4 (Coste et al., 2012) A language L is k, l-local contextually substitutable iff
for any x1, y1, z1, x2, y2, z2, x3, z3 ∈ Σ∗, u ∈ Σk, v ∈ Σl, uy1v, uy2v 6= λ :

x1uy1vz1 ∈ L ∧ x3uy2vz3 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L).

The class of substitutable languages defined by Clark and Eyraud (2007) stands at the
limit of the hierarchy of k, l-local substitutable languages when k and l tend to infinity,
and conversely is the first class in the hierarchy of k, l-substitutable languages, with k and l
equal to 0. As for reversible languages, we will thus use the term zero-substitutable language
when we want to designate specifically this class and we will keep substitutable languages as
a generic term for the classes of languages formally defined with respect to a substitutability
criterion.

In the next sections, we will consider the problem of learning substitutable languages
with algorithms using context-free grammar representations. A context-free grammar is
defined classically as a quadruple G = 〈Σ, N, S, P 〉 where Σ is a finite alphabet of terminal
symbols, N is a finite alphabet of variables or non-terminals, S ∈ N is the start symbol and
P is a finite set of production rules of the form N × (N ∪Σ)+. We say that a sequence δAγ
from (N ∪ Σ)+ can be derived into δαγ, denoted δAγ ⇒G δαγ if there exists a production

rule A → α in P . The transitive closure of ⇒G is denoted
+⇒G and its reflexive transitive

closure
∗⇒G. The set of strings that can be derived from S is the set of sentential forms

{α ∈ (N ∪Σ)∗ : S
∗⇒G α} and the context-free language defined by a context-free grammar

G is the set of sentential forms consisting entirely of terminal symbols L(G) = {w ∈ Σ∗ :

S
∗⇒G w}. Let us note that from our definition of production rules, the empty string cannot

be derived from G. In that case, a context-free grammar G is in Chomsky Normal Form
(CNF) iff its productions are of the form A→ BC, A→ a, where A,B,C ∈ N and a ∈ Σ.

51

Coste Garet Nicolas

2.2. A first grammatical inference algorithm for substitutable languages

For our experiments on grammatical inference of k, l-local substitutable languages in Coste
et al. (2012), we implemented the algorithm 1 that is a straightforward adaptation of the
SGL algorithm introduced for substitutable languages by Clark and Eyraud (2007).

Algorithm 1: SGLLS (Substitution Graph Learner for k, l-local substitutable languages)

Input: Set of sequences K on alphabet Σ, int k, int l
Output: Grammar G = 〈Σ, NK , SK , PK〉
/* Partition Sub(K) in substitutability classes */

1 CK ← Local substitutability classes(K, k, l)
2 ∀y ∈ Sub(K), CK(y) = C ∈ CK : y ∈ C

/* Build grammar */

3 NK ← ∅, PK ← ∅
4 for C ∈ CK do

/* A non-terminal for each substitutability class */

5 NK ← NK ∪ {JCK}
6 if C ∩K 6= ∅ then
7 SK ← JCK

/* Productions rules for each substring in the class */

8 for y ∈ C do
9 if |y| > 1 then

/* Branching rules: a ’CNF’ rule for each split */

10 for y1 ∈ Σ+, y2 ∈ Σ+ : y1y2 = y do
11 PK ← PK ∪ {JCK→ JCK(y1)KJCK(y2)K}

12 else
/* Terminal rule */

13 PK ← PK ∪ {JCK→ y}

14 return 〈Σ, NK , SK , PK〉

Algorithm 2: Local substitutability classes

Input: Set of sequences K on alphabet Σ, int k, int l
Output: k, l local substitutability classes on K
/* Build substitutability graph on substrings */

1 V ← {y ∈ Σ+ : y ∈ Sub(K)}
2 E ← {{y1, y2} ∈ V × V : uy1v ∈ Sub(K), uy2v ∈ Sub(K), y1 6= y2, u ∈ Σk, v ∈ Σl}

/* Return connected components of graph */

3 return Connected components(〈V,E〉)

Given a set of sequences K and parameters k and l specifying the target class of local
substitutable languages, this algorithm partitions all the substrings of K into k, l-local
substitutability classes in K using a substitution graph and returns a CNF context-free
grammar. This grammar contains a non-terminal symbol JCK for each substitutability class
C, branching rules, carrying on the generalization, JCK(y1y2)K → JCK(y1)KJCK(y2)K for

52

Efficient algorithm learning substitutable languages from positive examples

each possible concatenation y1y2 that results in a substring of K — where CK(x) identifies
the substitutability class of x — and terminal rules that generate terminal symbols.

Let us remark that this algorithm may be adapted to other classes of substitutable
languages, simply by changing the function returning the substitutability classes. This can
be achieved by modifying in line 2 of algorithm 2 the substrings in relation in the substitution
graph. The definition of the set of edges was replaced for substitutable languages by:
E ← {{y1, y2} ∈ V ×V : xy1z ∈ K,xy2z ∈ K, y1 6= y2, x ∈ Σ∗, z ∈ Σ∗}, for k, l-substitutable
languages by: E ← {{uy1v, uy2v} ∈ V × V : xuy1vz ∈ K,xuy2vz ∈ K, y1 6= y2, x ∈
Σ∗, z ∈ Σ∗, u ∈ Σk, v ∈ Σl} and for k, l-local context substitutable languages by: E ←
{{uy1v, uy2v} ∈ V × V : uy1v ∈ Sub(K), uy2v ∈ Sub(K), y1 6= y2, u ∈ Σk, v ∈ Σl}. This
can be done in all the algorithms presented in this paper and we can thus restrict ourselves
hereafter to the k, l-local substitutability case to simplify the presentation without loss of
generality.

Even if it does not always return a grammar from the target class of languages, this kind
of algorithm enables to identify a target grammar G in polynomial time from a characteristic
sample of polynomial size in |G|.τG, where τG is the thickness of the grammar, provided that
its context-free substitutability class is known (Clark and Eyraud, 2007; Yoshinaka, 2008).
But even if the algorithm is polynomial, it cannot be used in practice on real data sets as
witnessed by our first experiments on proteins (Coste et al., 2012), since it requires hours
for each run of the algorithm preventing significant cross-validation and more systematic
studies on the parameters’ influence. As a matter of fact, the resulting grammars suffer
from embedding too many ambiguities and redundancies. From a parsing perspective or
even with the simple goal of manually checking and interpreting the rules, the obtained
grammars are too large, an issue that affects also clearly the learning run time.

Hence, motivated by speeding up the experiments and driven by legibility and parsing
efficiency of the grammar, we have designed a new algorithm, implemented in Fall 2012 but
still unpublished, learning directly grammars in a minimal non-redundant form. The next
section describes this new algorithm.

3. Learning reduced grammars

3.1. Reduced Grammars

To improve parsing time and improve the legibility of grammars learnt by SGLLS as well as
their derivation trees, the Chomsky Normal Form can be transformed into a reduced form
that avoids unnecessary derivation steps and redundancies by:

• removing unnecessary non-terminals whose derivation is deterministic(if a non-terminal
A is the left-hand side of only one rule A → α, the non-terminal and the rule are
deleted and each occurrence of A in the other rules is replaced by α);

• minimizing the right-hand sides of the production rules (replacing any substring β
of the right-hand side by the smallest substrings α in N ∪ Σ from which β can be
derived)

The first reduction corresponds to removing non-terminals that give rise to vacuous local
derivation trees (Clark, 2011). We called this kind of congruence classes composite since
they can be factorized into the concatenation of a set of congruence classes. Formally:

53

Coste Garet Nicolas

Definition 5 (Composite congruence class) Let a language L whose set of non-zero
and non-unit congruence classes is C+. A class [y] ∈ C+ is composite for L iff:

∃[x1], . . . [xm] ∈ C+,m ≥ 2, [y] = [x1] . . . [xm]

A congruence class is prime if it is not composite. These classes are the ones to be kept as
non-terminals. In the algorithms, we use a more operational characterization of prime (and
composite) congruence classes which can be deduced from syntactic congruence properties:

Lemma 6 Let a language L whose set of non-zero and non-unit congruence classes is C+.
A class [y] in C+ is prime for L iff ∀y1y2 ∈ [y], [y] 6⊂ [y1][y2].

Proof This is a simple application of the fact that the contexts of a string include the
concatenation of its substring contexts. Any equation involving m > 2 substrings is thus
superseded by the equation involving only the first substring and the concatenation of the
other substrings. Moreover, the equation can be replaced by an inclusion since the other
direction is already granted.

The second reduction, since non-terminals and the languages they generate are fixed,
can be handled as an extension of minimal grammar parsing (Carrascosa et al., 2011): each
non-terminal generates a whole set of substitutable words rather than a single word. It
can be solved similarly by dynamic programming on graphs representing right-hand side’s
strings of the rules, with the added difficulty that all non-redundant paths have to be
found. Solving this problem is equivalent to searching for each right-hand side α the set
of non-redundant strings generating all the sequences generated from α (see next section
for details). Note that this algorithm results in the same set of rules than the algorithm
recently proposed by Clark (2014) even if approaches differ: building directly the set of
non-redundant rules by dynamic programming in our case versus filtering out from the
whole set of potential valid rules the so-called pleonastic rules. Based on the ‘fundamental
lemma’ of substitutable languages proven by Clark (2014), the reduced form computed by
this algorithm is thus also a canonical form of the grammar for substitutable languages.

So far we have only discussed the reduction of the grammar into a minimal non-
redundant canonical form. We present in the next section the algorithm ReGLiS based
on the same dynamic programming ideas but learning simultaneously this reduced form
and the content of the substitutability classes by a bottom-up reduction of the sample.

3.2. Learning reduced grammars: ReGLiS

The ReGLiS algorithm is detailed in algorithm 3. Taking as input a sample of strings K on
an alphabet Σ, and two parameters k and l defining the target class of local substitutable
languages, ReGLiS returns a grammar in reduced form of the target language when K
includes a characteristic sample of the language for SGLLS .

Like SGLLS presented in section 2.2, ReGLiS builds a grammar based on a set of
equivalence classes CK defined from weak substitutability evidence in K. Let us remark
that the rest of the algorithm is independent from the actual targeted class of languages:

54

Efficient algorithm learning substitutable languages from positive examples

the classes are based here on k, l-local substitutability, but other weak substitutability
criteria can be used to adapt the algorithm to other classes of substitutable languages.

In contrast with SGLLS introducing a non-terminal for each equivalence class, ReGLiS
takes care to introduce a non-terminal only for the substitutability classes containing more
than one string and satisfying Lemma 6 on CK which we call K-prime substitutability
classes. The symbol introduced for the K-prime substitutability class containing K is the
start symbol. For each of these non-terminals, the set of production rules contains as many
rules as strings in its substitutability class, deriving each in one step the non-terminal into
one of these strings. The grammar built this way is only able to generate the strings from
K and contains also unreachable rules linking each non-terminal with the substrings of its
substitutability class.

A generalization step at the core of the algorithm is then achieved by a bottom-up
rewriting process on the right-hand sides, starting by the shortest ones and optimizing the
set of branching rules by dynamic programming on a parsing graph for each right-hand side
of rule.

0 1 2 3 4 5
a b c d e

N1 N2

N3 N4

Figure 1: Example of parsing graph for abcde: non-redundant right-hand sides are aN1e
and N3N2.

Specifically, for each right-hand side α, a parsing graph is built by algorithm 4 (see ex-
ample in figure 1). Intuitively, the graph represents all the possible generation of substrings
from α by substitutability class non-terminals. Finding all non-redundant most general
right-hand sides allowing to generate α, is done by algorithm 5. Forgetting the symbols,
this algorithm focuses on paths in the parsing graph. Paths are represented as sequences of
vertices, and adding a vertex i at the end of a path π is denoted by the concatenation π.i.
A path π2 = t1 . . . tm is reducible in π = s1 . . . sn, denoted π ≺r π2, if π is a strict substring
of π2 that has the same beginning and end than π2, i.e. s1 = t1 and sn = tm. A path π is
said irreducible if it is minimal for the partial order ≺r. Algorithm 5 implements a dynamic
programming search of all irreducible paths in the parsing graph and return then all the
non-redundant right-hand side generalizing α to be used to replace it.

Two improvements have been included in the algorithm to enable also the identification
of the target language for some samples on which SGLLS would not succeed. First, if during
the reduction one gets an already existing right-hand side in the set of production rules,
the corresponding non-terminals are unified to avoid generating the same substring by two
different non-terminals and still ensure the transitivity of the substitution classes. Second,
since languages recognized by non-terminals are increasing, new edges can appear in the

55

Coste Garet Nicolas

parsing graph despite the ordering of the right-hand sides. In such cases, optimization has
to be performed again. The loop around the optimization ensures its convergence and may
then require less examples to build the target grammar than SGLLS .

Algorithm 3: ReGLiS (Learning Reduced Grammar by k, l-Local Substitutability)

Input: Set of sequences K on alphabet Σ, int k, int l
Output: Grammar G = 〈Σ, NK , SK , PK〉
/* Partition Sub(K) in substitutability classes */

1 CK ← Local substitutability classes(K, k, l)
/* Non-terminals for K-primes and their productions in Sub(K) */

2 NK ← ∅, PK ← ∅
3 for C ∈ CK do

/* Start symbol */

4 if C ∩K 6= ∅ then
5 NK ← NK ∪ {JCK}
6 SK ← JCK
7 for y ∈ C do
8 PK ← PK ∪ {JCK→ y}

/* Non-terminal symbols for K-prime substitutability classes */

9 else if (|C| > 1) and (6 ∃C ′ ∈ CK : ∀y ∈ C,∃y′ ∈ C ′,∃v ∈ Σ+, y = y′v) and
(6 ∃C ′ ∈ CK : ∀y ∈ C,∃y′ ∈ C ′,∃u ∈ Σ+, y = uy′) then

10 NK ← NK ∪ {JCK}
11 for y ∈ C do
12 PK ← PK ∪ {JCK→ y}

/* Generalization */

13 repeat
14 P ← PK ; PK ← ∅

/* Branching rules */

15 for (JCK→ α) ∈ P ordered by increasing |α| do
16 PG← Build parsing graph(α, P)
17 for β ∈ Non redundant rhs(PG) do
18 if ∃(JC ′K→ β) ∈ Pk, JC ′K 6= JCK then
19 Unify(JC ′K, JCK, PK)

20 PK ← PK ∪ (JCK→ β)

21 until PK = P
22 return 〈Σ, NK , SK , PK〉

3.3. Complexity of ReGLiS algorithm

Let K be a training sample of size |K| and n be the size of its longest sequence.
The complexity of the algorithm 3 is determined by three critical parts:

line 3 The creation of the local substitutability classes, which depends on the number of
substrings in Sub(K). This number is a main parameter for the rest of the algorithm
since all operations are working on the elements of Sub(K).

56

Efficient algorithm learning substitutable languages from positive examples

Algorithm 4: Build parsing graph

Input: Sequence α, Set of rules P
Output: Parsing graph 〈V,E〉

1 V ← {i ∈ [0, |α|]} /* vertices */

2 E ← ∅ /* labeled directed edges */

3 for i ∈ V do
4 for j ∈ V : i < j and (i, j) 6= (0, |α|) do
5 if ∃(JCK→ α[i+ 1, j]) ∈ P then
6 E ← E ∪ (i, j, JCK)

7 return 〈V,E〉

Algorithm 5: Non redundant rhs

Input: Parsing graph: 〈V,E〉
Output: Set of non-redundant right-hand side from parsing graph: R

1 R← ∅
2 paths[0]← {{0}}
3 for i← 1 to |V | do

/* memorize the set of irreducible paths arriving in i */

4 P ←
⋃

(j,i,l)∈E(paths[j].i)

5 paths[i]← {x ∈ P : 6 ∃y ∈ P, y ≺r x}
6 for path ∈ paths[n] do
7 rhs← λ
8 for i← 1 to |path| do
9 rhs← rhs.βi with βi : (path[i− 1], path[i], βi) ∈ E

10 R← R ∪ rhs
11 return R

line 9 The reduction of the number of classes, which reduces the number of substrings to be
considered in the next part of the algorithm.

line 16 The minimization of the grammar, which includes the creation of parsing graphs as
the main source of complexity. It is easy to see that the complexity of this part
depends on the number of rules in the grammar.

Building local substitutability classes Complexity of Local substitutability classes
depends on the number of elements in Sub(K). Indeed, the algorithm starts building the
substitutability graph (the graph of shared contexts) by creating a vertex for each prefix
of the suffix at each position of each sequence (i.e. creating the set of substrings Sub(K)).
During this loop, a table T giving for each context its set of substrings is created.

For a sequence of length m, the maximal number of substrings created in CK and in T is
m(m+ 1)/2. Since n is the size of the longest sequence in K, the total number of substring
occurrences is O(|K|n2).

The goal then is to find the maximally connected components of the substitutability
graph. By definition, each entry in table T points to a connected component. Instead
of creating the whole substitutability graph, it is sufficient to create a chain for all set of

57

Coste Garet Nicolas

substrings in table T . The resulting graph contains the same connected components than
the whole graph and the complexity remains in O(|K|n2).

Note that the class CK(x) of each substring x can be stored during the search of con-
nected components.

Reduction of the number of classes In the loop line 3–12, each element (connected
component) of CK is visited once, so the interior loops are performed O(|K|n2) times.

Globally, the line 9 visits all substrings once (O(|K|n2)), and for each substring, all
its prefixes and suffixes (O(2n)). Each substring is visited only once globally because it
appears in only one connected component. The treatment of each substring in each class
involves an intersection of all its prefixes with other prefixes of other substrings in the same
class, an operation linear with respect to the number of prefixes, i.e. O(n). So the global
complexity of this loop is O(n3).

This loop reduces in practice the number of classes and the number of substrings that
belong to a substitutability class. The new set of available substrings is denoted K−Prime.

Generalization and minimization of the grammar In this part, (line 13 to 21),
the main loop is repeated until no more right-hand side α of the grammar rules can be
reduced. The worst case for this loop occurs when all substrings of length ≤ l, l = 1 . . . n
are considered in turn for the reduction of α. Thus, the maximal number of steps for the
loop is n.

The complexity of the interior loop (line 15 to 20) is bounded by the number of right-
hand sides of the grammar A = {α | X → α ∈ PK} and their length since the loop considers
all α substrings for the parsing graphs.

If t denotes the size of the target grammar (number of rules × size of rules), then the
worst case complexity of generalization and minimization is O(n.t).

The overall complexity of the algorithm is then O(max(n3,n.t)).

The rest of the paragraph further investigates this complexity to remove the dependence
to the size t of the target grammar in the formula.

Initially, the number of rules is bounded by |K − Prime| and the length of α is O(n).
So the first step is bounded in O(|K −Prime|n). The number of rules can increase at each
step of the loop, but if so, the length of the new rules decreases.

If no substring is removed during the first step of the algorithm (|K − Prime| =
|Sub(K)|), the worst case is to get |A| = 2n−1 rules in the target grammar (Chomsky
Normal Form). It occurs when each rule can be split into 2 parts at each position of α,
giving rise to the maximum number of irreducible paths in the parsing graph.

If some substrings are removed, the number of irreducible paths can only decrease. For
each sequence si of K, there exists a decomposition si = u1v1u2v2 . . . up such that each uj ,
j ∈ [1, p], is a substring belonging to a prime class (prime substring), each vj , j ∈ [1, p− 1],
is a substring that is not prime and mi = |v1|+ |v2|+ . . .+ |vp−1| is maximum.

The number of decompositions of si is the product of the number of decompositions of
primes since non-prime substrings have a single decomposition. At worst this leads to 2n−mi

possibilities. For the whole training sample, the complexity of the generalization and mini-
mization of the grammar, and thus of the whole algorithm, can thus reach O(2n−mini(mi)),
being dominated by the theoretical bound for the target grammar size t.

58

Efficient algorithm learning substitutable languages from positive examples

4. Experiments

4.1. Comparison of run times on simulated data

We have first launched some tests on simulated data sets to compare the practical complexity
of the new algorithm introduced in this paper with respect to the algorithm used in Coste
et al. (2012). The run time gain has been estimated on training samples with increasing
number and increasing length of strings which were randomly generated to resemble those
encountered for the protein classification task in Coste et al. (2012). For the first experiment,
a random string of length 20 on a 40 symbols alphabet was randomly generated and sorted
according to an arbitrary order on the alphabet to group sequentially identical characters as
if it was the result of recoding a protein sequence with respect to blocks of a partial multiple
sequence alignment (Coste et al., 2012; Kerbellec, 2008). To obtain a target number of
similar strings, new strings were iteratively generated by replacing each character of the
last generated string with a probability of 25% into a random symbol of the alphabet and
by sorting the string. To study the importance of the length, the same generation procedure
was used but with the number of strings set to 20 and the alphabet size set to twice the
length of the sequences in the sample, this latter value coming from observation of practical
protein experiments.

Results presented in figure 2 show that there is an obvious advantage in time when the
number of strings increase. The length parameter has a high impact on the run time as
it was expected in the complexity analysis. The curve shows that for a given amount of
resource, the new algorithm allows a shift of about 10 in the length of strings, a difference
that may be of high importance in practice.

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140

ti
m

e
 (

se
co

n
d

s)

number of strings

ReGLiS
SGLLS

(a) function of the number of strings
in the training sample

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20 25 30

ti
m

e
 (

se
co

n
d

s)

length of strings

ReGLiS
SGLLS

(b) function of the length of strings in
the training sample

Figure 2: Run time comparison between old and new learning algorithms implementations

In figure 3, run times for the two main parts of the algorithm, the detection of prime
classes and the reduction of the grammar, have been extracted from the total. As expected,
the complexity is determined by the reduction part and grows exponentially in function of
the length of strings in the training set.The detection of prime classes seems to stay linear,
an empirical behavior better than the theoretical worst case complexity.

59

Coste Garet Nicolas

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120 140

ti
m

e
 (

se
co

n
d
s)

number of strings

detection of prime classes
reduction of grammar

total

(a) function of the number of strings
in the training sample

 0

 50

 100

 150

 200

 5 10 15 20 25 30

ti
m

e
 (

se
co

n
d
s)

length of strings

detection of prime classes
reduction of grammar

total

(b) function of the length of strings in
the training sample

Figure 3: Run time for K-prime classes detection, grammar reduction and whole algorithm

4.2. Application to protein families

Motivated by the characterization of functional families of Algae enzymes (Coste et al.,
2014), we aim at learning characteristic context-free grammar signatures of protein families
which capture long distance sequential dependencies.

In Coste et al. (2012), we show the interest of using local substitutability on a small
protein dataset extracted from Dyrka and Nebel (2009). With our new learning algorithm,
it becomes then possible to run more demanding tests. By way of illustration, when our
implementation of SGLLS for Coste et al. (2012) required almost a day, our Python im-
plementation of ReGLiS takes only a few minutes for one experiment. We have then been
able to complete our experimentation on the whole dataset from Dyrka and Nebel (2009)
and we present the results in Table 1. 1

In all these experiments, we use a 10-fold cross validation and choose relatively small
k and l parameters since learning occurs on block strings that are an order of magnitude
shorter than amino acids sequences. A reasonable assumption is that some a priori knowl-
edge may exist on the length of relevant contexts in the target application. In the case of
proteins, small contexts are expected since interactions concerns few amino-acids. Practical
values range from 3 to 7. In all cases, one should avoid higher values since it comes down
to using (global) substitutability. Note that we have not made extensive tests on this issue
and it is certainly a valuable research track.

Overall, it can be observed that local substitutability, using well chosen k and l values,
significantly improves the recall with respect to global substitutability, without losing pre-
cision. Stochastic grammars get better results in terms of F-measure, except if precision
is fixed to a high level. In such a case the recall obtained by ReGLiS is usually better.
It is desirable to obtain a high specificity because biological experiments on proteins are
expensive and a limited set of candidates can be evaluated and validated in practice.

When possible, we also compared our results with results obtained using Prosite regular
expressions built on the basis of expert-provided multiple alignments of subsequences of
these families. The Prosite patterns span generally around 10 positions whereas the whole
protein is about 300 letters long. In consequence, such a pattern has a good recall but weak

1. Details of experiments and results are available at http://www.irisa.fr/dyliss/reglis

60

http://www.irisa.fr/dyliss/reglis

Efficient algorithm learning substitutable languages from positive examples

precision due to its generality. In contrast, our method takes into account whole sequences.
The corresponding grammar has thus a high specificity. The interesting point is that despite
their specificity, the level of recall obtained by the grammars appears to remain relatively
high, our best recall results being comparable to those of the Prosite’s patterns built by
experts.

Hence, although the method can still be refined by grammar weighting schemes, this
study confirms that local substitutability can be considered as a promising and effective
criterion for sequence generalization, especially for the cases requiring an excellent precision.

Zinc finger MPI phos.
Precision Recall F-measure Precision Recall F-measure

Substitutable 1 0.1 0.36 1 0.15 0.26
3,3-Local substitutable 1 0.2 0.33 1 0.5 0.67
4,4-Local substitutable 1 0.25 0.4 1 0.6 0.75
5,5-Local substitutable 1 0.33 0.5 1 0.67 0.8
6,6-Local substitutable 1 0.5 0.67 1 0.62 0.77
7,7-Local substitutable 1 0.55 0.7 1 0.53 0.69

Stochastic CFG
Dyrka and Nebel

(2009)

1 0.1 0.18 1 0.3 0.46
0.15 1 0.26 0.5 1 0.67
0.75 0.87 0.85 0.98 0.89 0.93

PS00219 PS00063
Precision Recall F-measure Precision Recall F-measure

Substitutable 1 0.2 0.33 1 0.23 0.37
3,3-Local substitutable 1 0.72 0.84 1 0.58 0.73
4,4-Local substitutable 1 0.7 0.82 1 0.6 0.75
5,5-Local substitutable 1 0.68 0.8 1 0.66 0.8
6,6-Local substitutable 1 0.6 0.75 1 0.7 0.82
7,7-Local substitutable 1 0.5 0.67 1 0.65 0.79

Prosite 1 0.6 0.75 1 0.8 0.89
Stochastic CFG
Dyrka and Nebel

(2009)

- - - 1 0.05 0.1
- - - 0.1 1 0.18
1 1 1 0.79 0.65 0.71

Table 1: Sequence class prediction by grammars obtained for different families with 10-fold
cross-validation

Conclusion

With ReGLiS we have proposed another step, after the introduction of local substitutable
languages, towards practical applications of substitutable language learning. To continue in
this direction, on the theoretical side, we would like to better characterize the learnability
gain provided by ReGLiS compared to SGL and, on the practical side, we would like to
better understand the scope of substitutability criteria for applications and derive data-
driven heuristic choices of substitutability classes.

Acknowledgments

This work benefited from the support of the French Government run by the National Re-
search Agency and with regards to the investment expenditure programme IDEALG ANR-
10-BTBR-04. GG is funded by French ‘Region Bretagne’ grant ARED ENZYME No. 6958.

61

Coste Garet Nicolas

References

D. Angluin. Inference of reversible languages. J. ACM, 29(3):741–765, 1982.

R. Carrascosa, F. Coste, M. Gallé, and G. G. Infante López. The smallest grammar problem
as constituents choice and minimal grammar parsing. Algorithms, 4(4):262–284, 2011.

A. Clark. A language theoretic approach to syntactic structure. In M. Kanazawa, A. Kornai,
M. Kracht, and H. Seki, editors, The Mathematics of Language, volume 6878 of Lecture
Notes in Computer Science, pages 39–56. Springer Berlin Heidelberg, 2011.

A. Clark. Learning trees from strings: A strong learning algorithm for some context-free
grammars. Journal of Machine Learning Research, 14:3537–3559, 2014.

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-free
languages. Journal of Machine Learning Research, 8:1725–1745, August 2007.

F. Coste, G. Garet, and J. Nicolas. Local Substitutability for Sequence Generalization.
In Jeffrey Heinz, Colin de la Higuera, and Tim Oates, editors, ICGI 2012, volume 21
of JMLR Workshop and Conference Proceedings, pages 97–111, Washington, États-Unis,
Sep 2012. MIT Press.

F. Coste, G. Garet, A. Groisillier, J. Nicolas, and T. Tonon. Automated enzyme classifi-
cation by formal concept analysis. In C. Vera Glodeanu, M. Kaytoue, and C. Sacarea,
editors, ICFCA, volume 8478 of Lecture Notes in Computer Science, pages 235–250.
Springer, 2014. ISBN 978-3-319-07247-0.

W. Dyrka and J.-C. Nebel. A stochastic context free grammar based framework for analysis
of protein sequences. BMC Bioinformatics, 10(1):323+, October 2009.

G. Kerbellec. Apprentissage d’automates modélisant des familles de séquences protéiques.
PhD thesis, Université Rennes 1, 2008.

R. Yoshinaka. Identification in the limit of (k,l)-substitutable context-free languages. In
Proceedings of the 9th international colloquium conference on Grammatical inference:
theoretical results and applications, ICGI’08, pages 266–279, 2008.

Appendix A. Example of reduction of grammar on natural language

In this appendix, we illustrate the interest of the prime classes and the reduced grammar
form on the following training set K:

K ={”Major General was here yesterday morning.”,

”Major General went here yesterday morning.”,

”Major General will be there tomorrow morning.”,

”He will be gone tomorrow evening.”}

62

Efficient algorithm learning substitutable languages from positive examples

Then the grammar obtained by the classical approach introducing a non-terminal for
each substitutability class and splitting the rules in all possible rules in Chomsky normal
form would be:

X47 →′ yesterday′

X46 → X3X43|X11X19|X23X13

X45 → X20X2

X44 → X20X1|X45X29|X34X16|X9X15

X43 → X20X19|X45X13

X42 →′ tomorrow′

X41 → X42X15

X40 → X30X46|X21X43|X39X19|X25X13|X21X34|X8X13

S → X30X24|X21X31|X10X32|X36X17|X26X15|X39X1

|X25X29|X40X41|X21X44|X8X29|X40X16|X33X15

X29 → X13X16|X4X15|X13X41|X38X15

X28 → X27X47

X25 → X30X23|X21X45|X39X2

X24 → X3X31|X18X32|X37X17|X14X15|X11X1|X23X29|X46X41

X27 →′ here′

X26 → X30X14|X21X12|X10X28|X36X47|X39X35|X25X38|X40X42

X21 →′ He′|X30X3

X20 →′ will′

X23 → X3X45|X11X2

X22 → X6X27

X8 → X21X45|X39X2

X9 → X20X5|X45X4|X34X42

X2 →′ be′

X3 →′ Major′

X1 → X2X29|X19X16|X5X15|X19X41|X35X15

X6 →′ was′|′went′

X4 → X13X42

X5 → X2X4|X19X42

X32 → X27X17|X28X15

X33 → X21X9|X39X5|X8X4|X40X42

X30 → General

X31 → X6X32|X22X17|X12X15|X20X1|X45X29|X43X41

X36 → X30X37|X21X22|X10X27

X37 → X3X22|X18X27

X34 → X20X19|X45X13

X35 → X2X38|X19X42

X38 → X13X42

X39 → X30X11|X21X20

X18 → X3X6

X19 → X2X13

X10 → X30X18|X21X6

X11 → X3X20

X12 → X6X28|X22X47|X20X35|X45X38|X43X42

X13 →′ there′|′gone′

X14 → X3X12|X18X28|X37X47|X11X35|X23X38|X46X42

X15 →′ morning′|′evening′

X16 → X42X15

X17 → X47X15

while the reduced grammar on K-prime classes, would simply be:

S → X3X4X2

X1 → was | went
X2 → morning | evening
X3 → He |Major General

X4 → will be X5 tomorrow | X1 here yesterday

X5 → there | gone

63

	Introduction
	Learning substitutable languages
	Formal languages and substitutability
	A first grammatical inference algorithm for substitutable languages

	Learning reduced grammars
	Reduced Grammars
	Learning reduced grammars: ReGLiS
	Complexity of ReGLiS algorithm

	Experiments
	Comparison of run times on simulated data
	Application to protein families

	Example of reduction of grammar on natural language

