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Abstract

In applications where abstract models of reactive systems are to be inferred, one impor-
tant challenge is that the behavior of such systems can be inherently nondeterministic. To
cope with this challenge, we developed an algorithm to infer nondeterministic computation
models in the form of Mealy machines. We introduce our approach and provide extensive
experimental results to assess its potential in the identification of black-box reactive sys-
tems. The experiments involve both artificially-generated abstract Mealy machines, and the
identification of a TFTP server model starting from a publicly-available implementation.

1. Introduction

Automata-based inference, i.e., the ability to infer abstract models of black-box software
components as automata, is a vibrant research and application area — see, e.g., Walkinshaw
et al. (2013) for the results of a recent competition among model-inference engines. One
important challenge in this arena is that reactive systems are often inherently nondetermin-
istic. Since it is impossible to track and control all possible sources of external influence on a
complex reactive system, one may consider nondeterministic models as a solution to provide
concise and usable abstractions. Indeed, while there is a substantial body of work about
learning automata, including comprehensive tools such as LearnLib Raffelt et al. (2009),
they focus on deterministic automata and transducers, limiting their effective applicability
to many reactive systems. Our research aims to fill this gap by enabling the inference of
nondeterministic models for black-box reactive systems. The core of our contribution is
the algorithm N∗, an extension and systematization of works by Shahbaz and others —
see Shahbaz (2008); El-Fakih et al. (2010) — to infer nondeterministic Mealy machines.
Using our tool, AIDE1 , we have conducted an experimental campaign to evaluate N∗

considering various features of the target machines. In particular, we implemented a gener-
ator and emulator of random Mealy machines, wherein we can control various parameters.
Knowing the target machine in advance, we can compare “ideal” and “real” implementation
of N∗. In the ideal case, N∗ acquires all possible outcomes of a nondeterministic transition
with a single query, and it performs precise equivalence checks between conjectures and the
target automaton. In the real case, multiple queries and approximate equivalence checks
are required instead, causing a decrease in performances that we can assess in a quantitative

1. AIDE (Automata IDentification Engine) is an open-source software written in C#. It includes an
implementation of N∗. The code and documentations are available at https://aide.codeplex.com/.
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way. As a further assessment of practical feasibility, we have evaluated N∗ on a working
implementation of a TFTP client/server protocol.

1.1. Background

An alphabet Σ is a finite set of symbols, and Σ∗ is the transitive, symmetric and reflexive
closure of Σ; we call word a member of Σ∗, and we denote with |w| the length of w, i.e.,
the number of symbols in w; ε is the empty word, such that ε ∈ Σ∗ for all Σ and |ε| = 0;
we write Σ+ to denote Σ∗ \ {ε}; given u, v ∈ Σ∗ and a ∈ Σ, we have that a.v ∈ Σ∗ and
v.a ∈ Σ∗ are the words obtained by prefixing and postfixing a to v, respectively; we abuse
notation and write u.v to denote the word obtained by appending v to u. A prefix of a
word w ∈ Σ∗ is a word u ∈ Σ∗ such that w = u.v for some word v ∈ Σ∗. Similarly, a suffix
of a word w ∈ Σ∗ is a word v ∈ Σ∗ such that w = u.v for some u ∈ Σ∗. We say that a set of
words S ⊆ Σ∗ is prefix-closed (resp. suffix-closed) exactly when, for every word w ∈ S, S
contains all possible prefixes (resp. suffixes) of w. We denote with Suff (w) the suffix-closed
set comprised of all the suffixes of w, and Pref (h) the prefix-closed set comprised of all the
prefixes of h.

A Deterministic Finite-state Mealy machine (that we abbreviate as DFM) is defined as
a quintuple M = (Q,ΣI ,ΣO, q0, τ), where ΣI is the input alphabet and ΣO is the output
alphabet; Q is a set of states, q0 ∈ Q is the initial state, and τ : Q × ΣI → Q × ΣO

is the transition function. The sets ΣI , ΣO, and Q are finite, non-empty and mutually
disjoint. We consider two projections of τ , namely the next state function δτ : Q×ΣI → Q,
and the output function λτ : Q × ΣI → ΣO. The extension of λτ to words is denoted as
λ∗τ : Q× Σ∗I → Σ∗O, and it is defined recursively for all q ∈ Q as

λ∗τ (q, w) =

{
ε if w = ε
λτ (q, a).λ∗τ (δτ (q, a), v) if w = a.v, a ∈ ΣI , v ∈ Σ∗I .

The (input-output) relation RM : Σ∗I → Σ∗O computed by M can be defined as the set of all
words v ∈ Σ∗O such that v = λ∗(q0, u) for some u ∈ Σ∗I . Notice that for every u ∈ Σ∗I and
corresponding v = RM (u) we have that |u| = |v|, i.e., DFMs define one-by-one translations.

A Nondeterministic Finite-state Mealy machine (called NFM here) is a quintuple M =
(Q,ΣI ,ΣO, q0, τ), where ΣI , ΣO, Q and q0 are defined as in DFMs, whereas the transition
relation is now defined as τ : Q × ΣI → 2Q×ΣO . Intuitively, in NFMs, the same state and
input symbol may result in one or more different pairs of state and symbol. The projections
of τ on states and outputs are δτ : Q×ΣI → 2Q and λτ : Q×ΣI → 2ΣO , respectively. The
extension of δτ to words, denoted as δ∗τ : Q × Σ∗I → 2Q, can be defined recursively for all
q ∈ Q as

δ∗τ (q, w) =

{
q if w = ε⋃
q′∈δτ (q,a) δ

∗
τ (q′, v) if w = a.v, a ∈ ΣI , v ∈ Σ∗I .

The extension of λτ to words is denoted as λ∗τ : Q × Σ∗I → 2Σ∗O , and it can be defined as
follows. Given w ∈ Σ∗I and v ∈ Σ∗O, we have that v ∈ λ∗τ (q, w) for some state q ∈ Q if and
only if either w = v = ε, or w = a.w′, v = x.v′ for some a ∈ ΣI and x ∈ ΣO, and there
exists a state q′ such that (q′, x) ∈ τ(q, a) and v′ ∈ λ∗τ (q′, w′). Intuitively, given an input
word w and a state q, the function δ∗τ (q, w) defines the “frontier” of states reachable from
q given the input word w, whereas λ∗τ (q, w) defines the set of output words “seen” on each
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path from q to any of the states in δ∗τ (q, w). In the case of a NFM M , the input-output
relation RM : Σ∗I → 2Σ∗O is defined as the set of all words v ∈ Σ∗O such that v = λ∗τ (q0, u)
for some u ∈ Σ∗I . Two NFMs M1 = (Q1,ΣI ,ΣO, q01, τ1) and M2 = (Q2,ΣI ,ΣO, q02, τ2) are
said to be behaviorally equivalent iff for all u ∈ Σ∗I , we have that λ∗τ1(q01, u) ≡ λ∗τ2(q02, u).

1.2. Related Works

Our work is relevant in the context of active learning in the sense pioneered by Gold in Gold
(1972), and later refined by Angluin in Angluin (1987) with her L∗ algorithm. Further
related contributions along the line of Angluin’s L∗ include Bollig et al. (2009), wherein the
algorithm NL∗ is introduced. NL∗ can learn a subclass of non-deterministic finite state
automata (NFAs) called residual finite-state automata. The advantage of using NL∗ is that,
for regular languages, NFAs are usually more compact than equivalent DFAs, which could
make NL∗ a preferable choice in many learning applications. Even if NL∗ computes non-
deterministic machines as conjectures, the target system is assumed to be deterministic.
Therefore, the implementation of membership and equivalence queries is similar to L∗, and
it does not deal with intrinsic target non-determinism as we do.

An adaptation of Angluin’s L∗ algorithm for identifying DFMs was first developed
in Niese (2003) and it was further extended by Shahbaz in Shahbaz (2008), and by Irfan Ir-
fan (2012). These contributions are all based on Angluin’s concept of observation table, i.e.,
a data structure which is processed by the identification algorithm to collect the observa-
tions, and to formulate the conjecture about the target system. Alternative approaches to
implicit identification through observation tables include, e.g., Merten et al. (2012) where
the authors describe an identification algorithm for DFMs that directly constructs a state
machine hypothesis according to observations. Observation pack Howar (2012) is another
algorithm that can be instantiated with different strategies for handling counterexamples.

None of the algorithms cited above can deal with the problem of inferring NFMs and, to
the best of our knowledge, the only proposal extending L∗-type learning to non-deterministic
machines is sketched in El-Fakih et al. (2010). In spirit, the extension therewith proposed is
very similar to the one we discuss in Section 2. However, since El-Fakih et al. (2010) is just
an extended abstract, it does not provide either detailed technical descriptions or the kind of
extensive empirical results that we present in the remainder of this paper. Furthermore, no
detailed follow-up is to be found in the literature with the exception of our own contribution.

2. Learning NFMs

NFMs can encode a larger set of input-output relations than those expressible with DFMs,
i.e., given an NFMM , it may be impossible to obtain a behaviorally equivalent DFMM ′ such
that, for all u ∈ Σ∗I , we have that RM ′(u) ∈ RM (u) and, conversely, every v ∈ RM (u) is such
that RM ′(u) = v. A counterexample of this general statement is easily obtained considering
a NFM M = (Q,ΣI ,ΣO, q0, τ) such that the input alphabet is ΣI = {a}, the output
alphabet is ΣO = {x, y}, and the set of states is Q = {q0, q1}; and τ(q0, a) = {(q1, x), (q1, y)}.
The relation RM is thus fully specified by RM (a) = {x, y}. If we assume that there exists
a DFM M ′ = (Q′,ΣI ,ΣO, q

′
0, τ
′) such that RM ′ coincides with RM , then for every input

word w ∈ Σ∗I , we must have that λ∗τ (q0, w) = λ∗τ ′(q
′
o, w). The machine M ′ must have one

initial state q′0, in which a transition on input a must be enabled. Since δτ is already a
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Figure 1: Nondeterminism in a NFM; in the patterns above, we assume that M = (Q,ΣI ,ΣO, q0, τ) with
a ∈ ΣI , x, y ∈ ΣO where x 6= y, and q0, q1, q2 ∈ Q. An edge labeled by a/x from qi to qj means
that qj ∈ δτ (qi, a) and x ∈ λτ (qi, a).

function, δτ ′ is a “copy” of δτ , i.e., δτ ′(q
′
0, a) = q′ where q′ ∈ Q′ is a “fresh” state in Q′, i.e.,

q′ 6= q′0, and there are no other states in Q′. Since there is only state q′0 where the symbol
a is accepted as input, we should have λτ ′(q

′
0, a) = x and λτ ′(q

′
0, a) = y, which contradicts

the assumption that M ′ is deterministic — see, e.g., Figure 1 (iii).
Depending on the definition of τ , NFMs can show different patterns of nondeterminism.

As shown pictorially in Figure 1, we can consider three basic patterns. In pattern (i) we
have that δτ is not a function whereas λτ is a function; in pattern (ii), both δτ and λτ are
not functions; finally, in pattern (iii) we have that only λτ is not a function. We say that
NFMs exhibit state nondeterminism when δτ is not a function, and output nondeterminism
when λτ is not a function. We call an NFM M as identifiable when, given each input word
w ∈ Σ+

I and a corresponding output word u ∈ λ∗τ (q0, w), there exists a unique sequence of
states q0, q1, . . . qn such that qi = δτ (qi−1, wi) and λτ (qi−1, wi) = ui for all 1 ≤ i ≤ n, where
wi denotes the i-th symbol in the word w. If a machine shows only output nondeterminism,
then it is also identifiable by definition, whereas state nondeterminism does not necessarily
preserve identifiability. For identifiable machines, we can introduce a concept of minimality,
which lays the foundation for our identification algorithm. We say that an identifiable
NFM M = (Q,ΣI ,ΣO, q0, τ) is minimal when there does not exits another NFM M ′ =
(Q′,ΣI ,ΣO, q

′
0, τ
′) such that M and M ′ are behaviorally equivalent but |QM ′ | < |QM |.

Given a target black-box implementation, in order to learn its NFM model M =
(Q,ΣI ,ΣO, q0, τ), we assume that the input alphabet ΣI is known in advance, the tar-
get implementation can be reset before executing each query, and either M is identifiable,
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Figure 2: On the left, an NFM with three states, input alphabet {a,b}, and output alphabet {0,1,2}; q0 is
the initial state and the relation τ is represented by directed edges labeled with the corresponding
input/output symbols. On the right, an example of an output tree.
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a b
〈〉 2 0
〈a, 2〉 2 0
〈b, 0〉 2 0
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a b a.a
〈〉 2 0 2.2
〈a, 2〉 2 0 2.2
〈b, 0〉 2 0 2.1,2.2

Figure 3: The initial observation table (left); corresponding one state conjecture NFM (middle); table
after adding the first counterexample (right).

or there exists a (behaviorally equivalent) identifiable machine2. We further assume that
queries posed by the learning algorithm are answered by a Minimum Adequate Teacher
(MAT) Angluin (1987) (also called oracle) which knows perfectly the structure of M . In
order to exemplify the various phases of the algorithm, we consider the simple NFM de-
picted in Figure 2 (left). For simplicity, the NFM has only one nondeterministic transition,
namely from state “q2” on the input symbol “a”, but such transition is enough to prevent
any DFM learner to accomplish its task.

We consider elements of the set Σ∗IO = (ΣI×ΣO)∗ to represent potential states in Q. To
avoid ambiguity with input and output words, we call sequences the members of Σ∗IO, and we
let 〈 〉 denote the empty sequence; given h ∈ Σ∗IO with h = 〈(a1, x1), . . . , (an, xn)〉, we define
its input projection hI ∈ Σ∗I as hI = a1 . . . an, and similarly its output projection hO ∈ Σ∗O
as hO = x1 . . . xn. Other non-specific definitions and notations are used interchangeably
between words and sequences. We say that s ∈ Σ∗IO is an access sequence when it uniquely
identifies a potential state in M . For example, the sequence 〈(b, 0), (a, 2)〉 is an access
sequence for the state “q2” in the NFM of Figure 2. As for transitions, given a starting
state q and a word w ∈ Σ∗I , we could have that |λ∗τ (q, w)| > 1, i.e., there are many possible
output words corresponding to w when starting from q in M . For this reason, we consider
prefix trees of symbols in ΣO, where each edge is an output symbol, and each path from
the root to a leaf is a word in Σ∗O. Prefix trees yield a compact representation of the set of
output words λ∗τ (q, w) because all words having some prefix in common share some subpath
from the root to the leaf of the tree. For example, in the NFM of Figure 2, if q =q0 and
w = baa, then λ∗τ (q, w) = {021, 020} corresponding to the tree in Figure 2 (right).

Our N∗ algorithm organizes accumulated information about states and transitions in
an observation table. Formally, an observation table is denoted by Γn = (Sn, En, Tn) where
Sn ⊆ Σ∗IO is a prefix-closed set of access sequences; En ⊆ Σ+

I is a suffix-closed set of input

words; Tn is a function (Sn ∪ S′n) × En → 2Σ+
O , where S′n ⊆ Sn.ΣIO; given the sequence

s ∈ (Sn∪S′n), the input word e ∈ En, and assuming that q is the state reached after observing
the sequence s, then Tn(s, e) contains λ∗τ (q, e) represented as a prefix tree whose edges are
labeled with symbols from ΣO. Two examples of observation table contents generated by
N∗ when learning the NFM of Figure 2, knowing the input alphabet ΣI = {a, b}, are shown
in Figure 3. In the following, we will detail their contents across various phases of N∗.

The observation table is the basis to extract a conjecture about the unknown NFM M
but in order to extract a valid conjecture, its contents must satisfy specific properties. Let

2. It could be proven that for any NFM, there is a minimal behavior-equivalent identifiable NFM. But this
is out of the scope of the current paper.
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s, t ∈ Sn ∪ S′n be two rows in Γn; we say that s and t are equivalent, denoted by s uEn t,
if and only if Tn(s, e) = Tn(t, e) for all e ∈ En. To extract a valid conjecture Cn from Γn,
two conditions must hold. The first one is that Γn must be closed, i.e., for each t ∈ S′n,
there exists an s ∈ Sn such that s uEn t. If Γn is not closed, then there is a state s ∈ Sn
and (a, x) ∈ ΣIO such that a transition cannot be defined for s, input a, and corresponding
output x. The second one is that Γn must be consistent, i.e., for each s, t ∈ Sn such that
s 6= t, if s uEn t holds, then for all a ∈ ΣI and x ∈ T (s, a) we have also s.(a, x) uEn t.(a, x).
If Γn is not consistent, then two seemingly equivalent states may yield different states for
the same (a, x) ∈ ΣIO. A conjecture Cn = (Qn,ΣI ,ΣO, qn0, τn) is extracted from a closed
and consistent Γn by defining Qn = Sn. Given s ∈ Sn ∪ S′n, let [s] = {t ∈ Sn | t uEn s}
denote the equivalence class of s. Then, the initial state is the equivalence class of the
empty sequence, i.e., qn0 = [〈 〉], and the transition relation is defined as

τn([s], a) = {([s.(a, x)], x) | x ∈ Tn(s, a)}

for all s ∈ Sn and a ∈ ΣI . Notice that, unless all output transitions have been explored,
the conjecture Cn cannot be equivalent to the unknown machine.

The complete pseudo-code of algorithm N∗ is presented in Figure 4. Given the input
alphabet ΣI , and a MAT Ω, the observation table Γn is initialized (lines 4-13), and then
filled by asking suitable queries to Ω (lines 16-25). Whenever Γn is closed, a conjecture Cn
is extracted from Γn, and Ω is queried about equivalence of such conjecture to the unknown
NFM (lines 26-27). When the equivalence test fails, the counterexample (cex) triggers
updates of the observation table (lines 28-34). The main loop (lines 15-38) is repeated until
the equivalence query succeeds. As we can see in Figure 4, there are two subroutines to
interface N∗ with Ω, namely outputQuery and equivalenceQuery. outputQuery
implements the function ρΩ : Σ∗IO × Σ+

I → 2Σ+
O defined as detailed in the following. Let

µτ : Q×ΣIO → 2Q be a function such that µτ (q, (a, x)) = {q1, . . . , qn} exactly when τ(q, a) =
{(q1, x), . . . , (q2, x)}, with a ∈ ΣI , x ∈ ΣO, q, q1, . . . , qn ∈ Q. Intuitively, µτ (q, (a, x)) returns

1: Input: input alphabet ΣI , MAT Ω

2: Output: NFM conjecture Cn
3:
4: Initialize Sn ← {〈 〉}, S′

n ← ∅, En ← ΣI

5: Initialize Γn ← (Sn, En,⊥).

6: for all a ∈ ΣI do

7: Oa ← outputQuery(Ω, 〈 〉, i); Add Oa to Tn(〈 〉, a)

8: for all x ∈ Oa do
9: S′

n ← S′
n ∪ {(a, x)}

10: for all b ∈ ΣI do

11: Add outputQuery(Ω, (a, x), b) to Tn((a, x), b)

12: end for
13: end for
14: end for

15: while (true) do

16: while (Γn is not closed) do

17: find t ∈ S′
n s.t. there is no s ∈ Sn s.t. t uEn s

18: Sn ← Sn ∪ {t}; S′
n ← S′

n \ {t}
19: for all a ∈ ΣI , x ∈ Tn(t, a) do

20: S′
n ← S′

n ∪ {t.(a, x)}
21: for all w ∈ En do
22: Add outputQuery(Ω, t.(a, x), w) to Tn(t.(a, x), w)

23: end for
24: end for
25: end while
26: Extract conjecture Cn from Γn

27: if equivalenceQuery(Ω, Cn) returns cex h ∈ Σ+
IO

then

28: h ← u.v where u is the longest seq. s.t. u ∈ (Sn ∪ S′
n).

29: for all w ∈ Suff (vI ) do

30: En ← En ∪ {w}
31: for all t ∈ Sn ∪ S′

n do

32: Add outputQuery(Ω, t, w) to Tn(t, w)

33: end for
34: end for
35: else
36: return Cn
37: end if
38: end while

Figure 4: Algorithm N∗ for learning NFMs.
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all the states that are reachable from q along a single transition labeled a/x, i.e., all the states
reached when reading input a and emitting output x. The extension µ∗τ : Q×Σ∗IO → 2Q to
sequences, for s ∈ Σ∗IO, is defined as

µ∗τ (q, s) =

{
q if s = 〈 〉⋃
q′∈µτ (q,(x,a)) µ

∗
τ (q′, t) if s = (x, a).t, (a, x) ∈ ΣIO

(1)

The result of µ∗τ is the set of states which are reachable from q, assuming that the symbols
in sI are given as input, and the symbols in sO are seen as output. Notice that, if M is
identifiable, then |µτ (q, (a, x))| ≤ 1 and |µ∗τ (q, s)| ≤ 1, for every q ∈ Q, a ∈ ΣI , x ∈ ΣO and
s ∈ Σ∗IO. Therefore, for an identifiable machine, if s is an access sequence to some state,
i.e., µ∗τ (q0, s) 6= ∅, then we can write ρΩ(s, w) = λ∗τΩ(µ∗τΩ(q0, s), w), where s ∈ Σ∗IO, w ∈ Σ∗I ,
and τΩ is the transition relation of the unknown NFM supplied by the oracle Ω. If s is not
an access sequence, i.e., µ∗τ (q0, s) = ∅, then it means that for some pair (a, x) in s, either a
is not accepted, or the observed output x′ is such that x′ 6= x. In these cases, we assume
that ρΩ(s, w) = ⊥. Informally speaking, given an access sequence s, outputQuery will
bring the unknown machine M from the initial state q0 to the state µ∗τΩ(q0, s), i.e., the
state uniquely identified by s; then, starting from this state, outputQuery will return all
possible output words emitted by M on the input w. Here, it is important to highlight
that all the results above are based on the identifiability assumption and the use of access
sequences rather than access words. equivalenceQuery checks whether the conjecture
Cn corresponds to the unknown machine M . If RM : Σ∗I → 2Σ∗O is the unknown input-
output relation, and RCn : Σ∗I → 2Σ∗O is the relation based on the conjecture supplied to
equivalenceQuery, then the result is either ε – meaning that M and Cn are behaviorally
equal – or some other non-empty sequence h ∈ Σ+

IO such that RM (hI) 6≡ RCn(hI). Notice
that RM (hI) may contain yet-to-be-seen output symbols, but this is not an issue because
N∗ can acquire them through the results of outputQuery performed in line 32 of N∗.

A fundamental property ofN∗ is that Γn is always consistent, and thus the only condition
that must be checked before testing a conjecture Cn is that Γn is closed. Based on this fact,
N∗ can be shown to always terminate and identify unknown NFMs correctly. As for the
complexity of N∗, we provide an upper bound on the space used by N∗ to store Γn. Given
an unknown –minimal– NFM M = (Q,ΣI ,ΣO, q0, τ), the bound is defined in terms of the
following parameters

χ =
∑
q∈Q

∑
a∈ΣI

|τ(q, a)| β = max
q∈Q,a∈ΣI

{|τ(q, a)|}

where χ represents the total number of transitions in M , and β represents the maximum
cardinality of τ in a given state, for a given input symbol. Intuitively, β represents the
“maximum amount of nondeterminism” that can be found in M . If l is the maximum
length of any counterexample provided by equivalenceQuery, the number of cells in Γn
is |Sn ∪S′n| · |En|. Considering a column e ∈ En in the observation table Γn, we notice that
each cell stores the result of some output query as a tree of depth |e| where in the maximum
number of nodes is (β|e|+1 − 1)/(β − 1) = O(β|e|). Therefore, the upper bound on the size
of Γn is:

(χ+ 1) · (|ΣI | · β + (|Q| − 1) · βl+1) (2)
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Notice that, in case of DFMs, output trees would have just one leaf (β = 1), and thus the
bound becomes polynomial in the size of M , which corresponds to the findings of Shahbaz
(2008). On the other hand, the complexity bound of NFMs will depend exponentially on
the amount of nondeterminism exhibited by the target machine.

A working implementation of N∗ — as well as any other MAT-based learning algorithm
— requires us to consider testing techniques in order to approximate output and equivalence
queries. Given an unknown NFM M = (Q,ΣI ,ΣO, qoτ), a test sequence u ∈ Σ∗I results in
some string v ∈ Ou where Ou ⊆ Σ∗O. To build a correct conjecture, N∗ must know Ou in its
entirety and, in practice, this is possible only if we assume that repeatedly supplying the
string u to M is sufficient to observe all the elements of Ou, eventually. We call this no rare
events (NRE) hypothesis, since it amounts to assume that all nondeterministic behaviors
can be elicited in a finite amount of time, if repeated tests are executed. Notice that we do
not model the probability of different transitions on the same input symbol, but rather we
consider them as nondeterministic ones. Indeed, N∗ assumes that the output trees returned
by outputQuery are exact, i.e., they include all possible outputs resulting from a given
input stimulus. For this reason, an incomplete result from outputQuery, may cause N∗

to fail, as we discuss further in Section 3. In this sense, our approach is different from
probably approximate correct (PAC) learning Valiant (1984) because we are not interested
in approximating the target automaton, but rather in learning a behaviorally-equivalent
(minimal) model of it. Let us assume that from some state q ∈ Q there exist a number
of nondeterministic transitions on a symbol a ∈ ΣI , i.e., τ(q, a) = {(q1, x1), . . . , (qn, xn)},
where qi ∈ Q and xi ∈ ΣO for all 1 ≤ i ≤ n. In its tightest interpretation, the NRE
hypothesis ensures that the probability of observing some symbol xi, given the state q and
input a, is 1

n for all 1 ≤ i ≤ n. Therefore, after m trials, the probability of not observing a
specific output symbol from that state is p(n,m) = [1− (1/n)]m. With this interpretation,
the practical consequence of the NRE hypothesis is that p(n,m) decays sharply with m, if
the values of n are relatively small. If we lift this uniform probability requirement, we can
still consider the smallest probability p > 0 of observing some symbol, and thus testing m
times for an input yields a probability (1 − p)m of not observing that symbol. Given an
additional confidence parameter c, i.e., the probability of observing all the transitions, then
r(c, p) = log(1 − c)/ log(1 − p) repetitions are required to match the confidence level. The
confidence c and the probability p are thus the parameters of outputQuery from which
we can set the value of repetitions r(c, p).

As for equivalence queries, there is an extensive literature on different model traversal
algorithms to produce conformance test sequences for deterministic systems – see, e.g., Lee
and Yannakakis (1996). However, if the black-box system is nondeterministic, given a state
and an input, more than one move might be possible, and thus the test case is not just
a sequence of inputs, but rather a tree of inputs together with possible system responses
as outputs. One way of dealing with nondeterminism is on-line testing, with random walk
being the simplest, but also potentially least efficient such strategy. More sophisticated
on-line approaches include, e.g. Nachmanson et al. (2004), where game strategies using
Markov decision processes together with some transition coverage algorithm are proposed
for intelligently choosing compact input actions that broaden the coverage of nondetermin-
istic tests. This latter approach is the one we used as a basis for equivalenceQuery in
our current N∗ implementation. In an offline setting, even if the system is nondeterministic,
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we can still exploit coverage criteria like path coverage, or transition coverage obtained by
the Chinese postman algorithm. The test cases in the resulting — off-line generated —
test suite have to be executed several times because of nondeterminism, and the chance of
discovering “novel” paths is intrinsic in the system. As we mentioned above, the length of
the counterexample affects the efficiency of the algorithm. Our implementation of equiva-
lenceQuery attempts to limit the length of test sequences using a heuristic criterion. In
particular, once a stated maximum length has been reached, the system is reset, and the
shortest path from the initial state to the last visited state is computed. From this state,
the exploration is continued until the test is complete.

3. Experimental analysis

In this section, we show an empirical evaluation of N∗ on artificially generated NFMs. Our
NFM generator has a number of parameters, including number of states, size of input and
output alphabets, and amount of nondeterminism. The output machine is complete (input-
enabled), which means that in each state there is at least one transition for each symbol in
the input alphabet. The outputs of actions are selected randomly, optionally with a defined
probability for each output. The amount of nondeterminism is specified by the number
of states that have nondeterministic outgoing transitions, and the maximum number of
such transitions. Machines are built by generating the specified number of states, and then
adding to each state all possible outgoing transitions. Random output labels are assigned to
transitions based on the specified cardinality of the output alphabet. The generator has an
option to generate “balanced”, rather than fully random machines. Balancing is achieved
by keeping track of the input degree of each state, and then trying to keep such degree
balanced among all states by randomly selecting destination of transitions from the set of
states with lower input degree. In this way, we wish to avoid subsets of nodes in which the
average input degree is much higher or much lower than the overall average input degree.

In our experimental setup, N∗ must identify NFMs according to two different implemen-
tations of outputQuery and equivalenceQuery. The ideal implementation corresponds
to the theoretical baseline, and it is feasible in practice because we know the structure of
the generated NFMs. The real implementation corresponds to query approximations, where
outputQuery and equivalenceQuery are oblivious of the internal structure of the gen-
erated NFMs. We consider families of parametric NFMs M = (Q,ΣI ,ΣO, qo, τ) where we
vary the number of states |Q|, the number of input/output symbols |ΣI | = |ΣO|, the fraction
of states affected by nondeterministic transitions, and the degree of nondeterministic tran-
sitions. The settings of parameters p – minimum probability of nondeterministic transitions
– and c – required confidence – for the real implementation of outputQuery are p = 0.5
and c = 0.9999. Notice that p = 0.5 corresponds to the actual minimum probability of
nondeterministic transitions in artificially generated machines as long as the degree of non-
deterministic transitions is always limited to two. The parameter c = 0.9999 was sufficient
in practice to guarantee a precise approximation of outputQuery in our experiments.3

3. Experiments run on an Intel 3.4GHz i7 PC with 32GB of RAM, running 64 bit Microsoft Windows 7.
N∗ and the real/ideal oracles are implemented in AIDE. Regarding memory, it is worth noticing that
our experiments never required more than 3GB of RAM on any single identification task.
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Figure 5: Ideal vs. real implementations of N∗; in plot (a), the x-axis is the number of states |Q|; in plot
(b), the x-axis is the number of input symbols |ΣI |; in plot (c), the x-axis is the percentage of
states having a nondeterministic transition; plot (d) presents the case of different branch degrees,
from 0 extra transitions in each state to 5 extra ones. In all the plots, diamonds and squares
represent performances of N∗ using ideal and approximation oracles, respectively; the time scale
on the y-axis is linear and reports milliseconds in all the plots.

A summary of the results is presented in Figure 5. In particular, Figure 5 (a) shows the
effect of an increasing number of states on the time required to identify the unknown NFM.
In these experiments, we have |ΣI | = |ΣO| = 10 and nondeterministic transitions with
degree two are present in 10% of the states. Here, we can observe the absolute gap between
the ideal and the real implementation of N∗ growing with the number of states: from 1
second to identify a machine with |Q| = 50, to 22 seconds for a machine with |Q| = 500.
However, if we consider the relative gap between real and ideal implementations, then we see
that this is not increasing. The factor between real to ideal settings is 21.6 for |Q| = 50 and
6.7 for |Q| = 500. This result is to be expected considering that the number of sequences
characterized by the same input symbols and different output symbols is growing with the
number of states, and so is the size of the observation table. However, the overall time
required for approximate identification is reasonable even for |Q| = 500 — about 22 CPU
seconds. It is important to notice that, in these experiments, the first conjecture supplied
to equivalenceQuery results in a match with the unknown NFM, i.e., no counterexample
is generated. Therefore, the widening time gap is due to outputQuery being called for an
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increasing number of times and responding with heftier and heftier outputs. In particular,
with |Q| = 500, N∗ reaches a solution in 21.6 seconds, filling a table with approximately
5000 rows and 10 columns. The number of columns is |ΣI |, since the first conjecture is
accepted by equivalenceQuery, and no suffixes are added to En in this case.

Figure 5 (b) shows the effect of the size of input and output alphabets. The number of
states is |Q| = 300, and nondeterministic transitions with degree two are present in 10%
of the states. Also in this case, we can observe that MAT approximation slows down N∗.
Starting from |ΣI | = 5, the gap between implementations is growing from a factor of 1.8 to
a factor of 13. Notice that for |ΣI | = 5, the ideal implementation of N∗ performs slightly
worse than for |ΣI | = 10. In this case, a relatively small alphabet size causes a lot of aliasing
in the rows of Tn, which results in calls to equivalenceQuery failing with (potentially)
long counterexamples. In turn, this implies that N∗ must spend a lot of effort to make the
observation table closed again, while the size of such table is also growing. For instance,
the number of columns with |ΣI | = 5 is more than 15, whereas for |ΣI | ≥ 10, the number
of columns becomes approximately equal to |ΣI |. The number of cells are (approximately)
15, 30K, 68K, 120K, 188K and 270K for |ΣI | = 5, 10, 15, 20, 25 and 30, respectively. On
the other hand, for |ΣI | ≥ 10 the number of calls to equivalenceQuery is always one.

Figure 5 (c) shows the effect of the percentage of states affected by a nondeterministic
transition with |Q| = 300 and |ΣI | = |ΣO| = 20. The time required by the real implemen-
tation of N∗ is within a factor of 12.5 with respect to the ideal one. A slight growth in the
gap is also noticeable for increasing values of the percentage. The growth seems however
pretty slow – less than 2.5 seconds – which, in accordance with the results considered before,
supports the conjecture that a branching factor of two in nondeterministic transitions is not
making the identification problem excessively hard in practice. We also observe that when
the percentage is 0 – leftmost point in Figure 5 (c) – the unknown machine is indeed deter-
ministic, but the run time of the real implementation of N∗ is not appreciably faster than
with actual NFMs. This is because the real implementation of N∗ is oblivious of the charac-
teristics of the underlying machines, and thus outputQuery keeps repeating tests as if the
target machine was nondeterministic. Figure 5 (d) shows the effect of an increasing amount
of nondeterminism. Here, we have |Q| = 300, |ΣI | = |ΣO| = 20, and nondeterminism affects
10% of the states. We change the number of extra (nondeterministic) transitions from 0
(fully deterministic) to 5. In the case of the ideal implementation, this does not cause a
decay in performances, whereas in the real implementation, the identification time increases
from 33 seconds with a branching factor of 0, to 37 seconds with a branching factor of 5.
The reason of such a stark difference between real and ideal is, like in the case of Figure 5
(c), that the real implementation needs more trials to come up with the output tree. This
is due to the fact that (i) accessing a state by its access sequence requires more effort, and
(ii) because of more nondeterminism, the output tree is likely to have more branches.

Overall, we can conclude that the performances gap between ideal and real implemen-
tations of N∗ is manageable, as long as the amount of nondeterminism is limited and the
number and length of counterexamples to be processed is also relatively small. This is in
accordance with the theoretical bounds on complexity, and it gives an idea about the use-
fulness of N∗ as an identification algorithm. In practice, one may ask what happens when
parameters p and c are not appropriate, or when the NRE hypothesis is not satisfied by
the target machine. Let us assume that there is at least one event, i.e., nondeterministic
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Table 1: Effects of p and c settings on N∗: varying the confidence parameter c (left), and varying the
minimum transition probability p (right). In both tables, “Time” is the average CPU time spent
by N∗ (considering successful cases only), “Repetitions” is the number of times a query on w ∈ Σ∗I
is repeated inside outputQuery(., ., w), and “Success” is the percentage of times in which N∗

was successful in a family of 50 artificially generated NFMs.

c Time(ms) Repetitions Success
0.9 - 3 0%
0.99 1875 6 20%
0.999 2054 9 90%
0.9999 2641 13 98%
0.99999 3644 16 100%

p Time(ms) Repetitions Success
0.5 - 13 0%
0.4 6426 18 30%
0.3 6807 25 50%
0.2 11890 41 84%
0.1 19875 87 100%

transition, whose probability is less than p. We call this a rare-event and we foresee different
scenarios. If the rare-event does not happen during the execution of either outputQuery
or equivalenceQuery, N∗ infers a model missing the rare event. If the rare event does
not happen during the execution of outputQuery, but it does happen during equiva-
lenceQuery and it yields a counterexample. Since this counterexample is not compatible
with the observation table, N∗ fails. If the rare event happens during the execution of
outputQuery, but not enough times to allow a complete answer to be built, then out-
putQuery fails, and so does N∗. Finally, it is possible that the rare event is not seen in
some outputQuery calls but it is consistently seen in others. Usually, this leads to the
creation of some states that do not exist in the real system. Afterward, two things may
happen: first, after adding the counterexample, the table is still closed which is an obvious
sign of missing results from outputQuery. The other is that the table is not closed, the
learner tries to make it closed, and this may cause further missing elements. Still in some
cases, equivalenceQuery — which is based on edge coverage — is not able to find a
counterexample, and thus N∗ delivers its (imprecise) conjecture as a result.

Given the scenarios above, accepting the practical possibility that N∗ may fail, brings
forth the need of further experimentation aimed at understanding this phenomenon from a
quantitative point of view. In particular, we investigate two settings: (i) A family of NFMs
is generated with |Q| = 300, |ΣI | = |ΣO| = 20, 10% of states affected by nondeterministic
transitions, at most two such transitions for each state affected, and the same probability of
taking any of the two transitions, i.e., p = 0.5. We fix the confidence c to stricter and stricter
values to observe whether the chance of failure decreases. And (ii) A family of NFMs is
generated with |Q| = 100, |ΣI | = |ΣO| = 10, 20% of states affected by nondeterministic
transitions, at most two such transitions for each state affected. The probability of taking
any of the two transitions is now unbalanced, thus creating a rare event. In this way we
can observe whether the chance of failure decreases when setting p to adequate values.

Table 1 reports the results of the experiments described above. Each row in the tables
summarizes the results on a family of 50 artificially generated NFMs. In Table 1 (left) we
can observe the behavior of N∗ when the confidence parameter c increases. Noticeably, a
confidence level such that of 1 − c = 10−5 ensures a 100% success rate, i.e., all the NFMs
in the pool of fifty are identified correctly. At the same time, the average CPU time spent
on successful identifications is only doubled. Notice that setting 1 − c ≥ 10−3 is largely
insufficient to meet acceptable confidence levels, even when the parameter p is known in
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advance or it can be estimated with sufficient accuracy. In Table 1 (right), we report the
behavior of N∗ on the second experiment, i.e., given a required confidence c = 0.9999, we
try various settings of p, but the actual value for the target machines is p = 0.1. Also in
this case, we can observe that N∗ is able to perform reasonably only if the right value of p is
matched. In practice, the number of repetitions of a query inside outputQuery turns out
to be the yardstick of N∗ performances, both in terms of time, and in terms of success rate.
This is true insofar the probability of rare events is not too small to prevent reasonable
approximations by equivalenceQuery. Indeed, in cases where the actual value of p is
less than 0.1, we can observe several conjectures which pass the equivalenceQuery test,
but are not equivalent to the target machine.

4. Case Study: learning a model for a TFTP server

Trivial File Transfer Protocol (TFTP) is a file transfer protocol which is often used, e.g.,
for automated transfer of boot and configuration files from a server to diskless worksta-
tions in a local area network. TFTP is defined by RFC 1350, and we wish to identify an
implementation of the protocol4 using AIDE — plus an adaptor — as TFTP client. The
adaptor facilitates the communication between AIDE and the TFTP server and performs
abstraction/concretization steps. Since we are interested in learning the protocol for transfer
sessions, we limit the learner to a single transfer in a query, and we consider reading/writing
of files smaller than 512 bytes which can be transferred within one packet. Furthermore, we
abstract away the file name parameter and the sequence number in data and acknowledge-
ment packets. The adaptor knows a – minimum – set of parameters for these actions, and
by receiving one of these (abstract) inputs, it generates a corresponding concrete stimulus
with a random parameter. Indeed, this is exactly the source of non-determinism in the
observable behavior.

The learned model is presented in Figure 6, showing file upload (left) and file download
(right). If we consider the latter, then we see that, in the initial state, the answer of the
server to any acknowledgment packet is an error. Once the client sends a GET, the server
may reply with ERROR, e.g., if the requested file does not exist, or DATA S, i.e., the packet
with the requested file. Sending an acknowledgment packet after the data request informs
the server about the last received packet. So, if the server receives an acknowledgment
showing that client did not receive the packet, it re-sends the data packet. This can happen
twice, and, at the third time, the server replies with error response. After any ERROR
response from the server, the connection is closed and all the requests will be timed-out.
Here, the on-line random-walk testing was used for equivalenceQuery. We have also tried
the edge-coverage based method, but this method was not able to find a counterexample
after the second equivalence query, yielding an inexact model. In order to learn the models
in Figure 6 we set c = 0.9999 and p = 0.5 in outputQuery. With these settings, at
least 95% of the experiments performed by N∗ are originated by output queries, and the
remaining from equivalence ones. In particular, learning the upload model required 322
output and 3 equivalence queries corresponding to more than 200,000 experiments, whereas
the download model required 102 output and two equivalence queries corresponding to about

4. We used Open TFTP Server (http://sourceforge.net/projects/tftp-server/), an open source im-
plementation of TFTP on Microsoft Windows.
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Figure 6: Identified partial model of TFTP server related to a file upload (left) and a file download (right).

53,000 experiments. Overall, the time taken to learn the two models was about 300minutes,
of which only a negligible fraction is spent inside N∗, and the most time-consuming parts
are network delays and the happened time-outs to investigate output on actions which are
not enabled. This explains why N∗ is able to learn abstract NFMs with hundreds of states
in less than 25s, but it requires around 5hours to identify a TFTP model with only 14 states.

5. Conclusions

Summing up, we have presented three main contributions in the direction of learning nonde-
terministic Mealy machines. The first one is the algorithm N∗ to infer NFMs. N∗ is based
on an extension of the MAT concept introduced by Angluin to learn finite state automata.
We have provided an algorithmic characterization of N∗ as well as practical suggestions to
implement N∗ for applications where the ideal oracle is not available. The second one is an
extensive experimental analysis on artificially generated NFMs, a quantitative assessment
of the difference in performances between ideal and real implementations of N∗, including
the relationship between the parameters of approximation oracles and those of the artificial
machines. The third one is the evaluation of N∗ to learn the TFTP protocol by interfacing
its implementation to an off-the-shelf TFTP server. Finally, even if we do not describe
it in this paper, the free open-source framework AIDE has been developed as part of this
research, and enabled the experimental analysis herein presented.

The overall result of our experimental analysis is that AIDE/N∗ can learn small-to-
medium sized systems, and its effectiveness depends critically on the correct estimation of
the event probability and the degree of non-determinism. When the estimation is correct,
and the system is not heavily non-deterministic, identification could be performed in rea-
sonable time and memory. From a theoretical point of view, this is explained by equation
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(2) which contains an exponential factor whose base is the maximum number of nondeter-
ministic transitions occurring in a single state. Experimental results confirm the theoretical
bound, since machines with relatively small percentage of states affected by degree-2 non-
determinism can be learned, whereas increasing the percentage of states and the degree of
nondeterminism can make identification challenging in practice.
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