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Abstract

This paper investigates the use of linear representations of trees (i.e. mappings from the set
of trees into a finite dimensional vector space which are induced by rational series on trees)
in the context of structured data learning. We argue that this representation space can be
more appealing than the space of trees to handle machine learning problems involving trees.
Focusing on a tree series maximization problem, we first analyze its complexity to motivate
the use of approximation techniques. We then show how a tree series can be extended to the
continuous representation space, we propose an adaptive Metropolis-Hastings algorithm to
solve the maximization problem in this space, and we establish convergence guarantees.
Finally, we provide some experiments comparing our algorithm with an implementation of
the Metropolis-Hastings algorithm in the space of trees.

Keywords: Rational tree series, Linear representation, Metropolis-Hastings, Markov chain
Monte Carlo

1. Introduction

Rational tree series are mappings from the set of trees on a ranked alphabet to the set
of real numbers, that can be computed by a weighted tree automaton. An equivalent
characterization for a tree series to be rational, is that it admits a finite-dimensional linear
representation, which induces a vectorial representation of trees (i.e. a mapping from the
set of trees to a finite-dimensional vector space) Berstel and Reutenauer (1982); Denis
et al. (2008). Unlike the space of trees which is a discrete space that does not have a
natural topological structure, this representation space offers several interesting properties:
it is linear, continuous, has a natural metric and may be of small dimension. Our goal is
to show on a tree series maximization problem, that working in the representation space
rather than directly in the space of trees can be beneficial and lead to better results.

We present a brief motivational example of the tree series maximization problem. In the
context of procedural modeling, probabilistic context-free grammars (PCFG) are used as a
mean to generate 3D models: in Talton et al. (2011), the authors use parametric conditional
PCFGs to generate 3D images of trees (e.g. oaks), buildings or cities. They address the
following problem: given such a grammar G and a high-level specification I of the desired
image (e.g. a sketch), how can one retrieve a production from the grammar that matches
the specification? They formulate this problem in the Bayesian setting by interpreting the
distribution π(·) on the set ∆(G) of derivation trees induced by G as the model prior, and
a similarity measure L(I|·) between the image generated from a derivation tree and the
sketch provided by the user as the likelihood. Finding the best tree that matches the user’s

c© 2014 G. Rabusseau & F. Denis.



Maximizing a Tree Series in the Representation Space

specification then reduces to maximizing the posterior p(·|I) ∝ π(·)L(I|·). The algorithm
they propose is a variant of the Metropolis-Hastings (MH) algorithm, which constructs a
Markov chain in the discrete space of trees to explore it. Knowing that the prior distribution
π is a rational tree series, a natural question arises: could the natural structure of the
underlying representation space be exploited to solve this problem? The broader problem
we investigate here is the following: given a non-negative tree series r, how can we take
advantage of a linear representation of trees to find a tree maximizing r?

The paper is organized as follows. First we introduce some preliminaries and notations.
We analyze the complexity of the maximization problem and of two other problems related
to the representation space in Section 3. In Section 4, we first present how the MH algorithm
can be implemented in the discrete space of trees. We then show how the series to be
maximized can be extended to the representation space and we propose an adaptive MH
algorithm in this space, for which we establish convergence guarantees. We provide some
experiments in Section 5 and we conclude by a discussion in Section 6.

2. Preliminaries

Rational Tree Series. We refer to Comon et al. (2007) for notions on trees, tree automata
and recognizable forests, and to Berstel and Reutenauer (1982); Denis et al. (2008) for
notions on rational tree series.

Let F = F0 ∪ F1 ∪ · · · ∪ Fm be a ranked alphabet where symbols in Fp are of arity p.
Trees on F are elements of the smallest set TF satisfying F0 ⊆ TF and f(t1, · · · , tp) ∈ TF
for all p > 0, f ∈ Fp and t1, · · · , tp ∈ TF . A context c of CF ⊆ TF∪{$} is a tree where the
special new symbol $ (of arity 0) appears exactly once. We denote by c[t] ∈ TF the tree
resulting from the substitution of $ with the tree t ∈ TF in c ∈ CF . For any t ∈ TF , let
CF (t) = {c ∈ CF | ∃t′ ∈ TF : t = c[t′]} be the set of all suffixes of t (i.e. the set of all
contexts resulting from substituting any subtree of t with the special symbol $).

A (formal power) tree series on TF is a mapping r : TF → R. Given two tree series
r, s ∈ R〈〈F〉〉, we define their sum r + s by (r + s)(t) = r(t) + s(t), and their Hadamard
product r�s by (r�s)(t) = r(t)·s(t) for all t ∈ TF . We denote by R〈〈F〉〉 the vector space of
tree series on TF . The support of a tree series r is the forest supp(r) = {t ∈ TF : r(t) 6= 0}.
A series r is recognizable (or rational) if there exists a triple (V, µ, λ), where V is a finite
dimensional vector space, λ ∈ V ∗ is a linear form, and µ maps each Fp into the set L(V p;V )
of p-linear mappings from V p to V , such that r(t) = λ(µ(t)) for all t in TF , where µ(t) ∈ V
is inductively defined by µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)). A tuple (V, µ) is called
a linear representation of TF , the tuple (V, µ, λ) is a linear representation of r, and the
dimension of the vector space V is its size.

A stochastic tree series is a tree series r ∈ R〈〈F〉〉 such that r(t) ∈ [0, 1] for all t ∈ TF
and

∑
t∈TF r(t) = 1. For each context c ∈ CF and each stochastic tree series r, we define

the probability distribution c−1r on TF by [c−1r](t) = r(c[t])
/∑

t′∈TF r(c[t
′]) for all t ∈ TF .

Theorem 2.1 (Berstel and Reutenauer (1982), Example 4.3, Proposition 5.1). Given a
recognizable forest L, the characteristic series 1L of L, defined by 1L(t) = 1 if t ∈ L and 0
otherwise, is a rational tree series whose size is polynomial in the number of states of the
minimal deterministic tree automaton (DTA) recognizing L.
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The Hadamard product of two rational tree series is a rational tree series, whose size is
in O(s1s2) (where s1 and s2 are the sizes of the two series).

MCMC Inference and Metropolis-Hastings. For an introduction to the Metropolis-
Hastings algorithm (MH), see Chib and Greenberg (1995). A discrete time Markov chain is a
sequence of random variablesX1, X2, X3, · · · taking their values in a (discrete or) measurable
state space X , which has the Markov property: P(Xn+1 ∈ A|X1 = x1, · · · , Xn = xn) =
P(Xn+1 ∈ A|Xn = xn) := P (xn, A) for all measurable sets A ⊆ X . The function P is called
the transition kernel of the Markov chain. For m > 1, we denote by Pm the m-iterated
transition kernel defined by

Pm(x,A) =

∫
X
P (x,dy)Pm−1(y,A)

A probability distribution π with density function fπ is called the stationary distribution for
P if

∫
A fπ(x) dx =

∫
X fπ(x)P (x,A) dx for all measurable setsA, which we write π = πP . If π

is the unique stationary distribution of a Markov chain, then the distribution of the samples
generated by this chain converges to π. Suppose that P has a density function fP (x, y) (i.e.
P (x,A) =

∫
A fP (x, y) dy), then a sufficient condition for π to be the stationary distribution

for P is the detailed balance equation: fπ(x)fP (x, y) = fπ(y)fP (y, x) for all x, y ∈ X .
Markov chain Monte Carlo (MCMC) methods are used to solve integration or opti-

mization problems involving a density function π on some state space X , which can be
unnormalized but satisfies 0 <

∫
X π <∞. MCMC techniques allow one to simulate random

variables X1, X2, · · · , XN drawn from the normalized density π̂(·), which can be used to
estimate expectation problems of the form Eπ̂[f(x)] =

∫
X f(x)π̂(x) dx ' 1

N

∑N
i=1 f(Xi) and

inference problems of the form arg maxx∈X π̂(x) ' arg maxX1,··· ,XN
π(Xi).

A popular MCMC algorithm is the Metropolis-Hastings (MH) algorithm. Let π(x) =
p(x)/K be a density function on a state space X , where K =

∫
X p(x) dx is the unknown

normalizing constant. The MH algorithm makes it possible to draw samples from π, pro-
vided that we can evaluate p at any point x ∈ X . First we choose an arbitrary probability
density function q(·, ·) on X ×X from which samples can easily be drawn. Then, given the
current state of the chain xn, we draw a candidate x∗ ∼ q(xn, ·) and accept it as the next
state of the chain with probability

α(xn, x
∗) = min

{
1,
p(x∗)q(x∗, xn)

p(xn)q(xn, x∗)

}
One can show that the transition kernel of the MH algorithm is

PMH(x,A) =

∫
A
q(x, y)α(x, y) dy + 1A(x)

(
1−

∫
X
q(x, y)α(x, y) dy

)
(1)

(where 1A denotes the characteristic function of the set A) and that it satisfies the detailed
balance equation for the distribution π.
Linear Programming, Convex Sets and Notations. See Luenberger (2003) for refer-
ences on linear programming. A linear program (LP) is an optimization problem than can
be expressed in the following standard form:

maximize cTx

subject to Ax = b and x ≥ 0
(2)
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where x, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. A vector x satisfying the constraints in (2) is a
feasible solution. If at most m of its entries are non-zero it is a basic feasible solution, and
if it achieves the maximum value of the objective function (cTx) it is an optimal feasible
solution.

Theorem 2.2 (Fundamental Theorem of Linear Programming). Given a linear program in
standard form (2) where A is an m× n matrix of rank m,

i) if there exists a feasible solution, there exists a basic feasible solution;

ii) if there exists an optimal feasible solution, there exists an optimal basic feasible solu-
tion.

Let V be a vector space. For any set A ⊆ V , the convex hull of A is the smallest convex
set of V containing A, we denote it conv(A). A k-simplex is a k-dimensional polytope which
is the convex hull of its k + 1 vertices.

For any subset A of a topological space, we denote its closure by A, its interior by
◦
A,

and its boundary by ∂A = A \
◦
A. For any subset B = {v1, · · · ,vn} of a vector space, we

denote by span(B) the vector space spanned by B.

3. Complexity Study

In this section, we study the complexity of the maximization problem. We want to find a
tree in TF which maximizes a non-negative tree series φ : TF → R. We will show that this
problem is undecidable when φ is rational, and that it is NP-hard even if the support of φ is
finite. We now give a formal definition of the Max-RTS problem and of the other problems
we will use to show this result.

Definition 3.1 (Max-RTS).
Instance: A non-negative rational tree series φ and a rational number γ.
Question: Is there a tree t ∈ supp(φ) such that φ(t) ≥ γ (resp. >, <, ≤)?

Definition 3.2 (Max-APA). An acceptor probabilistic automaton (acceptor PA) A of size
n over an alphabet Σ is a tuple A = 〈(Tσ)σ∈Σ,π,η〉, where for each σ ∈ Σ, Tσ ∈ Rn×n is
a row-stochastic transition matrix, and where π,η ∈ Rn are column vectors with only one
non-zero entry which is equal to one. An acceptor PA assigns an acceptance probability to
each word w = σ1 · · ·σm ∈ Σ∗, given by PA(w) = πTTwη where Tw = Tσ1 · · ·Tσm.

The Max-APA problem is the following:
Instance: An acceptor PA A and a rational number γ.
Question: Is there a word w ∈ Σ∗ such that PA(w) ≥ γ (resp. >, <, ≤)?

Definition 3.3 (3-SAT).
Instance: A formula ϕ =

∧l
i=1(li1∨ li2∨ li3) in conjunctive normal form, such that each clause

has 3 literals.
Question: Is there a satisfying assignment for ϕ?

It is well known that 3-SAT is NP-complete, and it has been proven in Paz (1971);
Blondel and Canterini (2003) that Max-APA is undecidable.
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Theorem 3.1. The Max-RTS problem is undecidable

Proof. We reduce the Max-APA problem to Max-RTS. Let A = 〈(Tσ)σ∈Σ,π,η〉 be an
acceptor PA of size n. Let F = {�} ∪ {σ̃(·)|σ ∈ Σ} be a ranked alphabet. Let φ be the
rational series on TF with linear representation (Rn, µ, λ), where λ is the linear form defined
by λ(v) = πTv for all v ∈ Rn, and where µ is defined by µ(�) = η and µ(σ̃)(v) = Tσv for
each σ ∈ Σ.

With any word w = w1 · · ·wm ∈ Σ∗ we associate the tree tw = w̃1(w̃2(· · · w̃m(�))) ∈ TF .
Check by induction that µ(tw) = Twη for all w ∈ Σ∗. It follows that λ(µ(tw)) = πTµ(tw) =
PA(w), and since every tree over F is of the form tw for a word w, we have PA(w) ≥ γ if
and only if φ(tw) ≥ γ. The proof is similar for the three other inequalities.

Theorem 3.2. The Max-RTS problem, with the added constraint that the support of φ must
be finite, is NP-hard.

Proof. We reduce 3-SAT to Max-RTS. Let ϕ =
∧l
i=1Ci =

∧l
i=1(li1 ∨ li2 ∨ li3) be an instance

of the 3-SAT problem with variables in V ar(ϕ). We consider the ranked alphabet F =
{1, 0, �, f(·, ·)} ∪ {Ci(·, ·, ·)}li=1. For i = 1 · · · l, we define a forest Ti ⊆ TF containing the
trees of the form Ci(b1, b2, b3) where each bi ∈ {0, 1} and at least one of them is 1, and

Tϕ := {f(t1, f(t2, f(· · · , f(tl, �))))| ∀i : ti ∈ Ti}.

We interpret the labels of the leaves of a subtree ti = Ci(b1, b2, b3) as truth values assigned
to the corresponding literals. Each tree in Tϕ puts at least one literal in every clause to
true, but not every tree defines a valid assignment (since assignments can be contradictory);
and for each valid assignment, there exists a tree in Tϕ from which it can be deduced.

We define the rational series φ by its linear representation (V, µ, λ):

• V is a vector space with basis {e>, e⊥, e�} ∪ {ex, e¬x | x ∈ V ar(ϕ)}

• µ is defined by µ(1) = e>, µ(0) = e⊥, µ(�) = e�, and for any basis vectors e1, e2, e3

µ(f)(e1, e2) =


2e1 if e2 = e�

2e⊥ if e1 = el and e2 = e¬l for a literal l

e1 + e2 otherwise

, and

µ(C)(e1, e2, e3) =


∑

i:ei=e>

eli +
∑

i:ei=e⊥

e¬li if {e1, e2, e3} ∩ {e>, e⊥} 6= ∅

0 otherwise

for each clause C = l1 ∨ l2 ∨ l3 (where it is understood that e¬¬x = ex for all x ∈
V ar(ϕ)).

• λ is defined on the basis vectors by λ(e) = 0 if e = e⊥ and 1 otherwise
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For a tree t ∈ Tϕ, each vi = µ(Ci(b1, b2, b3)) is the sum of three basis vectors, each
one of them corresponding to a literal which should be set to true by the assignment
(e.g. if C = x ∨ ¬y ∨ z, then µ(C(0, 0, 1)) = e¬x + ey + ez). Thus, developing µ(t) =
µ(f)(v1, µ(f)(· · · , µ(f)(vl, e�))) by multilinearity, we have that µ(t) is the sum of 6l basis
vectors, all of them being different from e⊥ if and only if there is no contradiction in the
assignment induced by this tree.

Consider the tree series φ′ = φ � 1Tϕ (which is rational by Theorem 2.1, with finite
support). It follows from the construction of φ that there exists a tree t ∈ supp(φ′) such
that φ′(t) ≥ 6l (resp. φ′(t) > 6l − 1) if and only if there exists an assignment satisfying
ϕ. Since the forest Tϕ is recognizable by a DTA with 3(l + 1) states, the size of the
representation of φ′ is polynomial in the size of the 3-SAT problem (and so is the encoding
of γ). This construction can thus be carried out in polynomial time, hence the NP-hardness
of the Max-RTS problem with finite support for the first two inequalities.

To prove the result for the remaining inequalities, define λ by λ(e) = 1 if e = e⊥ and 0
otherwise, and the series φ+1 : t 7→ φ(t)+1. Consider the rational tree series φ′ = φ+1�1Tϕ ,
and check that there exists a tree t ∈ supp(φ′) such that φ′(t) ≤ 1 (resp. φ′(t) < 2) if and
only if there exists an assignment satisfying ϕ.

We now state two other complexity results of problems related to the representation
space (we omit the proofs of these results due to lack of space):

- Let (V, µ, λ) be a representation of a rational tree series φ. Given a point x in V , can
we find a tree t ∈ supp(φ) such that its projection µ(t) in V is in a small ball around x?
One can show that Max-RTS is Turing-reducible to this problem in polynomial time, which
implies that it is undecidable, and that it is NP-hard when the support of φ is finite.

- Given a linear representation (V, µ) of TF , can we decide whether the application
µ : TF → V is injective? A straightforward reduction from the problem of the freeness of
matrix semi-groups for 3×3 matrices with non-negative integer Klarner et al. (1991) shows
that this problem is undecidable.

4. MCMC Inference in the Representation Space

Let φ be the non-negative tree series to maximize. We know from the previous section
that finding a tree maximizing φ is a difficult problem. In this section, we present two
methods to get an estimate of such a tree. First, we implement the Metropolis-Hastings
algorithm directly in the space of trees (this is in some way a reformulation of the algorithm
proposed in Talton et al. (2011) in our setting). Then, we propose a method to solve this
problem in a representation space: given a linear representation (V, µ) of TF , we propose
a continuous extension φ̃ of φ to V and an implementation of the MH algorithm targeting
φ̃ in the representation space V . We end this section by showing the convergence of the
proposed algorithm.

4.1. Metropolis-Hastings in TF

A first method to get an estimate of a tree maximizing the series φ is to implement the
MH algorithm directly in the space of trees, thus constructing a Markov chain in TF whose
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stationary distribution is proportional to φ. We only need to define the jump probability
from the current state of the chain t ∈ TF .

Let π be a stochastic tree series, and for each t ∈ TF , let qt be a probability distribution
on the contexts CF (t) such that qt(c) > 0 for all c ∈ CF (t). Let t be the current state of the
chain. To generate a new candidate, we first draw a context c ∈ CF (t) from qt(·). We then
draw a new subtree τ ′ from c−1π(·) and set t∗ = c[τ ′]. The jump probability from the tree
t to t∗ is qt(c) · [c−1π](τ ′) ∝ qt(c)π(t∗), which leads to the following acceptance probability

α(t, t∗) = min

{
1,
φ(t∗)qt∗(c)π(t)

φ(t)qt(c)π(t∗)

}
We can then run the chain in TF with the usual acceptance-rejection method while keeping
track of the tree maximizing φ.

In the particular case were φ(·) = p(·)L(·) is an unnormalized posterior distribution (p
is the prior and L the likelihood), a possible choice for π is the prior p, which simplifies

the acceptance probability to α(t, t∗) = min
{

1, qt∗ (c)L(t)
qt(c)L(t∗)

}
. In this context, the algorithm

is similar to the one proposed in Talton et al. (2011).

4.2. Extending φ to the Representation Space

Let φ be the non-negative tree series to maximize over TF , and (V, µ) be a linear represen-
tation of TF . We assume that φ is bounded, that its sum over TF is finite (

∑
t∈TF φ(t) <∞)

and that µ(TF ) is bounded in V (the first three assumptions are satisfied by any stochastic
tree series, and the linear representation induced by a rational stochastic tree series satisfies
the last one)1.

We want to define a non-negative function φ̃ : X → R where µ(TF ) ⊆ X ⊆ V , which
extends φ to V . This function φ̃ should be such that one of its maximizing points is µ(t̂)
where t̂ is a maximizing tree of φ.

The function φ naturally suggests a value for points in µ(TF ), but since we cannot assume
that µ is injective, we can only require that φ̃(µ(t)) = max{φ(t′) : µ(t) = µ(t′), t′ ∈ TF} for
all t ∈ TF . We now need to extend φ̃ to the rest of the representation space, or at least a
subset of it containing µ(TF ). A first idea is to define φ̃ on conv(µ(TF )) as follows: for a
point x ∈ conv(µ(TF )), consider all the convex combinations

∑
αiµ(ti) that are equal to x

and their corresponding scores
∑

i αiφ(ti), and set φ̃(x) equal to the best score. However,
in order to use approximation techniques like the Metropolis-Hastings algorithm in the
representation space, we need φ̃ to be continuous on its domain X (which we would like to
be compact and closed), and we cannot ensure these properties with this definition. In this
section, we first present an alternative definition of φ̃, and we then show that this function
has the desired properties.

Let D = dim(V ) + 1 and let S = {s1, · · · , sD} ⊆ V be the set of vertices of a (D − 1)-

simplex X = conv(S) whose interior
◦
X contains µ(TF ). Let TS = {s1, · · · , sD} be a

set of new symbols, we extend φ and µ to TF ∪ TS by setting φ(si) = 0 and µ(si) = si
for 1 ≤ i ≤ D. We denote by Cn the set of all positive vectors of Rn with unit `1-norm:
Cn = {α ∈ [0, 1]n :

∑
αi = 1}.

1. Note that φ does not need to be rational, all the results of this section hold for any non-negative series
over TF and any linear representation of TF that satisfy these assumptions.
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Definition 4.1. For all non-empty sets of trees T ⊆ TF , we define the function φ̃T : X → R
by

φ̃T (x) = sup
n>0, α∈Cn

t1···tn∈T∪TS

{
n∑
i=1

αiφ(ti) : x =
n∑
i=1

αiµ(ti)

}
(3)

We say that a tuple (α, {t1, · · · , tn}), where α ∈ Cn and {t1, · · · , tn} ⊆ TF∪TS , is a solution
(of length n) for φ̃T (x) if and only if x =

∑n
i=1 αiµ(ti) and φ̃T (x) =

∑n
i=1 αiφ(ti).

Note that if T = {t1, · · · , tn} is finite, then the function φ̃T coincides with the objective
function of the following LP problem:

maximize ΦTα

subject to


1 ... 1 1 · · · 1∣∣∣∣ ...

∣∣∣∣ ∣∣∣∣ ...

∣∣∣∣
µ(s1) ... µ(sD) µ(t1) ... µ(tn)∣∣∣∣ ...

∣∣∣∣ ∣∣∣∣ ...

∣∣∣∣

α =


1∣∣∣∣
x∣∣∣∣


and α ≥ 0

(4)

where Φ = (φ(s1), · · · , φ(sD), φ(t1), · · · , φ(tn)) and the unknown α are vectors in RD+n.

The extension of φ we propose is the function φ̃TF defined on the set X . Intuitively,
φ̃TF is the smallest concave function such that φ̃TF (µ(t)) ≥ φ(t) for any t ∈ TF . We now
prove that the function φ̃T is a well-defined function for any non-empty T ⊆ TF , continuous
on X , and that one of its maximizing points coincides with µ(t̂) for some tree t̂ such that
φ(t̂) = maxt∈T φ(t). To make the notations less cluttered, we denote in this section by φ̃
the function φ̃T for an arbitrary non-empty set of trees T ⊆ TF .

Proposition 4.1. The function φ̃ is a well-defined function, and φ̃(µ(t)) ≥ φ(t) for all
t ∈ T .

Proof. The set in (3) is non-empty (any x ∈ X can be expressed as a convex combination
of points in S) and has a supremum (it is bounded above by maxt∈TF φ(t)), thus φ̃ is a
well-defined function. The second point is a direct consequence of the definition of φ̃.

We now show that the supremum in (3) is always reached, and that for all x ∈ X there
exists a solution of length D for φ̃(x).

Proposition 4.2. Let x ∈ X . If there exists a solution of length n > D for φ̃(x), then
there exists a solution of length D for φ̃(x).

Proof. Let (α, A) be a solution of length n > D for φ̃(x). The vector α is an optimal
feasible solution of the LP problem described in (4) with T = A = {t1, · · · , tn}, and the
D× (D+n) matrix in this LP problem has rank D. It follows from Theorem 2.2 that there
exists an optimal basic feasible solution from which we can extract a vector β ∈ CD and a
subset B ⊆ A of cardinality D such that (β, B) is a solution of length D for φ̃(x).
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Lemma 4.1. Let (tn)n be a sequence in TF . If the sequence (µ(tn))n converges to x 6∈
µ(TF ), then limn φ(tn) = 0.

Proof. Let ε > 0. Since
∑

t∈TF φ(t) < ∞, the set Tε = {t ∈ TF : φ(t) ≥ ε} is finite.
Moreover, since limn µ(tn) 6∈ µ(TF ), each tree tm appears only a finite number of times in
(tn)n. Consequently, there exists an integer N such that for all n ≥ N we have tn 6∈ Tε,
hence limn φ(tn) = 0.

Theorem 4.1. For all x ∈ X , there exists a solution of length D for φ̃(x).

Proof. This result is straightforward if the subset of trees T is finite. Let x ∈ X and suppose
that the supremum in (3) is not reached, this implies that for each (α, {t1, · · · , tn}) ⊆ Cn×T
such that x =

∑
i αiµ(ti), we can find (α′, {t′1, · · · , t′n′}) ⊆ Cn

′×T such that x =
∑

i α
′
iµ(t′i)

and
∑

i αiφ(ti) <
∑

i α
′
iφ(t′i). Thus there exists a sequence (αn)n in CD and sequences (tni )n

in T ∪ TS for i = 1 · · ·D such that

D∑
i=1

αni µ(tni ) = x for all n, and lim
n

D∑
i=1

αni φ(tni ) = φ̃(x).

Since CD and X are compact, we can extract a subsequence (ασ(n))n converging to β ∈ CD,

and subsequences (µ(t
σ(n)
i ))n converging to xi ∈ X for i = 1 · · ·D. Let I be the set of indices

i such that xi = µ(ti) for a tree ti ∈ T ∪ TS , and J be the set of remaining indices. For all
j ∈ J , it follows from Lemma 4.1 that limn φ(tnj ) = 0, hence φ̃(x) = limn

∑D
i=1 α

n
i φ(tni ) =∑

i∈I βiφ(ti). For each j ∈ J we have xj ∈ conv(µ(TS)), thus there exists γj ∈ CD such

that xj =
∑D

k=1 γ
j
kµ(sk). We then have x =

∑
i∈I βiµ(ti) +

∑
j∈J βj

∑D
k=1 γ

j
kµ(sk), and

since φ(sk) = 0 for all sk ∈ TS , φ̃(x) =
∑

i∈I βiφ(ti) +
∑

j∈J βj
∑D

k=1 γ
j
kφ(sk). We can then

reduce this solution of length (|I|+D) for φ̃(x) to one of length D using Proposition 4.2.

Corollary 4.1. The function φ̃ is concave.

Proof. Let n > 0, α ∈ Cn and x,x1, · · · ,xn ∈ X such that x =
∑n

i=1 αixi. For each 1 ≤
i ≤ n, let (γi, {ti1, · · · , tiD}) be a solution of length D for φ̃(xi). We have x =

∑n
i=1 αixi =∑n

i=1 αi
∑D

j=1 γ
i
jµ(tij), hence φ̃(x) ≥

∑n
i=1 αi

∑D
j=1 γ

i
jφ(tij) =

∑n
i=1 αiφ̃(xi).

Corollary 4.2. Let T ⊆ TF and t̂ be a tree in T . If t̂ ∈ arg maxt∈T φ(t) then µ(t̂) ∈
arg maxx∈X φ̃(x).

Proof. Let t̂ ∈ arg maxt∈T φ(t). For any x ∈ X , let (α, {t1, · · · , tD}) be a solution of length

D for φ̃(x), we have φ̃(x) =
∑D

i=1 αiφ(ti) ≤ φ(t̂) ≤ φ̃(µ(t̂)), thus µ(t̂) ∈ arg maxx∈X φ̃(x).

We now study the continuity of φ̃ on X .

Theorem 4.2. The function φ̃ is continuous on X .
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Proof. We first prove the continuity at a point x0 ∈
◦
X in the interior of X . Let (xn)n

be a sequence in
◦
X converging to x0. For each n, we can express xn (resp. x0) as a

convex combination of a point on the boundary of X and x0 (resp. xn), i.e. there exist
αn, βn ∈ ]0, 1] and vn,wn ∈ ∂X such that

xn = αnx0 + (1− αn)vn and x0 = βnxn + (1− βn)wn (5)

By concavity of φ̃ and since φ̃(vn) = φ̃(wn) = 0 for all n, we can deduce

αnφ̃(x0) ≤ φ̃(xn) ≤ φ̃(x0)

βn
(6)

On the other hand, by going to the limit in (5) we have (1 − limn αn)(x0 − limn vn) =

(1− limn βn)(x0− limn wn) = 0 and since limn vn ∈ ∂X (resp. limn wn ∈ ∂X ) and x0 ∈
◦
X ,

we have x0 − limn vn 6= 0 (resp. x0 − limn wn 6= 0), hence limn αn = limn βn = 1 and it
follows from (6) that limn φ̃(xn) = φ̃(x0).

We now consider the case where x0 ∈ ∂X is on the boundary of X . Assume for conve-
nience that x0 ∈ conv(µ(s1, · · · , sD−1)) = S and let H = span(µ(s1) − µ(s2), · · · , µ(s1) −
µ(sD−1)) be the hyperplane parallel to S. Let (xn)n be a sequence in

◦
X converging to x0,

and assume that the solution for each φ̃(xn) can be written as

xn = αnvn + (1− αn)wn and φ̃(xn) = αnφ̃(vn) + (1− αn)φ̃(wn) (7)

where vn ∈ conv(µ(TF )) and wn ∈ S (this is true as soon as xn gets close enough to x0).
We can then decompose each vn as vn = vS

n + v⊥n where vS
n ∈ S and v⊥n ∈ H⊥, and it

follows from (7) that
xn −wn = αn(vS

n −wn) + αnv
⊥
n (8)

Since the closed set conv(µ(TF )) is a subset of the open set
◦
X , we have

‖v⊥n ‖ ≥ min{‖xo − x∂‖ : xo ∈ conv(µ(TF )),x∂ ∈ ∂X} > 0

for all n, hence limn ‖v⊥n ‖ > 0. Since vS
n−wn ∈ H, by taking the scalar product with v⊥n in

(8), we obtain 〈xn−wn,v
⊥
n 〉 = αn‖v⊥n ‖2. The left-hand side of this last equality converges

to 0 as n grows to infinity (because x0 − wn ∈ H), which implies limn αn = 0 (because
limn ‖v⊥n ‖ > 0), hence limn φ̃(xn) = limn φ̃(wn) = 0 = φ̃(x0).

4.3. Metropolis-Hastings in the Representation Space

Let π be a stochastic tree series whose support is the whole set of trees TF (i.e. π(t) > 0
for all t ∈ TF ). For each t ∈ TF , let qt be a probability distribution on the contexts CF (t)
such that qt(c) > 0 for all c ∈ CF (t). Let (V, µ) be a linear representation of TF .

Instead of using an MCMC algorithm directly in the space of trees TF , we will use
φ̃ to work in the underlying continuous space V . Since the function φ̃T is continuous
and non-negative on the compact space X for any T ⊆ TF , we can define its normalized
counterpart φ̂T (·) = φ̃T (·)/

∫
X φ̃T (x) dx. Our algorithm develops a Markov chain in V

targeting the distribution φ̂TF : while evolving in this space, we construct successive sets
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of trees T1 ⊆ T2 ⊆ · · · ; at each step n, we use the traditional MH acceptance probability
targeting the distribution φ̂Tn , where the jump distribution q(·, ·) can be any symmetric
density function satisfying infx,y∈X q(x,y) > 0 (e.g. q(x, ·) is the multivariate normal
distribution truncated to X , with mean x and variance σ2I).

Let x ∈ X and T ⊆ TF , for each solution (α, R) for φ̃T (x) we define the probability
distribution pα on R = {t1, · · · , tn} by pα(ti) = 0 if ti ∈ TS and pα(ti) = αi/

∑
ti∈R∩TF αi

otherwise.

Algorithm 1 Adaptive Metropolis-Hastings in V

Input: xn ∈ X , Tn = {t1, · · · , tn} ⊆ TF
Output: xn+1 ∈ X , Tn+1 ⊆ TF
1: Draw x∗ ∼ q(xn, ·)
2: Let (α, R) be a solution for φ̃Tn(x∗)
3: Draw t ∈ R ∼ pα(·), a context c ∈ CF (t) ∼ qt(·) and τ ∈ TF ∼ c−1π(·)
4: tn+1 ← c[τ ], Tn+1 ← Tn ∪ {tn+1}
5: Accept x∗ (i.e. xn+1 ← x∗, otherwise xn+1 ← xn) with probability

α(xn,x
∗) = min

{
1,
φ̂Tn(x∗)q(x∗,xn)

φ̂Tn(xn)q(xn,x∗)

}
= min

{
1,
φ̃Tn(x∗)

φ̃Tn(xn)

}

Algorithm 1 shows how to get the next state of the chain given the current one; to get
an estimate of the tree maximizing φ, we start with x1 and T1 = {t1} chosen randomly, and
evolve the chain in X while keeping track of the tree in Tn maximizing φ. This algorithm
is close to the traditional MH algorithm, but at each step the target distribution slightly
changes (φ̂T1 , φ̂T2 , · · · ). Such Monte-Carlo algorithms are called adaptive, and their con-
vergence is more tedious to assess than in the traditional case (see Roberts and Rosenthal
(2007)).

4.4. Proof of Convergence

In this section, we prove the following theorem:

Theorem 4.3. The distribution of the Xn’s generated by Algorithm 1 converges to φ̂TF .

For a set of trees T ⊆ TF , let PT denote the transition kernel of the Metropolis-Hastings
algorithm targeting the distribution φ̂T (cf. Eq. 1) and PnT (x, ·) denote this transition kernel
starting from x after n steps; for any ε > 0 and x ∈ X , we define the quantity

Mε(x, T ) = inf{n ≥ 0 : ‖PnT (x, ·)− φ̂T (·)‖TV ≤ ε}

where ‖PnT (x, ·)− φ̂T (·)‖TV = supA⊆X |PnT (x, A)− φ̂T (A)| is the total variation distance.

Theorem 2.1 and Corollary 2.2 in Fort et al. (2012) can be stated as follows: if the
conditions (A1) to (A4) below hold, then limn→∞ E [f(Xn)] = φ̂TF (f) for any bounded
continuous function f (i.e. the distribution of the Xn’s converges to φ̂TF )
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(A1) For all T ⊆ TF , the probability distribution φ̂T is such that φ̂TPT = φ̂T (i.e. φ̂T is
the stationary distribution of the Markov chain with transition kernel PT ).

(A2) The sequence (φ̂Tn)n≥1 converges weakly to φ̂TF P-a.s.

(A3) The sequence (supx∈V ‖PTn(x, ·)− PTn−1(x, ·)‖TV )n converges to zero in probability

(A4) For any ε > 0, the sequence (Mε(Xn, Tn))n is bounded in probability

For any T ⊆ TF , the transition kernel PT is by construction the MH kernel targeting
φ̂T , so φ̂T is the stationary distribution for the Markov chain with transition kernel PT and
condition (A1) is satisfied.

To prove that (A2) is satisfied, first remark that for any ε > 0 we can find a finite
set of trees R = {t1 · · · , tk} in TF such that ‖φ̂R(·) − φ̂TF (·)‖TV ≤ ε. Since the empty
context can be drawn at line 3 of Algorithm 1 with non-zero probability, any tree t ∈ TF
can be drawn and added to the current set of trees with non-zero probability; it follows
that the probability that there exists a step m where Tm ⊇ R is strictly positive, hence
P(limn→∞ ‖φ̂Tn(·)− φ̂TF (·)‖TV = 0) = 1.

The only difference between the definition of two successive transition kernels PTm−1

and PTm are the functions φ̂Tm−1 and φ̂Tm , and we have established the weak convergence

of the sequence (φ̂Tn)n. It follows that condition (A3) is a direct consequence of condition
(A2).

To prove that the last condition is satisfied, we use the following result.

Theorem 4.4 (Roberts and Rosenthal (2004), Theorem 8). Consider a Markov chain with
transition kernel P and stationary distribution π. Suppose there exist a positive integer n0,
ε > 0, and a probability measure ν(·) on X such that Pn0(x,A) ≥ ε · ν(A) for all x ∈ X and
all measurable set A ⊆ X . Then the chain is uniformly ergodic and ‖Pn(x, ·) − π(·)‖TV ≤
(1− ε)bn/n0c for all x ∈ X .

We first prove the following lemma.

Lemma 4.2. For any set of trees T such that T1 ⊆ T ⊆ TF , there exist ε > 0 and a
probability measure νT (·) on X such that PT (x, ·) ≥ ε · νT (·) for all x ∈ X .

Proof. Let m = minx,y∈X q(x,y) (recall that we have m > 0 by the choice of q) and let T
be a set of trees such that T1 ⊆ T ⊆ TF , we know that max φ̃T := maxx∈X φ̃T (x) < ∞. It
follows from the definition of the MH transition kernel (cf. Eq. 1) that for any measurable
set A ⊆ X and x ∈ X

PT (x, A) ≥
∫
A
q(x,y) min

{
1,
φ̃T (y)

φ̃T (x)

}
dy ≥ m

∫
A

φ̃T (y)

max φ̃T
dy

We define the probability measure νT (·) by νT (B) = 1
Z

∫
B

φ̃T (y)

max φ̃T
dy for all measurable

sets B ⊆ X , where Z =
∫
X

φ̃T (y)

max φ̃T
dy. We then have PT (x, ·) ≥ εT · νT (·), where εT =

m
∫
X

φ̃T (y)

max φ̃T
dy > 0. As a direct consequence of T1 ⊆ T ⊆ TF we have φ̃T1 ≤ φ̃T ≤
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φ̃TF , which implies
∫
X φ̃T ≥

∫
X φ̃T1 and max φ̃T ≤ max φ̃TF . We can then deduce εT ≥

m
∫
X

φ̃T1(y)

max φ̃TF
dy = ε∗ > 0 hence PT (x, ·) ≥ ε∗ · νT (·) for all x ∈ X and T1 ⊆ T ⊆ TF .

It then follows from Theorem 4.4 that ‖PnT (x, ·)− φ̂T (·)‖TV ≤ (1− ε∗)n for all T1 ⊆ T ⊆
TF and n > 1. Hence Mε(x, T ) ≤ ln ε

ln(1−ε∗) for all ε > 0, which shows that condition (A4) is
satisfied and ends the proof of Theorem 4.3.

5. Experiments

Let F = {f(·, ·), a} be a ranked alphabet. We consider a simple mismatch distance d on TF
which counts the number of differences between two trees (i.e. nodes in the same position
with different labels, and positions for which only one of the two trees has a node; for
example d(f(a, a), f(a, f(a, a))) = 3). Formally, for any trees t1, t2, t3, t4 ∈ TF , d(a, a) = 0,
d(f(t1, t2), f(t3, t4)) = d(t1, t3) + d(t2, t4) and d(f(t1, t2), a) = 1 + |t1|+ |t2|, where |t| is the
number of nodes in the tree t.

Given a tree t̂ ∈ TF , we define the tree series φt̂(·) = exp{−d(t̂, ·)}. We compare the
MH algorithm in the space of trees and Algorithm 1 for the task of retrieving the tree t̂,
which is equivalent to finding the tree maximizing the series φt̂.

Let A be the weighted tree automaton with two states q1 and q2, initial weights ι(q1) =
ι(q2) = 0.5, and the set of rules

{q1
0.9−−→ f(q1, q2), q1

0.1−−→ a, q2
0.4−−→ f(q2, q2), q2

0.6−−→ a}.

For any tree t ∈ TF , let qt be the distribution on CF (t) defined by the following process:
(i) randomly choose an integer h between 1 and the height of t, (ii) randomly choose a node
n within the nodes of depth h in t, and (iii) replace the subtree rooted in n with $.

For three different target trees t̂ of different sizes (generated by the automaton A), we
run the MH algorithm in TF and Algorithm 1 to maximize the series φt̂ until recovery of
the tree t̂. For both algorithms, we use the distribution induced by the automaton A as the
stochastic tree series π, and the distribution qt to draw a context in CF (t). For Algorithm 1,
we use the representation space induced by A and a truncated normal for the distribution
q(·, ·) on this space.

The results of this experiment are shown in Figure 1, where we plot the average of
φt̂(t) over 500 runs for the best tree found so far as a function of the number of iterations.
This experiment shows that as the task of retrieving t̂ gets more difficult, working in the
representation space leads to better performances.

6. Conclusion

We proposed an algorithm to solve a tree inference problem in a representation space of TF
and we showed its convergence. In this algorithm, the tree generation process is parallel to
the construction of the Markov chain in the representation space. Unlike the Metropolis-
Hastings algorithm in TF which forgets each generated tree, this algorithm uses each one
of them to learn more about the function φ̃TF , thus indirectly learning about φ. In doing
so, we take advantage of the representation space by using it as a foundation on which
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Size of target: 20 nodes Size of target: 90 nodes Size of target: 110 nodes

Figure 1: Comparison of the MH algorithm in the space of trees (MHTF) and the adaptive
MH algorithm in the representation space (MHV) for different sizes of t̂.

we progressively build a map, focusing around interesting regions of the space for the tree
generation process.

This work could be extended in several ways. First, the choice of the linear represen-
tation is a key step of this method and hand-crafting it could be a tedious task, we intend
to investigate how this linear representation could be learnt progressively: each generated
tree gives us information on the discriminative power of the representation space, and we
could use this information to modify it while exploring the space. Then, the canonical
representation of rational tree series introduced in Denis and Habrard (2007) induces a
representation space which is tightly linked to the space of contexts, we want to investigate
how this space could be used in a similar fashion. Finally, we want to explore how we could
work in the representation space to solve other learning problems involving trees (e.g. tree
classification). We strongly believe that we can use the representation space as a powerful
tool in this context.
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