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Abstract

A grammatical inference algorithm tries to find as a small grammar as possible representing
a potentially infinite sequence of strings. Here, let us consider a simple restriction: the input
is a finite sequence or it might be a singleton set. Then the restricted problem is called
the grammar compression to find the smallest CFG generating just the input. In the last
decade many researchers have tackled this problem because of its scalable applications, e.g.,
expansion of data storage capacity, speeding-up information retrieval, DNA sequencing,
frequent pattern mining, and similarity search. We would review the history of grammar
compression and its wide applications together with an important future work. The study
of grammar compression has begun with the bad news: the smallest CFG problem is
NP-hard. Hence, the first question is: Can we get a near-optimal solution in a polynomial
time? (Is there a reasonable approximation algorithm?) And the next question is: Can
we minimize the costs of time and space? (Does a linear time algorithm exist within an
optimal working space?) The recent results produced by the research community answer
affirmatively the questions. We introduce several important results and typical applications
to a huge text collection. On the other hand, the shrinkage of the advantage of grammar
compression is caused by the data explosion, since there is no working space for storing
the whole data supplied from data stream. The last question is: How can we handle the
stream data? For this question, we propose the framework of stream grammar compression
for the next generation and its attractive application to fast data transmission.

1. Introduction

The aim of an inference or learning algorithm is to find a compact representation of a
potentially infinite sequence of string wi. Depending on the class the input belongs to, this
problem becomes harder and harder to implement the algorithm, whereas the real world
data we can observe is always finite. One idea is to give up the prediction of future, in other
words, to consider a currently optimal solution for a finite input w1, w2, . . . , wn. When
regarding the delimiter ”,” as a special character #, this problem is transformed to the one
to find a minimum grammar generating the single string w = w1#w2# · · ·#wn. If the right
linear grammar (or DFA) is enough for your needs, it is easy to get a smallest DFA for w.
However you might need more compact representation of w due to the scale of data you
have, for instance, over a few hundred gigabytes of genome sequences.

As far as I know, polynomial time inferring CFG from infinite sequence is probably
impossible. For the finite case w, this problem is easy if any CFG is admissible (e.g.,
consider the trivial one consisting of S → w only). Then, we are interested in the smallest
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CFG generating just w. Unfortunately, this question was negatively solved by Lehman and
Shelat (2002) in 2002. They showed a reduction from the independent set to the minimum
CFG, that is, the NP-hardness and the non-approximability within a constant ratio unless
P = NP. On one hand, Charikar et al. (2005) showed a positive result: the smallest
CFG is approximable within a logarithmic ratio, a milestone in the grammar compression.
Besides, other approximation algorithms (Rytter, 2003; Sakamoto, 2005) achieving the same
approximation ratio were simultaneously proposed.

Because these algorithms run in linear time in the size of input, we got the best lower
bound of the time complexity. Then the next challenge is consisting of two tasks: an optimal
encoding of the resulting CFG and the improvement of the space complexity. Here we should
note the importance of these tasks, since they are necessary for practical application of the
grammar compression.

First, we consider the importance of the encoding CFG. Any CFG G can be transformed
into another G′ in Chomsky normal form with |G′| ≤ 2|G|. Therefore, we can assume any
CFG is of the form throughout this paper. Given a set P of n production rules, the CFG
is represented by an integer array A[1, 2n] such that A[2k − 1, 2k] stores the integers i, j iff
Xk → XiXj ∈ P . The fixed-length encoding of A[1, 2n] requires 2n lg n1 bits. A merit of
array representation is that we can randomly access to any production rule in O(1) time.
Instead, we must pay a considerable space for it. For example, let us examine the influence
for a real text. Given the text “Alice’s Adventures in Wonderland” by Lewis Carroll of size
152KB to a standard grammar compression algorithm, it outputs the array A[1, 2n] with
n = 45, 243. If taking 32-bit integer for the fixed-length code, the size of A is in fact 177KB,
that is, the algorithm compresses the input to a larger output!

Huffman encoding is an optimal solution for the absurdity, and many grammar com-
pression and related algorithms (e.g., Ziv and Lempel, 1977, 1978; Welch, 1984; Larsson
and Moffat, 2000) actually adopt it. However, since Huffman encode does not support the
random access on the string, the range of application is extremely restricted, for example,
only the partial decoding cannot be performed. This big problem has been overcome using
succinct data structures and related works (Jacobson, 1989; Munro and Raman, 2001; Ra-
man et al., 2002; Munro et al., 2003; Grossi et al., 2003; Benoit et al., 2005; Sadakane and
Navarro, 2010; Lu and Yeh, 2008). For the class C = {x1, x2, . . . , xn} of n objects, dlg ne is
the minimum bits to represent any xi ∈ C. If a representation method requires n+o(n) bits
for any xi ∈ C, the representation is called succinct. Using such techniques, several succinct
CFG representations have been proposed (Sakamoto et al., 2009; Maruyama et al., 2012;
Takabatake et al., 2012) while supporting the traverse of the derivation tree. Moreover, the
information-theoretic lower bound was also proved (Tabei et al., 2013b).

Second, we mention the other important task: reducing space complexity. There are
many algorithms having good capability for compression, but there is a trade-off between
the output size and the working space. For example, Repair (Larsson and Moffat, 2000)
is one of the best-performed algorithm, however, the required working memory is over 10
times greater than the input size.

Against this drawback, many researchers have challenged the space-saving grammar
compression, and proposed efficient algorithms as well as their applications to information

1. lg stands for log2.
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retrieval and data mining, where ”space-saving” means that the space is bounded by the
output size.

An important application is the self-index (Ferragina et al., 2007; Sadakane, 2003),
an index of text S supporting counting/locating of pattern P for S[i, j] = P and partial
decompression S[i, j] without explicit S. Whereas almost self-indexes were based on the
Burrows Wheeler Transform (Burrows and Wheeler, 1994), the size of required memory is
proportional to the size of input. Because of this bottleneck, grammar compression have
attracted the attentions and several algorithms have been proposed (Claude and Navarro,
2011; Kreft and Navarro, 2011). Recently the required memory is significantly improved
(Maruyama et al., 2013a; Takabatake et al., 2014a). Such algorithms can be expanded
to the frequent pattern mining (Nakahara et al., 2013) and the edit edit distance problem
(Takabatake et al., 2014b), which are inspired by the pioneering study indicating the relation
between the compression and the text similarity (Li et al., 2004; Cilibrasi and Vitanyi, 2005).

In the above, we have introduced the grammar compression for static data. On the
other hand, the stream data is another interesting application of grammar compression,
where the input sequence is given one by one and the algorithm must output for the latest
input. Recently, a fully-online algorithm for this problem have been proposed (Maruyama
et al., 2013b) and it was applied to the online computation of an extended the edit distance
(Takabatake et al., 2014b). The study of online grammar compression is developing and
the online construction of self-index by grammar compression is one of the most important
open problem.

2. Grammar Compression

2.1. The problem and its hardness

|C| denotes the cardinality of the set C. Σ is a finite set of symbols and we assume |Σ| is a
constant. Let X be a recursively enumerable set of variables with Σ ∩ X = ∅. A sequence
of symbols from Σ ∪ X is called a string. The set of all possible strings from Σ is Σ∗. For
a string S, the expressions |S|, S[i], and S[i, j] denote the length of S, the i-th symbol
of S, and the substring of S from S[i] to S[j], respectively. Let [S] be the set of symbols
composing S. A string of length two is called a digram.

A CFG is represented by G = (Σ, V, P,Xs) where V is a finite subset of X , P is a finite
subset of V × (V ∪ X )∗, and Xs ∈ V . A member of P is called a production rule. The set
of strings in Σ∗ derived from Xs by G is denoted by L(G). A CFG G is called admissible
if exactly one X → α ∈ P exists and |L(G)| = 1. An admissible G deriving S is called
a grammar compression of S for any X ∈ V . The size of G, |G|, is the sum of |α| for all
X → α ∈ P .

Problem 1 Minimum Grammar Compression
Instance: A string w ∈ Σ∗.
Solution: A smallest grammar compression G of w.

In 2002 the NP-hardness has been proved as well as there is no polynomial time ap-
proximation algorithm with ratio less than 5761/5760 unless P = NP (Lehman and Shelat,
2002). Thus, the next our interest is whether there is an approximation algorithm with
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a reasonable ratio. Of course, O(N)-approximation is trivial for N = |w|. In the follow-
ing several years, three O(lgN)-algorithms (Rytter, 2003; Charikar et al., 2005; Sakamoto,
2005) were independently proposed. The simplest algorithm is based on a canonical form
of CFG, called straight-line program, and related techniques.

2.2. Straight-line program

We consider only the case |α| = 2 for any production rule X → α because any grammar
compression with n variables can be transformed into such a restricted CFG with at most
2n variables. Moreover, this restriction is useful for practical applications of compression
algorithms e.g., LZ78 (Ziv and Lempel, 1978), REPAIR (Larsson and Moffat, 2000) and
LCA (Maruyama et al., 2012), and indexes e.g. SLP (Claude and Navarro, 2011) and ESP
(Maruyama et al., 2011).

The derivation tree of G is represented by a rooted ordered binary tree such that internal
nodes are labeled by variables in V and the yields, i.e., the sequence of labels of leaves is
equal to S. In this tree, any internal node Z ∈ V has a left child labeled X and a right
child labeled Y , corresponding to the Z → XY ∈ P .

If a CFG is obtained from any other CFG by a permutation π : Σ ∪ V → Σ ∪ V ,
they are identical to each other because the string derived from one is transformed to that
from the other by the renaming. For example, P = {Z → XY, Y → ab,X → aa} and
P ′ = {X → Y Z,Z → ab, Y → aa} are identical each other. Thus, we assume the following
canonical form of CFG.

Definition 1 (Karpinski et al., 1997) An SLP is a grammar compression over Σ ∪ V
whose production rules are formed by either Xi → a or Xk → XiXj, where a ∈ Σ and
1 ≤ i, j < k ≤ |V |.

Without loss of generality we can assume a smallest CFG is given as an SLP since the
required ratio is O(lgN). One of the first O(lgN)-approximation ratio was proved by the
relation between the size of G and the length of LZ-factorization, a decomposition of w into
a sequence of its substrings. Next, we focus on this analysis.

2.3. Approximation algorithm

It is known that there is an important relation between a deterministic CFG and a simple
decomposition of w. The LZ-factorization LZ(w) of w is the sequence f1 ·· · ··fk, where f1 =
w[1], and for each 1 < ` ≤ k, f` is the longest prefix of the suffix w[|f1 · · · f`−1|+1, |w|] that
appears in f1 · · · f`−1. The size |LZ(w)| of LZ(w) is the number of its factors. For example,
if w = abababaabab, LZ(w) = a, b, ab, aba, abab and |LZ(w)| = 5. For this factorization of
w, the following relation between |G(w)| and LZ(w) is known.

Theorem 2 (Rytter, 2003) For any string w and its deterministic CFG G, the inequality
|LZ(w)| ≤ |G| holds.

Rytter introduced the AVL-tree, a kind of SLP such that any two leaves in the deriva-
tion tree is balanced, and showed that an AVL tree can be constructed from LZ(w) by a
fraction of at most O(lgN). Other two algorithms are more complicated to explain the
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outline. Unfortunately the algorithm proposed by Sakamoto (2005) contained an error. In
2013, this error was fixed (Jeż, 2013) and the algorithm was further improved (Jeż, 2014).
Consequently we have obtained the O(lgN)-approximation.

Theorem 3 (Rytter, 2003; Charikar et al., 2005; Jeż, 2013) The minimum grammar
compression is O(lgN) approximable.

As fat as we know, this is the smallest approximation ratio at present. Besides, the
possibility of improvement looks hopeless because the grammar compression includes the
addition chain as a special case, whose O(lgN/ lg lgN) ratio seems to be impossible.

As we have seen in Introduction, the direct output G from the grammar compression
algorithm might be larger than the raw input. Next, we focus on the optimal encoding of
G using the succinct data structures.

3. Data Structures for Optimal Encoding

3.1. Succinct data structures

Because we consider only the caseX → α ∈ P , any grammar compressionG with n variables
can be transformed to such a restricted grammar within 2n variables. Then, the derivation
tree is then represented by an ordered binary tree such that internal nodes are labeled by
variables in V and the sequence of the leaves is equal to S.

The dictionary D for P is a data structure if we can directly access XiXj for any Xk in
case Xk → XiXj ∈ P . The production rule Xk → XiXj can be represented by the triple
(k, i, j) of nonnegative integers. Thus, the set of n production rules is represented by an
array D[1, 2n] such that k indicates the production rule (k,D[2k − 1], D[2k]).

The size of a naive representation of D[1, 2n] requires 2n lg n bits. The aim of encoding
of CFG is to reduce its size to an asymptotically optimal one preserving the random access
operation on the array. To realize such data structures, we use the fully indexable dictionary
supporting the following three operations over S ∈ Σ∗ using auxiliary data structure of
o(S)-bit2.

• access(S, k) returns S[k],

• rankσ(S, k) returns the number of σs in S[1, k], and

• selectσ(S, k) returns the position in S of the k-th σ, where σ ∈ Σ.

If S = 10110100111, rank1(S, 7) = 4, i.e., the number of 1 in S[1, 7] is 4, and select1(S, 5) =
9, i.e., the position in S of the fifth 1 is 9. When S is a binary string, the response time of
each rank/select is O(1) (Clark, 1996; Jacobson, 1989; Munro, 1996), and for any |Σ| = σ,
the response time is O(lg σ) (Grossi et al., 2003). If S is a binary string, the data structure
is called succinct bit-vector and wavelet tree for general Σ. We note that a weakly monotonic
sequence from [1, n] can be encoded in at most 2n + o(n) bits of space to directly access
any k-th integer. For example, the sequence (x1, x2, x3, x4, x5) = (1, 1, 2, 3, 5) is encoded to
Sx = 1001010110 and for any 1 ≤ k ≤ 5, we can access xk = rank1(Sx, select0(Sx, k)) in
O(1) time.

2. f(n) = o(g(n)) iff lim
n→∞

g(n)

f(n)
= 0, i.e., g(n) is really smaller than f(n).
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Figure 1: Grammar compression G and its parsing tree TG, DAG representation DAG(G),
and array representation D(G), where Σ = {a,b} and V = {1, 2, 3, 4, 5, 6}. In
DAG(G), the left edges are shown by solid lines. D(G) itself is an implementation
of the phrase dictionary.

3.2. Optimal encoding

Based on the bit-vector, we introduce two types of grammar encoding. One is called the
DAG representation and the other is called the partial parse tree. The optimality is guar-
anteed by a theorem of the lower bound of the minimum bits to represent the phrase
dictionary.

3.2.1. DAG representation:

We represent a CFG G as a DAG where Z → XY ∈ P is considered as two directed left
edge (Z,X) and right edge (Z, Y ), i.e., G can be seen as a DAG with a single source and
|Σ| sinks. Introducing the super-sink s and drawing left and right edges from any sink to
s, we can obtain the DAG with a single source/sink equivalent to G. We denote the DAG
as DAG(G).

Renaming the variables of DAG(G) in breadth-first order, we obtain an equivalent
DAG whose array representation is of D[D1[1, n], D2[1, n]] such that Xk → XiXj ∈ D(G)
iff D1[k] = i,D2[k] = j and D1[1, n] is monotonic, i.e., D1[i] ≤ D1[i + 1] (Figure 1).
The monotonic sequence D1 is encoded by the bit-vector B(D1) such that B(D1) =
0D1[1]10D1[2]−D1[1]1 · · · 0D1[n]−D1[n−1]1. We can get D1[k] = select1(B(D1), k) − k in O(1)
time with 2n + o(n) bits of space. The remaining sequence D2 is represented by GMR
(Golynski et al., 2006) in n lg n+ o(n lg n) bits of space supporting O(lg lg n) time access to
any D2[k] = access(A(D2), k).

3.2.2. Partial parse tree:

This concept was introduced by Rytter (2003). A partial parse tree PTree(G) is obtained
by the following operation: Let T be the parsing tree for w by G. If T contains a maximal
subtree rooted by A ∈ G(V ) appearing in T at least twice, replace all occurrences of the
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Figure 2: An example of partial parse tree and its encode by parentheses sequence for the
CFG G with the set of production rules, P = {X4 → X3X2, X3 → X2X1, X2 →
X1a,X1 → ab}. (1) the derivation tree of Gin post-order labeling; (2) the partial
parse tree PTree(G); Then, the pair (F,L) such that F =))()()()( and L = aba12
is generated. Consequently, G is encoded to the sequence (a(b)(a)(1)(2).

subtree by a single node labeled by A except the leftmost occurrence of the subtree. Iterating
this process, the rustling tree is denoted by PTree(G). Figure 2 shows an example of the
partial parse tree. PTree(G) has n internal nodes and n + 1 leaves, where n = |V |. The
skeleton of PTree(G) is represented by a sequence of parentheses.

Let x1, x2, . . . , x2n+1 be a sequence of nodes sorted by post-order. We represent the
sequence of nodes by 2k + 1 parentheses as follows:

F [i] =

{
′(′ if xi is a leaf
′)′ otherwise

(1)

Let L be the sequence of leaf labels of PTree(G) in post-order. G is encoded to (F,L).
We estimate the bits of space required for (F,L). The size of F is 2n + 1 bits. Because
L is the sequence over {1, 2, . . . , n + |Σ|} whose length is n + 1, the size of L is at most
(n+1)dlg(n+ |Σ|)e bits. Thus, the total space for (F,L) is approximately ndlg(n+ |Σ|)e+2
bits. A naive encoding represented by a sequence of right-hand sides of n production rules
requires 2ndlg(n+ |Σ|)e bits. Thus the succinct representation reduces the space to almost
half.

We note two array F and L can be combined into one array such that each symbol L[i]
is embedded after ith open parenthesis of F . The representation of the combined array has
an advantage that the decoding processing can be done in one pass over the compressed
text. We can also apply simple variable-length coding like LZW (Welch, 1984) for each
element of L because the number of allocatable nonterminals for any leaf node is limited by
the number of internal nodes that appear before the leaf node in post-order. The efficiency
of compression is further improved using such variable-length coding.
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3.2.3. Information-theoretic lower bound:

Any SLP with n variables is represented in n lg n + 2n + o(n) bits. Tabei et al. (2013b)
showed that this bound is information-theoretic minimum. For a class C of objects, dlg |C|e
is the minimum bits to represent any c ∈ C, which is called the information-theoretic lower
bound for C. To show the optimality of n lg n+2n+o(n) bits for SLP, we need to count the
number of all different SLPs with n variables. To do so, the spanning tree decomposition
was introduced:

fact 1 An in-branching spanning tree is an ordered tree such that the out-degree of any node
except the root is exactly one. For any in-branching spanning tree of G, the graph consisting
of the remaining edges is also an in-branching spanning tree of G.

The in-branching spanning tree consisting of the left edges (respectively the right edges)
is called the left tree TL (respectively right tree TR) of G. Note that the source in G is a
leaf of both TL and TR, and the super-sink of G is the root of both TL and TR. We shall
call the operation of decomposing a DAG G into two spanning trees TL and TR spanning
tree decomposition. In Figure 1, the source x5 in G is a leaf of both TL and TR, and the
super-sink s in G is the root of both TL and TR.

Any ordered tree is an elements in T =
⋃

n→∞ Tn where Tn is the set of all possible
ordered trees with n nodes. As shown by Asai et al. (2002) and Zaki (2002) independently,
there exists an enumeration tree for T such that any T ∈ T appears exactly once. The
enumeration tree is defined by the rightmost expansion, i.e., in this enumeration tree, a
node T ′ ∈ Tn+1, which is a child of T ∈ Tn, is obtained by adding a rightmost node to T .
Thus, the problem of counting possible G with n variables is reduced to the problem of
counting possible TR for a fixed TL ∈ Tn. Consequently the number of SLP with n variables
is asymptotically equal to 22n(n!).

Theorem 4 (Tabei et al., 2013b) The information-theoretic lower bound on the mini-
mum number of bits needed to represent an SLP with n symbols is lg n! + 2n + o(n) '
n lg n+ 2n+ o(n).

3.3. Hash tables

To construct CFG G, we must query the naming function: When a digram XY is decided to
replace, it should be associated to the variable Z if Z → XY is already created. The space
for the hash table is also crucial problem. To reduce the space consumption, we introduce
a method to simulate the naming function H defined as follows.

For a phrase dictionary D with n symbols,

H(XiXj) =

{
k, if D[k] = XiXj (1 ≤ k ≤ n)
Xn+1, otherwise.

For n = |V |, we set a total order on (Σ∪V )2 = {XY | X,Y ∈ Σ∪V }, which is represented
by the range [1, n2]. Then, we recursively define the wavelet tree (WT) TD for a phrase
dictionary D partitioning [1, n2]. On the root node, the initial range [1, n2] is partitioned
into two parts: a left range L[1, b(1 + n2)c/2] and a right range R[b(1 + n2)c/2 + 1, n2].
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Figure 3: WT for reverse dictionary: The bit string Bi is assigned to the i-th node in
breadth-first order. For each internal node i, we can move to the left child by
rank0 and to the right child by rank1 on Bi. The upward traversal is simulated
by select0 and select1 as shown.

The root is the bit string B such that B[i] = 0 if D[i] ∈ L and B[i] = 1 if D[i] ∈ R. By
this, the sequence of digrams, D, is decomposed into two subsequences DL and DR; they
are projected on the roots of the left and right subtrees, respectively. Each sub-range is
recursively partitioned and the subsequence of D on a node is further decomposed with
respect to the partitioning on the node. This process is repeated until the length of any
sub-range is one. Let Bi be the bit string assigned to the i-th node of TD in the breadth-first
traversal. In Figure 3, we show an example of such a data structure for a phrase dictionary
D.

Theorem 5 (Tabei et al., 2013b) The naming function for phrase dictionary D over
n = |Σ∪V | symbols can be computed by the proposed data structure DT in O(lg n) time for
any digram. Moreover, when a digram does not exist in the current D, DT can be updated
in the same time and the space is at most 2n lg n(1 + o(1)) bits.

4. Applications

4.1. Edit-sensitive parsing

First, we review the method for constructing balanced derivation tree by Cormode and
Muthukrishnan (2007), called ESP (Edit-Sensitive Parsing) since all applications reviewed
here are based on it, that is, we assume any SLP is parsed by ESP. When the derivation
tree of S and P are given, it is guaranteed that S[i, j] = P iff there is a sequence of subtrees
in TP of length O(lg∗ |P | lg |P |) embedded adjacently to the range S[i, j] of TS . Using this
characteristics, we can develop a self-index on grammar compression.
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The basic idea is to (i) start from a string S ∈ Σ∗, (ii) replace as many as possible of
the same digrams in common substrings by the same variables, and (iii) iterate this process
until |S| = 1.

In each iteration, S is divided into the maximal non-overlapping substrings such that
S = S1S2 · · ·S` and each Si belongs to one of three types: (1) a repetition of a symbol; (2)
a substring not including a type1 substring and of length at least lg∗ |S|; (3) a substring
being neither type1 nor type2 substrings. Substrings of Si is parsed by A → XY (2-tree) or
A → XY Z (2-2-tree), where A → XY Z is further transformed to A → XB and B → Y Z
to obtain a binary tree.

Si is parsed according to its type. In case Si is a type1 or type3 substring, it is parsed
by the typical left aligned parsing where 2-trees are built from left to right in Si and a
2-2-tree is built for the last three symbols if |Si| is odd, as follows:

• If |Si| is even, GC-ESP builds A → Si[2j − 1, 2j], j = 1, ..., |Si|/2,

• Otherwise, it builds A → Si[2j − 1, 2j] for j = 1, ..., (b|Si|/2c − 1), and builds A →
BSi[2j + 1] and B → Si[2j − 1, 2j] for j = b|Si|/2c.

In case Si is a type2 substring, Si is partitioned into several substrings such that Si =
s1s2...s` (2 ≤ |sj | ≤ 3) using alphabet reduction (Cormode and Muthukrishnan, 2007), which
is detailed below. ESP builds A → sj if |sj | = 2 or builds A → sj [2, 3], B → sj [1]A otherwise
for j = 1, ..., `. After transforming Si to S

′
i, the concatenated string S′

i (i = 1, . . . , `) is parsed
at the next level.

4.1.1. Alphabet reduction:

Given a type2 substring S, consider S[i] and S[i−1] as the binary integers. Let p be the po-
sition of the least significant bit in which S[i] differs from S[i−1], and let bit(p, S[i]) ∈ {0, 1}
be the value of S[i] at the p-th position, where p starts at 0. Then, L[i] = 2p+ bit(p, S[i])
is defined for any i ≥ 2. Since S is type2, so is the resulted string L = L[2]L[3] . . . L[|S|].
We note that if the number of different symbols in S is n which is denoted by [S] = n,
clearly [L] ≤ 2 lg n. Setting S := L, the next label string L is iteratively computed un-
til [L] ≤ lg∗ |S|, where lg∗ n = min{i| lg(i) n ≥ 1}. We can consider lg∗ n as constant in
practical sense, since lg∗ n ≤ 5 for n ≤ 265536. At the final L∗, S[i] of the original S is
called landmark if L∗[i] > max{L∗[i− 1], L∗[i+ 1]}. After deciding all landmarks, if S[i] is
a landmark, it is parsed by a 2-tree or 2-2-tree.

4.2. Self-index

TS and TP are given. TP is divided into a sequence of maximal adjacent subtrees rooted by
nodes v1, . . . , vk such that yield(v1 · · · vk) = P , where yield(v) denotes the string represented
by the leaves of v and yield(v1 · · · vk) is analogous. If z is the lowest common ancestor of v1
and vk, which is denoted by z = lca(v1, vk), the sequence v1, . . . , vk is said to be embedded
into z, denoted by (v1 · · · vk) ≺ z. When yield(v1 · · · vk) = P , z is called an occurrence node
of P .

Definition 6 (Maruyama et al., 2013a) Let L(v) be the variable of node v and let L(v1 · · · vk)
be the concatenation. An evidence of P is defined as a string Q ∈ (Σ ∪ V )∗ of length k
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satisfying the following condition: There is an occurrence node z of P iff there is a sequence
v1 · · · vk such that (v1 · · · vk) ≺ z, yield(v1 · · · vk) = P , and L(v1 · · · vk) = Q.

This is well defined because a trivial Q with Q = P always exists. An evidence Q
transforms the problem of finding an occurrence of P into that of embedding a shorter
string Q into TS . We present an algorithm for extracting evidences.

4.2.1. Evidence extraction:

The evidence Q of P is iteratively computed from the parsing of P as follows. Let P = αβ
for a maximal prefix α belonging to type1, 2 or 3. For i-th iteration of ESP, α and β of
P are transformed into α′ and β′, respectively. In case α is not type2, define Qi = α and
update P := β′. In this case, Qi is an evidence of α and β′ is an evidence of β. In case
α is type2, define Qi = α[1, j] with j = min{p | p ≥ lg∗ |S|, P [p] is landmark} and update
P := xβ′ where x is the suffix of α′ deriving only α[j+1, |α|]. In this case, Qi is an evidence
of α[1, j] and xβ′ is an evidence of α[j + 1, |α|]β. Repeating this process until |P | = 1, we
obtain the evidence of P as the concatenation of all Qi. We obtain the upper bound of
length Q.

Theorem 7 (Maruyama et al., 2013a) There is an evidence Q of P such that Q =
Q1 · · ·Qk where Qi ∈ q+i (qi ∈ Σ ∪ V , qi 6= qi+1) and k = O(lg |P | lg∗ |S|).

4.2.2. Counting, locating, and extracting:

A node z in TS is an occurrence node of P iff there is a sequence v1, . . . , vk such that
(v1, . . . , vk) ≺ z and L(v1 · · · vk) = Q. It is sufficient to adjacently embed all subtrees of
v1, . . . , vk into TS . We recall the fact that the subtree of v1 is left adjacent to that of v2
iff v2 is a leftmost descendant of right child(lra(v1)) where lra(v) denotes the lowest right
ancestor of v, i.e., the lowest ancestor of v such that the path from v to it contains at least
one left edge. Because z = lra(v1) is unique and the height of TS is O(lg |S|), we can check
whether (v1, v2) ≺ z in O(lg |S|) time. Moreover, (v1, v2, v3) ≺ z′ iff (z, v3) ≺ z′ (possibly
z = z′). Therefore, when |Qi| = 1 for each i, we can execute the embedding of whole Q in
t = O(lg |P | lg |S| lg∗ |S|) time. For general case of Qi ∈ q+i , the same time complexity t is
obtained.

Theorem 8 (Maruyama et al., 2013a; Takabatake et al., 2014a) Let |S| = N , |P | =
m, and |G| = n. Counting time of ESP-index is O((m+occ lgm lgN) lg lg n lg∗N) with 2n+
n lg n+o(n lg n) bits of space. With auxiliary n lgN+o(n) bits of space, ESP-index supports
locating in the same time complexity and also supports extracting in O((m + lgN) lg lg n)
time where occ is the frequency of the largest embedded subtree.

The earlier version of ESP-index (Maruyama et al., 2013a) was implemented by LOUDS
(Delpratt et al., 2006) and permutation (Munro et al., 2003) with the time-space trade-off.
The space was improved by Takabatake et al. (2014a) using GMR (Golynski et al., 2006).
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compression time working space (bits) Ref.

O(N/α) expected (3 + α)n lg(n+ |Σ|) Maruyama et al. (2012)
O(N/α) expected (114 + α)n lg(n+ |Σ|) Takabatake et al. (2012)

O(N lg n) 2n lg n(1 + o(1)) + 2n lg ρ (ρ ≤ 2
√
n) Tabei et al. (2013a)

O( N lg n
α lg lg n) expected (1 + α)n lg(n+ |Σ|) + n(3 + lg(αn)) Maruyama et al. (2013b)

O(N lg n) 2n lg n(1 + o(1)) + 2n Maruyama et al. (2013b)

Table 1: Comparison with online algorithms. N : the length of string, n: the number of
generated rules, and α ∈ (0, 1] (i.e., the load factor of hash tables). The size of
the auxiliary index for efficient substring decoding is excluded. The expected time
complexities are due to the use of a hash function.

4.3. Online algorithm

There is a strong demand to manage large-scale and highly repetitive text collections in
an online fashion. Grammar compression reveals high compressive and processing abilities
for highly repetitive texts in pattern matching (Tiskin, 2011; Yamamoto et al., 2011), edit-
distance computation (Hermelin et al., 2009), q-gram mining (Goto et al., 2013) and mining
characteristic substrings (Inenaga and Bannai, 2009; Matsubara et al., 2009), etc. Basically,
existing methods first build a complete CFG from an input text, and then encode it into a
compact representation. A crucial drawback of those methods is to require a large working
space consumed for building a CFG and its encoding. Even worse, they can not deal with
stream data because of their static property.

Maruyama et al. (2012) solved the inefficiency problem of large working space and the
static property by introducing an online grammar compression called online LCA (OLCA).
Although OLCA achieves a good worst-case approximation ratio of O(lg2N) to the smallest
CFG for an input string of length N , it has a serious issue of large working space and its
inability of direct encoding of an SLP into a succinct representation. Later, Takabatake
et al. (2012) presented an online encoding scheme of an SLP of n variables built from
OLCA into a succinct representation achieving 7

4n lg n + 4n + o(n) bits, which was still
larger than the information-theoretic lower bound (Tabei et al., 2013a). Moreover, they did
not present a space-efficient reverse dictionary, a crucial data structure for checking whether
or not a production rule in an SLP already exists in execution, which has been implemented
using a chaining hash table having a load factor α. Though this scheme is fully-online, its
working space is larger than an information-theoretic lower bound. Since available data of
highly repetitive texts is ever increasing, developing a fully-online grammar compression for
building an SLP using the minimum space remains a challenge.

Maruyama et al. (2013b) presented the fully-online grammar compression building the
SLP and directly encoding it into a succinct representation in an online manner. This
algorithm called fully-online LCA (FOLCA), which is a modification of OLCA that builds
the post order SLP (POSLP). A major advantage of a POSLP is enabling a direct encoding
into a succinct representation, while keeping the approximation ratio O(lg2N) of OLCA.
Table 1 summarizes these results.
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Appro. ratio Time Space Algorithm

SNN O(lgN lg∗ N) O(NO(1) +Npolylog(N)) O(NO(1)) Offline
Shapira & Storer O(lgN) O(N2) O(N lgN) Offline
ESP O(lgN lg∗ N) O(N lg∗ N/α) N lg |Σ| Offline

+n(α+ 3) lg (n+ |Σ|)
OESP O(lg2 N) O(N lg N lg n

α lg lg n
) n(α+ 1) lg (n+ |Σ|) Online

+n(5 + lg (αn)) + o(n)

Table 2: Comparison with pattern matching methods for EDM. The table summaries the
approximation ratio to EDM, computation time and space. The space for ESP
and OESP is presented in bits. SNN (Muthukrishnan and Sahinalp, 2000); ESP
(Cormode and Muthukrishnan, 2007); Shapira and Storer (Shapira and Storer,
2007).

4.4. Similarity metric

Streaming text data appears in many application domains of information retrieval. For
example recent sequencing technologies enable us to sequence individual genomes in a short
time, which resulted in generating a large collection of genome data. There is therefore a
strong incentive to develop a powerful method for similarity metric on a large cellection of
data.

Originally, ESP (Cormode and Muthukrishnan, 2007) was invented to approximately
compute the Edit distance with moves (EDM), which is a string-to-string distance measure
that includes substring moves in addition to insertions and deletions to turn one string
to the other in a series of editing operations. The distance measure is motivated in error
detections, e.g., insertions and deletions on lossy communication channels (Levenshtein,
1996), typing errors in documents (Crochemore and Rytter, 1994) and evolutionary changes
in biological sequences (Durbin et al., 1998). Computing an optimum solution of EDM is
intractable due to its NP-completeness (Muthukrishnan and Sahinalp, 2000). Therefore,
researchers have paid considerable efforts to develop efficient approximation algorithms
that are only applicable to an offline case where a whole text is given in advance (Table 2).
Early results include the reversal model (Kececioglu and Sankoff, 1993; Bafna and Pevzner,
1996) which takes a substring of unrestricted size and replaces it by its reverse in one
operation. Muthukrishnan and Sahinalp (2000) proposed an approximate nearest neighbor
considered as a sequence comparison with block operations. Recently, Shapira and Storer
(2007) proposed a polylog time algorithm with O(lgN) approximation ratio for the length
N of an input text.

ESP (Cormode and Muthukrishnan, 2007) is an efficient parsing algorithm developed
for approximately computing EDM between strings in an offline setting. ESP builds from
a given string a parse tree that guarantees upper bounds of parsing discrepancies between
different appearances of the same substring, and then it represents the parse tree as a vector
each dimension of which represents the frequency of the corresponding node label in a parse
tree. L1 distance between such characteristic vectors for two strings can approximate the
EDM. Although ESP has an efficient approximation ratio O(lgN lg∗N) and runs fast in
O(N lg∗N/α) time for a parameter α ∈ (0, 1] for hash tables, its applicability is limited to
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an offline case. For applications in web mining and Bioinformatics, computing an EDM of
massive streaming text data has ever been an important task. A challenge is to develop a
scalable online pattern matching for EDM.

An online pattern matching for EDM (Takabatake et al., 2014b) was recently pre-
sented by introducing a novel succinct representation of post-order unary degree sequence
(POUDS). The method is an online version of ESP named online ESP (OESP) that
(i) builds a parse tree for a streaming text in an online manner, (ii) computes characteristic
vectors for a substring at each position of the streaming text and a query, and (iii) computes
the L1 distance between each pair of characteristic vectors. The working space does not
depend on the length of text but the size of the grammar compression. To keep the working
space smaller, OESP builds a parse tree from a streaming text and directly encodes it into a
succinct representation leveraging the idea in the grammar compression (Maruyama et al.,
2013b; Maruyama and Tabei, 2014) and a dynamic succinct tree (Navarro and Sadakane,
2014).

5. Open Problem

We have reviewed the grammar compression and its applications. Finally, we propose two
open problems concerning stream grammar compression.

One is the online construction of self-index, i.e., given a self-index for S, we must
dynamically update it for Sα. If the index is based on BWT (Burrows and Wheeler,
1994), this problem depends on the hardness of updating a sorted array for a new entry.
Theoretically, it is solvable using the compressed random access memory (Jansson et al.,
2012), the implementation is, however, very hard. In case of grammar compression, there
is a possibility of the online self-index thanks to the stability of the derivation tree. When
TS is constructed, we do not edit the TS to complete the derivation tree TSα. Currently,
there is no algorithm for this problem.

The other interesting challenge is the speeding-up of data transmission by grammar
compression. In the communication complexity, it is a traditional problem to transmit data
by compression. However, taking account of the overhead of compression and decompres-
sion, this mechanism does not work well. For this problem, a simple CFG construction
(Yamagiwa and Sakamoto, 2013) was proposed and its prototype was demonstrated. As
shown in this study, the hardware implementation is a hopeful application of grammar
compression.

If you challenge such problems, you should deeply learn about the hardness and ap-
proximability of grammar compression. Lehman’s PhD thesis (Lehman, 2002) is the best
textbook. Further, you can obtain the basic knowledge of succinct data structures by
Navarro’s invited paper (Navarro, 2012).
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A. Jeż. A really simple approximation of smallest grammar. In CPM2014, pages 182–191,
2014.

M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algorithm for
strings with short descriptions. Nordic J. Comp., 4(2):172–186, 1997.

J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion
distance between two chromosomes. In Proceedings of the 4th Annual Symposium on
Combinatorial Pattern Matching, pages 87–105, 1993.

S. Kreft and G. Navarro. Self-indexing based on LZ77. In CPM, pages 41–54, 2011.

N.J. Larsson and A. Moffat. Offline dictionary-based compression. Proceedings of the IEEE,
88(11):1722–1732, 2000.

E. Lehman. Approximation Algorithms for Grammar-Based Compression. PhD thesis, MIT,
2002.

E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression. In
SODA, pages 205–212, 2002.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, 10:707–710, 1996.

M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitanyi. The similarity metric. IEEE Trans.
Inform. Theory, 50(12):3250–3264, 2004.

H.-I. Lu and C.-C. Yeh. Balanced parentheses strike back. ACM Transactions on Algo-
rithms, 4(3):Article No 28, 2008.

S. Maruyama and Y. Tabei. Fully-online grammar compression in constant space. In
Proceedings of Data Compression Conference, pages 218–229, 2014.

S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. ESP-Index: A Compressed
Index Based on Edit-Sensitive Parsing. In SPIRE, pages 398–409, 2011. To appear in
Journal of Discrete Algorithms.

S. Maruyama, H. Sakamoto, and M. Takeda. An online algorithm for lightweight grammar-
based compression. Algorithms, 5(2):213–235, 2012.

18



Grammar Compression and Its Application to Real Data

S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. ESP-Index: A Compressed Index
Based on Edit-Sensitive Parsing. Journal of Discrete Algorithms, 18:100–112, 2013a.

S. Maruyama, Y. Tabei, H. Sakamoto, and K. Sadakane. Fully-online grammar compression.
In SPIRE2013, pages 218–229, 2013b.

W. Matsubara, S. Inenaga, A. Ishino, A Shinohara, T. Nakamura, and K. Hashimoto.
Efficient algorithms to compute compressed longest common substrings and compressed
palindromes. Theoretical Computer Science, 410(8-10):900–913, 2009.

J.I. Munro. Tables. In FSTTCS, pages 37–42, 1996.

J.I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762–776, 2001.

J.I. Munro, R. Raman, V. Raman, and S.S. Rao. Succinct representations of permutations.
In ICALP, pages 345–356, 2003.

S Muthukrishnan and S. C. Sahinalp. Approximate nearest neighbors and sequence com-
parison with block operations. In Proceedings of the 32nd annual ACM symposium on
Theory of computing, pages 416–424, 2000.

M. Nakahara, S. Maruyama, T. Kuboyama, and H. Sakamoto. Scalable detection of frequent
substrings by grammar-based compression. IEICE Transactions, 96-D(3):457–464, 2013.

G. Navarro. Wavelet trees for all. In CPM, pages 2–26, 2012.

G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms, 10(3):16, 2014. A preliminary version appeared in SODA
2010.

R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In SODA, pages 233–242, 2002.

W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J. Algo-
rithms, 48(2):294–313, 2003.

K. Sadakane and G. Navarro. Fully-functional succinct trees. In SODA, pages 134–149,
2010.

H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compression.
J. Discrete Algorithms, 3(2-4):416–430, 2005.

H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono. A space-saving approximation
algorithm for grammar-based compression. IEICE Trans. Inform. and Systems, E92-D
(2):158–165, 2009.

19



Sakamoto

D. Shapira and J. A. Storer. Edit distance with move operations. Journal of Discrete
Algorithms, 5:380–392, 2007.

Y. Tabei, Y. Takabatake, and H. Sakamoto. A succinct grammar compression. In CPM,
2013a.

Y. Tabei, Y. Takabatake, and H. Sakamoto. A succinct grammar compression. In CPM2013,
pages 235–246, 2013b.

Y. Takabatake, Y. Tabei, and H. Sakamoto. Variable-length codes for space-efficient
grammar-based compression. In SPIRE, pages 398–410, 2012.

Y. Takabatake, Y. Tabei, and H. Sakamoto. Improved esp-index: A practical self-index for
highly repetitive texts. In SEA2014, pages 338–350, 2014a.

Y. Takabatake, Y. Tabei, and H. Sakamoto. Online pattern matching for string edit distance
with moves. In SPIRE2014, to appear, 2014b.

A. Tiskin. Towards approximate matching in compressed strings. In CSR, pages 401–414,
Berlin, Heidelberg, 2011. Springer-Verlag.

T.A. Welch. A technique for high performance data compression. IEEE Comput., 17:8–19,
1984.

S. Yamagiwa and H. Sakamoto. A reconfigurable stream compression hardware based on
static symbol-lookup table. In BPOE2013, pages 86–93, 2013.

T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and don’t-care
pattern matching on compressed texts. In CPM, volume 6661, pages 309–322, 2011.

M.J. Zaki. Efficiently mining frequent trees in a forest. In KDD, pages 71–80, 2002.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inform. Theory, 23(3):337–343, 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inform. Theory, 24(5):530–536, 1978.

20


	Introduction
	Grammar Compression
	The problem and its hardness
	Straight-line program
	Approximation algorithm

	Data Structures for Optimal Encoding
	Succinct data structures
	Optimal encoding
	DAG representation:
	Partial parse tree:
	Information-theoretic lower bound:

	Hash tables

	Applications
	Edit-sensitive parsing
	Alphabet reduction:

	Self-index
	Evidence extraction:
	Counting, locating, and extracting:

	Online algorithm
	Similarity metric

	Open Problem

