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Abstract

Recently, different theoretical learning results have been found for a variety of context-free
grammar subclasses through the use of distributional learning (Clark, 2010b). However,
these results are still not extended to probabilistic grammars. In this work, we give a
practical algorithm, with some proven properties, that learns a subclass of probabilistic
grammars from positive data. A minimum satisfiability solver is used to direct the search
towards small grammars. Experiments on typical context-free languages and artificial nat-
ural language grammars give positive results.
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1. Introduction

Recently, a series of positive theoretical learning results were obtained for a variety of
context-free grammar subclasses under different learning models (Clark and Eyraud, 2007;
Yoshinaka, 2008; Clark, 2006, 2010a; Shibata and Yoshinaka, 2013; Clark, 2013). A common
theme of these CFG subclasses is that their non-terminals are directly linked to features of
the underlying language (Clark, 2010b). In fact, it is precisely this relationship that makes
such classes ‘learnable’ using distributional learning techniques.

To our knowledge, no work has been done to extend these learnability results to learn-
ing probabilistic grammars. The problem is that learning PCFGs requires that the learned
structure (i.e. the underlying CFG) is somehow close to the target structure. With the
only exception of (Clark, 2013), all the results cited above (and similar other results) give
weak learning algorithms, which means that no importance is given to the learned structure
because any grammar found that generates the target language is good enough. In reality,
practically all of these weak learning methods end up returning very large grammars con-
taining all combinations of valid production rules. Assigning probabilities to such grammars
is not the ideal way of learning probabilistic grammars.

In this paper, we give a practical algorithm for learning a subclass of probabilistic
grammars. The non-stochastic version of this subclass is very similar to the one defined in
(Clark, 2010a). Although we do not give a theoretical learnability result, we still prove some
properties related to the algorithm. The main feature of our algorithm is that, unlike weak
learners, it tries to find small grammars. We evaluate our algorithm on typical context-free

c© 2014 J. Scicluna & C.d.l. Higuera.



Scicluna Higuera

languages and artificial natural language grammars. The results we obtain are competitive
with the state-of-the-art.

2. Preliminaries

2.1. Grammars and Languages

A context-free grammar (CFG) is a 4-tuple 〈N,Σ, P, I〉, where N is the set of non-terminals,
Σ the set of terminals, P the set of production rules and I a set of starting non-terminals
(i.e. multiple starting non-terminals are possible). The language generated from a particular

non-terminal A is L(A) = {w|A ∗⇒ w} and the language generated by a grammar G is
L(G) =

⋃
S∈I L(S). A CFG is in Chomsky Normal Form (CNF) if every production rule is

of the form N → NN or N → Σ.
A probabilistic context-free grammar (PCFG) is a CFG with a probability value assigned

to every rule and every starting non-terminal. The probability of a leftmost derivation
from a PCFG is the product of the starting non-terminal probability and the production
probabilities used in the derivation. The probability of a string generated by a PCFG is the
sum of all its leftmost derivations’ probabilities. The stochastic language generated from a
PCFG G is (L(G), φG), where φG is the distribution over Σ∗ defined by the probabilities
assigned to the strings by G. For a PCFG to be consistent, the probabilities of the strings
in its stochastic language must add up to 1 (Wetherell, 1980). Any PCFG mentioned from
now onwards is assumed to be consistent.

2.2. Congruence Relations

A congruence relation ∼ on Σ∗ is any equivalence relation on Σ∗ that respects the following
condition: if u ∼ v and x ∼ y then ux ∼ vy. The congruence classes of a congruence relation
are simply its equivalence classes. The congruence class of w ∈ Σ∗ w.r.t. a congruence
relation ∼ is denoted by [w]∼. As a consequence of the condition imposed on congruence
relations, it is always true that [uv] ⊇ [u][v] for any u, v ∈ Σ∗.

Two strings u and v in the same congruence class are relatives if either u = v or there
are k ≥ 2 congruence classes [w1], [w2], . . ., [wk] s.t. u and v are both in [w1][w2] . . . [wk] (i.e.
u and v are contained in the concatenation of these congruence classes). By [uv] ⊇ [u][v],
we can restrict the definition w.l.o.g. to only k = 2. Note that the relatives relation is
reflexive, symmetric and it does not need to be transitive. This is known as a tolerance
relation (Bartol et al., 2004). If we understand a tolerance as an undirected graph (in our
case, nodes are the strings in the same congruence class and edges are between strings that
are relatives), its blocks correspond to the graph’s maximal cliques (Bartol et al., 2004).

The set of contexts of a substring w with respect to a language L, denoted Con(w,L),
is {(l, r) ∈ Σ∗×Σ∗ | lwr ∈ L}. Two strings u and v are syntactically congruent with respect
to L, written u ≡L v, if Con(u, L) = Con(v, L). This is a congruence relation on Σ∗. The

context distribution of a substring w w.r.t. a stochastic language (L, φ), denoted C
(L,φ)
w , is

a distribution whose support is all the possible contexts over alphabet Σ (i.e. Σ∗×Σ∗) and
is defined as follows:

C
(L,φ)
w (l, r) =

φ(lwr)∑
l′,r′∈Σ∗ φ(l′wr′)
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Two strings u and v are stochastically congruent with respect to (L, φ), written u ∼=(L,φ) v,

if C
(L,φ)
u is equal to C

(L,φ)
v . This is a congruence relation on Σ∗.

2.3. Congruential Grammars

Clark (2010a) defines Congruential CFGs (C-CFGs) as being all the CFGs G which, for
any non-terminal A, if u ∈ L(A) then L(A) ⊆ [u]≡L(G)

(where [u]≡L(G)
is the syntactic

congruence class of u w.r.t. the language of G). This class of grammars was defined with
learnability in mind. Since these grammars have a direct relationship between congruence
classes and the non-terminals, their learnability is reduced to that of finding the correct
congruence classes (Clark, 2010a).

This class of grammars is closely related to the class of NTS-grammars (Boasson and
Sénizergues, 1985). NTS grammars are all C-CFGs, but not vice versa. However, it is not
known whether languages generated by C-CFGs are all NTS-languages (Clark, 2010a). It
is known that the class of languages describable using C-CFGs is a subclass of determinis-
tic context-free languages and contains the regular languages, the substitutable (Clark and
Eyraud, 2007) and k-l-substitutable context-free languages (Yoshinaka, 2008), the very sim-
ple languages and other typical CFLs such as the Dyck language (Boasson and Sénizergues,
1985).

We define a slightly more restrictive class of grammars, which we shall call Strongly
Congruential CFGs (SC-CFGs). A CFG G is a SC-CFG if, for any non-terminal A, if
u ∈ L(A) then L(A) = [u]≡L(G)

. The probabilistic equivalent of this is the class of Strongly
Congruential PCFGs (SC-PCFGs), defined as all the PCFGs G which, for any non-terminal
A, if u ∈ L(A) then L(A) = [u]∼=(L(G),φ)

. In other words, the strings derived from non-
terminals of these grammars are exactly equal to the language’s congruence classes (i.e. not
just contained in the congruence classes, as is the case for C-CFGs).

The languages UC1, UC2, UC5, UC7, AC1, AC2, AC3, AC4 in Section 4 can all be
described using a SC-CFGs. However, languages UC3, UC4 and UC6 cannot. In fact, the
languages UC3, UC4 and UC6 are all made up of an infinite union of congruence classes.
This is why they cannot be described using a SC-CFG or even a C-CFG.

2.4. Smallest Grammar

There are different ways of defining the size of a grammar. Five possible ways are: N:
Number of non-terminals; P: Number of production rules; N+P: Number of non-terminals
+ production rules; RHS: Total number of symbols in the RHS of every rule; RHS+P: Total
number of symbols in the RHS of every rule + production rules

We denote the size of a grammar G in general as |G|. When necessary, we will specify
how the size of the grammar is calculated with reference to the 5 options above.

A smallest grammar for a language L in a class of grammars G is any grammar G ∈ G
such that L(G) = L and there exists no G′ ∈ G with L(G′) = L and |G′| < |G|. There can
be multiple smallest (S)C-CFGs in CNF for the same language.

141



Scicluna Higuera

3. Learning SC-PCFGs in CNF from Positive Data

In this section, we describe a practical algorithm for learning SC-PCFGs in CNF from
positive data. Although we do not give a theoretical learnability result, we still prove some
properties related to this algorithm.

The first step (described in section 3.1) classifies all the substrings of the given sample
into classes according to the stochastic congruence relation. The decisions taken on whether
to put two substrings in the same class or not are based on the distance between the empirical
context distributions of these strings. The algorithm tries to minimize as much as possible
the number of times such decisions need to be taken. The second step of the algorithm
(described in section 3.2) builds a small grammar from the congruence classes learned.
Assuming that the first step returns an exact solution, we show that the learned grammar
will be at most twice the size of the smallest SC-PCFG in CNF that generates the target
language. With the same assumption, we also show that the learned grammar generates a
language which is equal or contained in the target language. Probabilities are assigned to
the learned grammar using the standard EM algorithm for PCFGs i.e. the Inside-Outside
algorithm (Lari and Young, 1990). In section 3.3 we give a procedure that generalizes the
learned (non-stochastic) grammar in case that we find a string (not in the sample) that is
in the target language and not accepted by the learned grammar.

Throughout this section, G is taken to be the target SC-PCFG in CNF generating a
stochastic language (L, φ). S is the finite sample given as input. We assume that S has
been i.i.d. generated from (L, φ) s.t. S is structurally complete w.r.t. G. By structural
completeness we mean that every production rule of G is used at least once in generating
the sample S.

3.1. Learning the Congruence Classes

Algorithm 1 describes how the congruence classes are induced. The algorithm loops through
all the pairs of substrings and decides for each pair whether the substrings should be merged
or not. These pairs are ordered according to ≺, which can be any ordering on Σ∗ such that
for any two strings u and v, if u is a substring of v then u ≺ v. Note that the algorithm
does not backtrack from its decisions (i.e. whenever two strings are merged, they are never
put back in separate classes).

Substrings are merged in the procedure CongruenceClosure. This procedure also finds
and merges other pairs of substrings that should logically be merged. These are found by
repeatedly applying the rule which congruence classes should follow: if u and v are in the
same class and x and y are in the same class then uv and xy should be in the same class.

ECD is the empirical context distribution. When defined over a string w ∈ Subs(S), it
is simply a probability distribution over all the contexts of w in S, where the probability
for a context (l, r) is the number of occurrences of lwr in the sample divided by the number
of occurrences of w. This definition is extended to congruence classes by treating each
substring in the class as one substring (i.e. the sum of occurrences of lwir, for all wi in
the congruence class, divided by the sum of occurrences of all wi). The closer the distance
between the empirical context distributions of classes [u] and [v] is, the more confident we
can be that [u] and [v] should be merged into one congruence class. Any distance between
probability distributions can be used here. In our experiments, we used the L1-distance.
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Algorithm 1: Learning the congruence classes

Input: Sample S, distance function between distributions dist, distance threshold δ,
frequency threshold n

Output: The congruence classes CC over the substrings of S
1 Subs← Set of all substrings of S ;
2 CC ← {{w} | w ∈ Subs} ;
3 Pairs← {(u, v) | u, v ∈ Subs , u 6= v , u ≺ v} ;
4 Order Pairs according to v (w.r.t. ≺) and if equal according to u (w.r.t. ≺) ;
5 foreach (u, v) ∈ Pairs do
6 if (u 6= min≺[u]) or (v 6= min≺[v]) then continue ;
7 if (

∑
x∈[u] |S|x < n) or (

∑
y∈[v] |S|y < n) then continue ;

8 if dist(ECD([u]), ECD([v])) < δ then
9 CC ← CongruenceClosure(u, v, CC) ;

10 end

11 end
12 return CC ;

In line 6 and line 7, the algorithm leaves the two substrings in their current congruence
class. In line 6, this is done because at least one of the substrings is not the smallest
string (according to ≺) in its own congruence class. In this case, the outcome of a previous
decision (precisely the decision taken on the pair of smallest substrings in both classes)
determined the state of the current substrings through CongruenceClosure. In line 7,
the algorithm avoids merging whenever one of the congruence classes is too sparse for a
good approximation for ECD to be calculated. Sparse congruence classes should be merged
though the logically deduced merges taken by CongruenceClosure. Note that the notation
|S|x is the number of occurrences of substring x in the sample S. Also note that [u] and [v]
in the algorithm are congruence classes in CC (i.e. the finite number of congruence classes
over all substrings of the sample, and not over Σ∗) and min≺[u] and min≺[v] are simply the
smallest strings w.r.t. ≺ in [u] and [v] respectively.

Proposition 1 If all decisions taken by the algorithm are correct, then the merge decisions
taken to identify a target congruence class [w] are exactly the merges between the smallest
substrings (w.r.t. ≺) in the relative blocks of [w] (i.e. at most, the number of relative blocks
minus 1)

Proof: If two strings u and v in the same target congruence class are relatives, then we
can split u and v, u = u1u2 and v = v1v2, s.t. u1 is congruent to v1 and u2 is congruent to
v2. Clearly, u1 and u2 (resp. v1 and v2) are smaller than u (resp. v) w.r.t. ≺. Therefore,
the decisions to merge u1 with v1 and u2 with v2 precede the decision to merge u with v.
If these preceding decisions are taken correctly, then u will be merged with v as a logical
consequence (i.e. u will be merged with v in Congruence Closure). This is because if
u = u1u2, v = v1v2, u1 ∼ v1 and u2 ∼ v2 then u ∼ v. Therefore, we do not need to take
merge decisions on strings that are relatives. The only merge decisions we need to take
are between non-relative strings. Merging two strings from different relative blocks will
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consequently result in all the strings in the two blocks to be merged together. Therefore,
the only merge decisions needed are between the smallest strings in the relative blocks.

3.2. Building the Grammar

Using the congruence classes learned from the previous step, we can build a primitive
grammar G′ as follows (exactly as Clark (2010a) does):

N = CC
Σ = Σ(S) (i.e. the alphabet of S)
P = {[w]→ [u][v] | w ∈ Subs(S); w = uv; |u|, |v| > 0} ∪ {[a]→ a | a ∈ Σ}
S = {[w] | w ∈ S}

Proposition 2 Assuming that the congruence classes obtained from the previous step are
correct, then the primitive grammar G′ will generate the target language

Proof: Since it is true in general that [uv] ⊇ [u][v] and a ∈ [a] then G′ cannot generate
strings which are not in the target language. On the other hand, the structural completeness
assumption ensures that a subset of the production rules of G′ are isomorphic to the target
grammar, which means that G′ generates at least the target language.

If we simply want to learn any CFG that generates the target non-stochastic language,
then G′ is good. However, in our case we are interested in learning the stochastic language.
This means that we have to find a CFG for which a probability assignment using the
standard EM algorithm for PCFGs (Lari and Young, 1990) yields a stochastic language
close to the target one. Using an Occam’s razor argument, a good candidate grammar
would be the smallest SC-CFG in CNF generating L(G′). However, finding such a grammar
is an NP-Complete problem. To prove this, we show that this problem is at least as difficult
as the Smallest CNF Grammar Problem, which is a known NP-complete problem (Rytter,
2003; Charikar et al., 2005)

Proposition 3 The Smallest CNF Grammar Problem, which is the problem of finding
a smallest CFG in CNF (where the size of the grammar can be either RHS or RHS+P) that
generates exactly one given string w is NP-Complete (Rytter, 2003; Charikar et al., 2005)

Theorem 4 Given a SC-CFGs in CNF generating L, the problem of finding a smallest
grammar for L in the class of SC-CFGs in CNF is NP-Complete.

Proof : First of all, we can easily construct a SC-CFG in CNF generating one string w.
Secondly, and most importantly, any smallest CFG in CNF generating only one string must
be a SC-CFG since every non-terminal must generate exactly one congruence class. This is
because each non-terminal must generate only one substring of w (otherwise the grammar
would not generate only w) and no two non-terminals can generate the same substring
(otherwise they would be redundant and thus the grammar will not be a smallest one).
Thirdly, the size of a smallest CNF grammar in general in terms of RHS is related to the
size in terms of P by the formula: RHS = 2P - |Σ| and also P will be exactly equal to N

(because every non-terminal is on the LHS of a rule exactly once). Therefore, a grammar is
the smallest irrespective of the method used to calculate its size (N, P, P+N, RHS or RHS+P).
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Therefore, from all this we can conclude that the Smallest CNF Grammar Problem is
polynomially reducible to the problem described in this theorem.

An alternative is to find a small grammar that is bounded in size w.r.t. the smallest
possible grammar. This is in fact the approach we take.

So, our task is to decide which non-terminals/rules are to be chosen from the primitive
grammar such that they form a small grammar equivalent to the target. We start by
assigning a Boolean variable to every non-terminal/rule which will be true if we decide
to choose that non-terminal/rule and false otherwise. We denote non-terminal variables
as N[x], [x] being the congruence class as a non-terminal, and rule variables as R[y],[z],
representing a CNF rule whose RHS is [y][z] (note that a SC-CFG cannot have two different
rules with the same RHS).
We can define the following constraints on these variables:

• Any non-terminal variable whose congruence class contains strings known to be in the
target language has to be true (these will be the starting non-terminals).

• Any non-terminal variable whose congruence class contains symbols from Σ has also
be true because we need them to define rules of the form A→ a.

• If a rule variable R[u],[v] is true, then it is clear that N[u] and N[v] have to be true.

• If N[w] is true, then for every string w ∈ [w], there must be at least one split of w
into u and v (w = uv) s.t. R[u],[v] is true. This ensures that every non-terminal
representing a congruence class [w] is capable of deriving each observed string in [w].
This constraint is consistent with the definition of SC-CFGs.

Algorithm 2 describes how we can build a formula that encodes these constraints. Line
9 in the algorithm deals with the first and second constraint mentioned above, line 6 with
the third constraint and line 8 with the last constraint.

Algorithm 2: Building the Formula

Input: Observation table 〈K,D,F〉
Output: A boolean formula, which is made up of a set of clauses

1 Formula← ∅ ;
2 foreach w ∈ K; |w| > 1 do
3 RuleV ars← ∅ ;
4 foreach uv = w; |u|, |v| > 0 do
5 RuleV ars← RuleV ars ∪ {R[u],[v]} ;

6 Formula← Formula ∪ {¬R[u],[v] ∨N[u],¬R[u],[v] ∨N[v]};
7 end
8 Formula← Formula ∪ {¬N[w] ∨

∨
r∈RuleV ars r} ;

9 if (w ∈ D) or ([w] ∩ Σ 6= ∅) then Set variable N[w] to true ;

10 end
11 return Formula ;

145



Scicluna Higuera

As an example, let the following be the congruence classes returned from the previous step:

1 : [a], 2 : [b], 3 : [ab, aabb, aaabbb], 4 : [aa], 5 : [bb], 6 : [aab, aaabb], 7 : [abb, aabbb], 8 : [aaa],
9 : [bbb], 10 : [aaab], 11 : [abbb]

Then the following is the formula built. Note that the leftmost clauses encode constraint
4, whilst the rest of the clauses encode constraint 3.

Variables N1 and N2 are true due to constraint 2, and N3 is true due to constraint 1.
¬N3 ∨R1,2 ¬R1,2 ∨N1 ¬R1,2 ∨N2

¬N3 ∨R1,7 ∨R4,5 ∨R6,2 ¬R1,7 ∨N1 ¬R1,7 ∨N7

¬N3 ∨R1,7 ∨R4,11 ∨R8,9 ∨R10,5 ∨R6,2 ¬R4,5 ∨N4 ¬R4,5 ∨N5

¬N4 ∨R1,1 ¬R6,2 ∨N6 ¬R6,2 ∨N2

¬N5 ∨R2,2 ¬R4,11 ∨N4 ¬R4,11 ∨N11

¬N6 ∨R1,3 ∨R4,2 ¬R8,9 ∨N8 ¬R8,9 ∨N9

¬N6 ∨R1,3 ∨R4,7 ∨R8,5 ∨R10,2 ¬R10,5 ∨N10 ¬R10,5 ∨N5

¬N7 ∨R1,5 ∨R3,2 ¬R1,1 ∨N1

¬N7 ∨R1,11 ∨R4,9 ∨R6,5 ∨R3,2 ¬R2,2 ∨N2

¬N8 ∨R1,4 ∨R4,1 ¬R1,3 ∨N1 ¬R1,3 ∨N3

¬N9 ∨R2,5 ∨R5,2 . .
¬N10 ∨R1,6 ∨R4,3 ∨R8,2 . .
¬N11 ∨R1,9 ∨R3,5 ∨R7,2 . .

The grammar built from a solution of the formula consists simply of all the production
rules whose rule variables are true and the trivial rules [a] → a for every a ∈ Σ. We shall
call solution grammars all the grammars built from all the possible solutions for a formula.
Note that all solution grammars generate languages which are contained or are equal to
the target language because the rules of these grammars are a subset of or equal to the
primitive grammar’s rules. For example, the following are three grammars built from three
different solutions of the example formula (the leftmost and rightmost grammars generate
the target language, the middle one generates a subset of the target, [ab] is the starting
non-terminal for all grammars):

[ab]→ [a][abb] | [a][b]
[abb]→ [ab][b]
[a]→ a [b]→ b

[ab]→ [aaa][bbb] | [aa][bb] | [a][b]
[aaa]→ [a][aa] [bbb]→ [b][bb]
[aa]→ [a][a] [bb]→ [b][b]
[a]→ a [b]→ b

[ab]→ [aa][abbb] | [aa][bb] | [a][b]
[abbb]→ [ab][bb]
[aa]→ [a][a] [bb]→ [b][b]
[a]→ a [b]→ b

We can use a Min-SAT solver to find an approximate minimal solution to the formula.
MIN-SAT is the problem of finding the minimal solution that satisfies a given boolean
formula, where a minimal solution is one which has the smallest number of true variables.
Marathe and Ravi (1996) give a MIN-SAT solver with an approximation ratio of 2. This
means that we can find a grammar that is at most twice the size of the smallest grammar
in terms of N+P. We can get the same result on N and P by adding negligible weights to rule
and non-terminal variables respectively and solve the weighted MIN-SAT problem (Marathe
and Ravi, 1996) (which also has an approximation ratio of 2). Note that weighted MIN-
SAT is the problem of finding the minimal weighted solution that satisfies a given boolean
formula and weights on the variables of this formula, where the minimal weighted solution

146



Grammatical Inference of some PCFGs from Positive Data using MIN-SAT

is one which minimizes the summation of the weights of the true variables. We can also get
the same result on RHS and P+RHS because RHS is always equal to 2P − |Σ|. However, the
main problem we have is that the grammar found might not be able to generate the target
language (as is the case in one of the example grammars above).

3.3. Generalizing the Grammar

Algorithm 3 is an attempt to partially solve the problem with the previous step. If we
happen to find (through more sampling for example) a string w which is in the target
language and not in the learned language, we can use this string to strengthen the boolean
formula in such a way that the solution which yielded the incorrect learned grammar would
be removed from the space of all possible solutions. In fact, any solution which yields a
grammar that does not generate w will also be removed from the solution space.

The idea behind Algorithm 3 is to add additional clauses to the formula so that all
solution grammars would have at least one parse tree for w. Since the primitive grammar
G′ has all the possible parse trees for w, the algorithm simply CYK parses w with G′ and
encodes the information in the CYK table as clauses.

One clause is added which simply says that at least one production rule that generates
the whole string w must be true (line 3 of the algorithm). The rest of the added clauses
follow the constraint that if a production rule [uv]→ [u][v] (represented by the rule variable
R[u],[v]) from the CYK table is chosen, then for every u1, u2 s.t. u1u2 = u (|u1|, |u2| > 0),
at least one rule [u] → [u1][u2] (represented by the rule variable R[u1],[u2]) from the CYK
table must be chosen. The same applies for v. These constraints are added to the formula
in lines 8 and 11 in the algorithm.

Note that we make use of the function Clause in Algorithm 3 which simply takes a
finite set {x1, x2 . . . xn} of literals (i.e. positive or negated variables) and returns a clause
x1 ∨ x2 ∨ . . . ∨ xn. Also note that RuleV ars is simply the set of all positive and negated
rule variables for all the production rules in the CYK table.

Algorithm 3 takes polynomial time in the length of w. Note that no new variables are
introduced in the formula. Moreover, the number of possible clauses that can be added is
finite because everything is bounded by the total number of rules in the primitive grammar.
In case all possible clauses are added, the solution grammars will be equivalent to the
primitive grammar and thus they will all generate the target language. This means that
we only need to call Algorithm 3 on some finite set of strings until every solution grammar
is correct. However, the big drawback is that we cannot polynomially bound this set of
strings w.r.t. the size of the target grammar or the length of the strings themselves.
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Algorithm 3: Strengthening the Formula

Input: A string w in the target language which is not accepted by the learned grammar,
the primitive grammar G′, the Formula

Output: A strengthened Formula

1 CYKTable← CYK(w,G′) ;
2 RuleV ars← { RB,C | A→ BC ∈ CYKTable } ∪ { ¬RB,C | A→ BC ∈ CYKTable } ;
3 Add Clause({R[u],[v] | w = uv; |u|, |v| > 0} ∩RuleV ars) to Formula ;

4 foreach x ∈ Subs(w), |x| > 2 do
5 foreach uv = x; |u|, |v| > 0 do
6 if R[u],[v] /∈ RuleV ars then continue

7 if |u| > 1 then
8 Add Clause({¬R[u],[v]} ∪ {R[u1],[u2] | u = u1u2; |u1|, |u2| > 0} ∩RuleV ars) to

Formula ;

9 end
10 if |v| > 1 then
11 Add Clause({¬R[u],[v]} ∪ {R[v1],[v2] | v = v1v2; |v1|, |v2| > 0} ∩RuleV ars) to

Formula ;

12 end

13 end

14 end
15 return Formula ;

4. Experiments

We tested our algorithm on 11 typical context-free languages and 9 artificial natural lan-
guage grammars taken from 4 different sources (Stolcke, 1994; Langley and Stromsten, 2000;
Adriaans et al., 2000; Solan et al., 2005). The 11 CFLs include 7 described by unambiguous
grammars:

UC1: anbn UC2: anbncmdm UC3: anbm n ≥ m UC4: apbq, p 6= q UC5: Palindromes
over alphabet {a, b} with a central marker UC6: Palindromes over alphabet {a, b} without
a central marker UC7: Lukasiewicz language (S → aSS|b)

and 4 described by ambiguous grammars:

AC1: |w|a = |w|b AC2: 2|w|a = |w|b AC3: Dyck language AC4: Regular expressions.

The 9 artificial natural language grammars are:

NL1:Grammar ‘a’, Table 2 in (Langley and Stromsten, 2000) NL2:Grammar ‘b’, Table 2 in
(Langley and Stromsten, 2000) NL3:Lexical categories and constituency, pg 96 in (Stolcke,
1994) NL4:Recursive embedding of constituents, pg 97 in (Stolcke, 1994) NL5:Agreement,
pg 98 in (Stolcke, 1994) NL6:Singular/plural NPs and number agreement, pg 99 in (Stolcke,
1994) NL7: Experiment 3.1 grammar in (Adriaans et al., 2000) NL8: Grammar in Table
10 (Adriaans et al., 2000) NL9: TA1 grammar in (Solan et al., 2005).
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Relative Entropy

Ex. |Σ| |N | |P | |S| Our Algorithm ADIOS

UC1 2 3 4 10 0.029 1.876
UC2 4 7 9 50 0.0 1.799
UC5 2 3 5 10 0.111 7.706
UC7 2 2 3 10 0.014 1.257
AC1 2 4 9 50 0.014 4.526
AC2 2 5 11 50 0.098 6.139
AC3 2 3 5 50 0.057 1.934
AC4 7 8 13 100 0.124 1.727
NL7 12 3 9 100 0.0 0.124

NL1 9 8 15 100 0.202 1.646
NL2 8 8 13 200 0.333 0.963
NL3 12 10 18 100 0.227 1.491
NL5 16 12 23 100 0.111 1.692
NL6 19 17 32 400 0.227 0.138

UC3 2 3 5 100 0.411 0.864
UC4 2 5 9 100 0.872 2.480
UC6 2 3 8 100 1.449 1.0
NL4 13 11 22 500 1.886 2.918
NL8 30 10 35 1000 1.496 1.531
NL9 50 45 81 800 1.701 1.227

Table 1: Relative Entropy results of our algorithm vs ADIOS (Solan et al., 2005).

Samples where i.i.d. generated from these grammars and given as input to our algorithm.
The parameters used for learning the congruence classes were the L1-distance for dist, a
distance threshold δ which varied considerably depending on the size of the sample (from 0.2
to 0.7), and frequency threshold n roughly the size of the sample divided by 10. The relative
entropy1 between the distributions of the target and learned grammars was calculated on a
test set of one million strings generated from the target grammars. The results2 are shown
in Table 1 alongside results obtained by ADIOS (Solan et al., 2005), a system which obtains
competitive results on language modelling (Waterfall et al., 2010).

For the tests in the first section of Table 1 (i.e. above the first horizontal line), our
algorithm was capable of exactly identifying the structure of the target grammar (after
trivial rules with probability 1 in the learned grammar where removed and their RHS
replaced in other rules). For the tests in the second section of Table 1 (i.e. between the two
horizontal lines), our algorithm was capable of exactly identifying the target non-stochastic
language but not the structure of the target grammar. In all of these cases, the induced
grammar was slightly smaller than the target one. For the remaining tests, our algorithm

1. The relative entropy (or Kullback-Leibler divergence) between a target distribution D and a hypothesized

distribution D′ is defined as
∑
w∈Σ∗

ln
( D(w)

D′(w)

)
D(w). Add-one smoothing is used to solve the problem of

zero probabilities.
2. The target and learned grammars along with the training samples can be downloaded from

https://dl.dropboxusercontent.com/u/3588336/ICGI2014-Dataset.zip

149



Scicluna Higuera

did not identify the target language. In fact, it always overgeneralised. The 3 typical CFLs
UC3, UC4 and UC6 are not identified because they are not contained in our subclass of
CFLs. Inspite of this, the relative entropy results obtained are still relatively good.

5. Discussion

Clearly there are many things left to analyse about the algorithm presented in this paper.
First of all, we do not yet know whether the class of languages generated by SC-CFGs is
contained or equal to the class of languages generated by C-CFGs. We conjecture that
they coincide. Also, although it is known that C-CFGs in CNF are as expressive as general
C-CFGs, we do not know whether SC-CFGs in CNF are as expressive as general SC-CFGs.
This is because a binarised version of a SC-CFG might not itself be strongly congruential.

Although we can say something about the merge decisions that need to be taken by
Algorithm 1 (see proposition 1), we do not have a clear view of what the non-merge decisions
will be in general. What is clear is that the quantity of these decisions can vary with ≺.

We feel that a complete theoretical result based on the material in sections 3.2 and 3.3
is possible. One idea is to try to get a stronger type of MAT-learning result where the
learned grammar, apart from being equivalent to the target, is also bounded in size w.r.t.
the smallest possible grammar. Starting from the learner in (Clark, 2010a), which returns
the primitive grammar and the congruence classes, we can find a small grammar through
the formula. Using equivalence queries, we can check if this grammar is equivalent to the
target. If not equivalent, we can use the returned counter-example string to strengthen the
formula using a procedure similar to the one explained in section 3.3 until a correct small
grammar is found. As we stated before, the problem with our procedure is that we cannot
guarantee that a correct grammar is found after only a polynomial number of calls.

It also seems reasonable to extend the idea of the formula to other classes of grammars
which have direct relationships between their non-terminals and observed features of the
underlying language (Yoshinaka and Clark, 2010; Kasprzik and Yoshinaka, 2011)

From a more practical point of view, we might have some a priori biases towards certain
forms of grammars (apart from smaller grammars). These may be encoded in the formula
by giving weights to the variables and finding the minimal weighted solution. For example,
a bias can be added in favour of non-terminals representing congruence classes which, ac-
cording to constituency tests (like the Mutual Information criterion in (Clark, 2001)), are
more likely to contain substrings that are constituents.
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