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Abstract

Motivated by the idea of applying nonparametric Bayesian models to dual approaches for
distributional learning, we define (k,[)-context-sensitive probabilistic context-free gram-
mars (PCFGs) using hierarchical Pitman-Yor processes (PYPs). The data sparseness
problem that occurs when inferring context-sensitive probabilities for rules is handled by
the smoothing effect of hierarchical PYPs. Many possible definitions or constructions of
PYP hierarchies can be used to represent the context sensitivity of derivations of CFGs in
Chomsky normal form. In this study, we use a definition that is considered to be the most
natural as an extension of infinite PCFGs defined in previous studies. A Markov Chain
Monte Carlo method called blocked Metropolis-Hastings (MH) sampling is known to be
effective for inferring PCFGs from unsupervised sentences. Blocked MH sampling is ap-
plicable to (k,1)-context-sensitive PCFGs by modifying their so-called inside probabilities.
We show that the computational cost of blocked MH sampling for (k,!)-context-sensitive
PCFGs is O(|V|!*3|s]3) for each sentence s, where V is a set of nonterminals. This cost is
too high to iterate sufficient sampling times, especially when [ = 0, thus we propose an al-
ternative sampling method that separates the sampling procedure into pointwise sampling
for nonterminals and blocked sampling for rules. The computational cost of this sampling
method is O(min{|s|', |V|'}(|V]|s|? + |s]?)).

Keywords: nonparametric Bayesian model, distributional learning, Gibbes sampling

1. Introduction

Methods that divide sentences into contexts and constituents, and then construct gram-
mars by grouping or aligning their common parts are generally called distributional learn-
ing. The idea of distributional learning has been studied and implemented in deterministic
systems (van Zaanen, 2000) and generative models (Klein and Manning, 2002).

In recent studies, theoretical aspects of distributional learning have been developed in
deterministic learning frameworks such as learning in the limit and the Minimally Adequate
Teacher (MAT) model. A series of subclasses of context-free grammars (CFGs) have been
shown to be learnable using distributional approaches. Distributional learning are formally
divided into primal and dual approaches (Yoshinaka, 2011, 2012). Roughly speaking, the
difference between the primal and dual approaches is that the nonterminal symbols in the
inferred CFGs are represented by substrings or contexts, respectively. A subclass of CFGs
have the ¢-FCP (Finite Context Property) if their nonterminals are characterized by ¢
substrings. CFGs that have the ¢-FCP can be learned by dual approaches.
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In the context of probabilistic learning, several positive theoretical results have been
obtained for distributional approaches. Clark (2006) showed that non-terminally separated
(NTS) languages are PAC(probably approximately correct)-learnable from positive samples
if the target distributions satisfy properties represented by several parameters, such as u-
distinguishability. All NTS languages are able to generated from CFGs that have the
1-FKP.

Other fundamental classes that can be learned by primal and dual approaches have also
been shown to be learnable in a PAC sense (Shibata and Yoshinaka, 2013a). These results
are useful steps from the viewpoint of understanding the learnable subclasses of CFGs, but
their algorithms are not efficient in terms of required amount of data if the goal is to learn
grammars with high accuracy from real-world data. In this paper, we apply nonparametric
Bayesian methods, which were developed recently, to learning CFGs according to an idea
of dual approaches for distributional learning.

We are interested in defining and learning the subclasses of probabilistic CFGs using
nonparametric Bayesian models that are analogous to dual approaches. Let Py psty(|(057))
be a distribution over the substrings that a context (I,r) accepts, which can be generated
from a Pitman-Yor Process (PYP, as described in Sec. 3.1):

Psubstr("(l,’l”)) ~ PYP(97d7 HA);

where A is a nonterminal and the base measure H4 depends only on A and not on (I,7) .
H 4 is analogous to L(A) in the deterministic dual approach, i.e., after a set of substrings are
drawn from H 4, the probabilities over the set depend on (I,r). Intuitively, the advantage
of the definition given above is that the distribution over L(A) can depend on (I, ), unlike
probabilistic context-free grammars (PCFGs). In PCFGs, the probabilities of contexts and
of substrings are independent for every nonterminal A: P(S = [Ar = lur) = P(S =
IAT)P(A = u).

There are two problems with the generative model described above. One problem is the
sparsity of the substrings that each context accepts. To avoid this, we can take advantage
of the hierarchies of the base measures of PYPs by assuming that each context generates
rules instead of substrings with probability P, j.(-|lAr) and:

Prule('“Ar) ~ PYP(0> d, Hﬂ'(lAT’))? (1)

where 7 is an arbitrary function that decreases the length of [ or r from the outside, i.e.,
n(lAra) = (I,7) or m(al,r) = (IAr) for any letter a. Hya, is obtained recursively.

Another problem is that the generative model defined in Eq. 1 fails to define the prob-
abilities for generated sentences, unless all the rules are linear. Eq. 1 assumes that the
context (I,7) of A is known before a rule A — « is generated. The contexts for rules should
be pairs of sequences that include nonterminals around the nonterminal, to which the ob-
jective rule is applied. The Details of the definition of the generative model with PYPs are
described in Sec. 4.2.

1. For example, if the target grammar is a c-deterministic CFG (Shirakawa and Yokomori, 1993), A is
uniquely identified from (I, 7).
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2. Related Work

Recent studies have proposed nonparametric Bayesian models, which are related to CFGs
and can relax the property of independence for the respective rules of PCFGs. Cohn et al.
(2010); Shindo et al. (2012) showed that learning tree substitution grammars (T'SGs) from
parse tree-annotated data yielded high accuracy when parsing sentences. The rules of TSGs
are elementary trees or tree fragments, instead of the production rules used in CFGs. TSGs
can capture the dependencies between contexts and constituents. The adaptor grammars
proposed by Johnson et al. (2007a) comprise a general framework that can weaken the
independence between contexts and constituents in PCFGs. Pitman-Yor adaptor grammars
were defined as a subclass of adaptor grammars, where the production probabilities depend
on the number of subtrees in the derivation trees.

3. Preliminaries

A CFG is a tuple G = (X,V, R, S), where X is the set of terminal symbols, V is the set
of nonterminal symbols, R is the set of production rules, and S is the initial symbol. We
denote the empty string by .

3.1. Hierarchical PYPs

Let X be a countable set and PY P(0,d, H) be a PYP over X, where 6 and d are the
parameters of the Poisson-Dirchlet distribution and H is an arbitrary distribution over X,
which is called the base measure (Pitman and Yor, 1997; Ishwaran and James, 2003; Teh,
2006). PY P(0,d, H) is a distribution over distributions over X. A sequence of real values
(p1,p2,---) drawn from the Poisson-Dirchlet distribution gives a distribution over natural
numbers. Each natural number ¢, called a table, is also assigned to some z € X with a
probability H(z). Thus, the probability that an element x is drawn ¢ times via table ¢ from
the sample distribution mentioned above is H(z)p;°. In the Chinese restaurant process
(CRP) representation, the probability that a table and an element of X is sampled is given
as follows by marginalizing all p;:

1 0+ Td)H (x if ¢ is a new table,
P(xm-l—htm-l—l’xlv"‘xmvtlv"' 7tm):7‘ ( ) ( m+1) m+1,
m+60 | c(xmi1,tme1) —d otherwise,
(2)
where T' is the number of different tables in ¢1,--- ¢, and ¢(z,t) is the number of occur-
rences of (z,t) in (z1,t1), -, (Tm, tm)-

If the base measure H, which is a distribution over X, is defined as being sampled from
some other PYP recursively, P(6,d, H) is called a hierarchical PYP.

If some distribution over X is drawn from a PYP, it is often the case that this distribution
is never drawn from that PYP subsequently. In this case, because 6 and d are identified by
and are not related, other than by a distribution P that is sampled only once, we can omit
these parameters in this study:

P~ PYP(H).
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3.2. Hierarchies of Base Measures for Sets of Finite Sequences

Let X and Y be some countable set such as ¥ and V. Let P be a conditional distribution
over X™ given y = by ---b, € Y™, which is taken from a PYP where the base measure is
Hy:

P(ly) ~ PY P(Hy).

To estimate P from data, it is necessary to count every occurrence of x = ay---a,, € X™
given y. A smoothing method needs to be applied because this is too sparse to obtain an
appropriate estimate if n or m is large. Hierarchical PYPs with appropriate hierarchies
of base measures allow good smoothing. Two methods are often used for constructing
hierarchical PYPs: decreasing the length of y and decreasing the length of x.

For the former method, we refer to the base measure H, as an aggregation of y if

H, ~ PYP(Hy),
where 3/ is some substring of y with a fixed position, i.e., ¥’ = b;---b;. For the latter

method, we refer to the base measure Hy as a decomposition of X if

m
Hy(ay - am) = [ [ Hyilai), where H,; ~ PYP(K,),
=1

and K, is some distribution over X given y.

4. Generative Models for CFGs using Hierarchical PYPs

For simplicity, CFGs are restricted to Chomsky normal form (CNF) in this study. In
addition, we assume that for each nonterminal A, the length of « is fixed such that A — a.

4.1. PCFGs using Hierarchical PYPs

Let A be a nonterminal, the rules of which have two nonterminals on the left. We consider
an infinite number of rules in R4 = {A — BC|B, C € V'}, where the probabilities are taken
from a PYP assigned to each A:

P(A—= )~ PYP(Hy,)

where H 4 is the base measure of the PYP, the domain of which is V' x V. We can define H 4
in two different manners by selecting whether the decomposition of V x V or the aggregation
of A occurs first.

In the former case, the base measure H 4 is defined as follows. B and C' are assumed
to be taken independently from H4 1 and Ha o, ie., H4(BC) = Ha1(B) Hap(C). Then,
H 4 ; is recursively defined for each 7 as

Ha; ~ PYP(H),).

A base measure H) ; is again taken recursively from a PYP, the base measure of which is
the uniform distribution:
H) ; ~ PY P(Uniform).
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Liang et al. (2007) defined infinite PCFGs using the hierarchy described above.
In the latter case, H4 is given by the aggregation of A first. H 4 is assumed to be taken
from a PYP, where the base measure H) is shared for all A € V:

Hy ~ PYP(H,).

Then, H) is defined as a decomposition of V' x V| which is the domain of Hy: H)\(BC) =
Hy1(B)H\2(C). Hy,; are again sampled recursively from a PYP:

H) ; ~ PY P(Uniform).

In the case where a nonterminal A has rules with a terminal a € ¥ on the right, |X| is
often too large to assume that P(A — -) has a uniform prior distribution. The distribution
from which a is generated is assumed to be sampled from a PYP:

P(A— ) ~ PYP(H,),

where H 4 is the uniform distribution 2.

4.2. (k,l)-context-sensitive Probabilistic CFGs using Hierarchical PYPs
4.2.1. CONTEXT-SENSITIVE PROBABILITIES FOR CFGS

Suppose that a sentence w is derived with the rules r1,--- ,r in a CFG G.
S="Ta; =" =" o, =w

In probabilistic CFGs, the probability of w with the above derivation is given by the product
of the probabilities for all rules, P(r1)--- P(ry,). Here, we define the context-sensitive
probabilities for a rule A — g in G,

P(OZLAO[R = OéL,BOéR) = P(A — B|(O[L,O[R)).

The probability of w with the above derivation is given by P(ri|(e,€)) - - - P(rm|(q1m—1, 0rm—1)),
where oy ;, . ; is defined as: o; = ;8 ; and 7; = A; — 3;. We refer to a context-sensitive
probabilistic CFG as (k,[)-context-sensitive if for all contexts (ar,ag) and rules A — f,
P(A — B|(ar,ar)) = P(A — Bl(1,r)), where 7t is a suffix of ap, with a length of no more
than k and 4y is a prefix of ag with a length of no more than I.

4.2.2. CONSTRUCTION OF HIERARCHIES OF BASE MEASURES

The definition of P(A — B|(ou., ar)) requires different parameters for each (ar, ar). Recent
studies show that nonparametric Bayesian models such as hierarchical PYPs have excel-
lent smoothing capacities in this situation. As described in Section 3.2, the definitions
of hierarchies of PYPs have many variations, which depend on the order of the aggrega-
tion of contexts (ar,ag) and the decomposition of the right-hand side of the rule 5. In

2. In the case that X is a set of words, H4 is often assumed to be a character-level language model used
to represent morphological information (Clark, 2003). For example, Blunsom and Cohn (2011) used a
bigram model to define H4. Mochihashi et al. (2009) proposed to use a hierarchical Pitman-Yor language
model (Teh, 2006) as Ha.
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the following, we first aggregate ag and oy recursively and then decompose 3. We write
P(A — Bl(ar,ar)) as P(B|(A, av, ar)), since 5 P(A — Bl(ar, ar)) = 1. P([(4, o, ar))
is a distribution over V' x V or % in CNF.

P(-[(A,ar,ar)) ~ PY P(HA r(ap,0n))-

m(ag, ag) is defined as follows:

r(on, ag) = (m(an), ap) if o] > [axl,
bR (o, mr(ag)) otherwise,

where 7.(af) = § and mg(fa) = B for f € (VUXE)* and a € V UX. The base measure
H 4 (ar,05) 18 defined recursively using 7 as:

HA,Tri(ozL,aR) ~ PYP(HA,ﬂi+1(aL,aR))7

for i = 0,--- ,|apag|. After these recursive definitions of base measures are complete, we
define
Hy o~ PYP (2 045), where Jai ~ PYP(J),

and .J; ~ PY P(Uniform).

4.2.3. ORDER OF DERIVATION

With context-sensitive probabilities, different orders of derivation give different probabilities
for a single derivation tree. For example, the two derivations dy : S = AB = aB = ab and
dy : S = AB = Ab = ab have the same probability P(S — AB)P(A — a)P(B — b) in
PCFG, but not in a CFG with context-sensitive probabilities:

Pr(d;) = P(S — AB|(e,e))P(A — al(e, B))P(B — b|(a,¢)),
Pr(ds) = P(S — AB|(e,¢))P(A — al|(e,b))P(B — b|(A,¢)).

Thus, we assume that all of the derivations are leftmost derivations in the following. Note
that o, is in ¥* and ag is in V* in the leftmost derivation. ap is known directly from the
sample sentence whereas ag is not. This implies that from a computational costs viewpoint,
the length of ag is problematic whereas the length of ayr is not, as described in Sec. 5.1.

5. Inference Method

Gibbs sampling is a representative Markov chain Monte Carlo (MCMC) algorithm, which
is known to give relatively high accuracy approximations as a method for the Bayesian
inference of probabilistic models where the marginalization of all unknown parameters is
unfeasible, such as HMMs and PFAs (Shibata and Yoshinaka, 2013b). Gibbs sampling
can be roughly divided into two types: pointwise sampling and blockwise sampling, based
on how many variables are changed each time. Generally speaking, blockwise sampling is
known to be less trapped in a local optimum while its computational cost is relatively high.

It is not straightforward to apply pointwise sampling for inferring the derivation trees
of PCFGs in CNF because we have to consider many possible derivation trees. To apply
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pointwise Gibbs sampling, a single rule that is used to generate some sentence is replaced
whereas the other rules remain fixed. However, if the length of the right-hand side of
the rule is changed by the replacement, this replacement forces the subsequent rules to
change because the sequence of nonterminals is shifted. Thus, to ensure that pointwise
Gibbs sampling is achieved successfully, rule replacements have to be limited so the shape
of derivation tree is not changed. However, these limited replacements fail to sample the
derivation trees of the given sentences.

The blocked Metropolis-Hastings (MH) sampling method proposed by Johnson et al.
(2007b) is blockwise Gibbs sampling, but with a slight modification to ensure the correctness
of sampling. Their method replaces a derivation tree immediately. The new derivation tree
is sampled in the following steps. 1) The expected production probabilities are calculated
according to the counts of their occurrence. 2) The inside probabilities (Lari and Young,
1990) are calculated. 3) The proposed derivation tree is generated randomly from S using
the inside probabilities and rejected with some probability in order to compensate for the
difference from the true probability.

5.1. Blocked Sampling for (k,[)-Context-Sensitive Probabilistic CFGs

For CFGs with (k,[)-context-sensitive probabilities, blocked MH sampling can be applied
by modifying the definitions of the inside probabilities. Thus, we now review the definitions
of inside probabilities for PCFGs. Let s(i,j) denote a substring a;---a; of a sentence
§=a1---ay. When j <1, let s(i,j) = A\. In PCFGs, an inside probability P, for a given
nonterminal A and a substring s(i, j) is defined as: Py, (Ali,j) = Pr(4 = s(i,5)). The
probability of the derivation A = BC = yC = yz is calculated by P(A — BC)Pr(B =

y) Pr(C = z). Thus, P, (A, 5) is calculated recursively as:

j—1
Py(Ali,5)= ). Y P(A— BC)Py(Bli, k)Py(Clk+1,5).
A—BCERA k=1

In (k,1)-context-sensitive CFGs, the inside probability P, for a given nonterminal A, a
substring w = a; - - - a; in a sentence s = aj - - - a,;,, and a sequence of nonterminals o € V*
such that |a| < is defined as follows:

P (Ali,j,a) = Pr(zAa = zwa),

where z is a suffix of aj---a;—1 and |z| < k. For (k,l)-context (x,«), the probability
of the derivation zAa = zBCa = zyCa = zyza is given as Pr(zAa = xBCa =
ryCa = wzyza) = P(A — BC|(x,a))Pr(zBCa = zyCa)Pr(zyCa = zyza). Conse-
quently, Py, (A7, 7, ) is calculated recursively as:

j—1
Py(Alij,o) = Y Y P(A— BC|(z,0))Py(Bli,k,Ca’) Py (Clk + 1,5,),  (3)
A—BC€eR, k=i

where o is a prefix of « such that |o/| <1 —1.
Note that x is identified uniquely by (i,j) and a given sentence s. Thus, we do not
require any left-hand side context x as a condition of the inside probabilities. This means
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that the length of the left-hand side context, or k, has no effect on the computational cost
when the inside probabilities are calculated. By contrast, the length of the right-hand side
context affects both the memory requirements and the computational cost. As shown by
Eq. 3, the inside probabilities require an array with a size of |V/|!*1|s|? for each sentence s.
Since |V|?|s| additions are required for each element of the array, the computational cost
required to build all the inside probabilities for each sentence is [V |'73]s]3.

5.2. Fast Sampling Method for (k,[)-Context-Sensitive Probabilistic CFGs

Building the table of inside probabilities is the main computational cost that is incurred
during blocked MH sampling. As shown in the previous section, the cost of CFG with
(k,l)-context-sensitive probabilities is too high to allow the iteration of samples for all
sentences, unless [ is sufficiently small or zero. In practice, even if [ = 0, for example, if
both |s| and |V] are 10 and the number of sentences is 10,000, 10G x (some constant)
computational steps are required for each sampling iteration. It may be difficult to assume
that [ is nonzero in practical problems. The inside probabilities P, shown in Eq. 3 require
[V| x |V|" values for each substring s(i,7). In order to reduce the computational costs
and memory requirements, we propose the combination of: 1) blocked MH sampling for
derivation meshes; and 2) pointwise sampling for nonterminals in each substrings, where
the derivation meshes are defined as follows.

Suppose that a derivation tree is given for the sentence s. A substring s(i, j) is referred
to as constituent if s(i, 7) is derived from one nonterminal and distuent (Klein and Manning,
2002) otherwise.

Each constituent substring has a parent substring and two children substrings can be
identified naturally from a derivation tree. By contrast, if a substring s(i,j) is distuent,
s(i,7) does not represent a node of the derivation tree. For the purposes of sampling, a
triplet of a nonterminal, a parent substring, and children substrings are assigned to each
distuent substring. We refer to these as a pseudo-nonterminal, a pseudo-parent, and pseudo-
children respectively. Note that, since the grammar is in CNF for both a constituent and a
distuent, a parent of s(i, j) is either s(¢', j) s.t. ¢ < i or s(i,5') s.t. j < j', and the children
are s(i,h) and s(h,j) s.t. i <h <j.

We refer to a map from each constituent or distuent substring s(i,j) to a triplet men-
tioned above as a derivation mesh in this paper. A derivation mesh is equivalent to a
derivation tree if all the distuent substrings are removed from the domain.

The probabilities that pseudo nonterminals are assigned to distuent substrings are re-
quired to be taken appropriately since the distuent substrings become constituent substrings
when a new derivation tree or mesh is resampled.

5.2.1. POINTWISE SAMPLING FOR NONTERMINALS

Assume that the derivation mesh is fixed. Let A(4,7) be a nonterminal assigned to s(3, j).
For a constituent substring s(i, ), since the derivation tree is fixed, it is easy to identify
o such that S = s(1,7 — 1)A(4, 7). The parent and children are also identified from the
derivation tree. A(%,j) is updated using pointwise Gibbs sampling.

For example, let B, D, and E be the parent and children of A(i,j), i.e., S = zBa =
tACa = DECa, where © = s(1,5 — 1) and A = A(7, j). First, the values in the counting
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Figure 1: Combination of pointwise and blocked sampling: (a)(b) sampling nonterminals, (¢) sam-
pling derivation meshes.

table are decreased for the rule B — AC with context (z,a) and the rule A — DE
with context (z,Ca). Next, a new nonterminal is sampled instead of A, according to the
probabilities obtained from the CRP (Eq. 2).

For a distuent substring s(i,7), we identify the left pseudo-context « by tracing its
pseudo-ancestors. Let the sequence of ancestors of s(i, j) from the side of s(i, j) be s(i1, j1),
s(iz, J2), -+ 5 S(in,Jjn), where s(i1,j1) = s(i,j) and s(in,jn) = s. Let ji,---,j/, be the
sequence obtained by removing j; such that j, = j,_1 from ji,---,j,. Since we assume
that the derivations are leftmost, A(j] + 1,75)A(j5 + 1,75)--- A(jl_1 + 1,7.,) is the left
context. After identifying «, the remaining sampling of the new nonterminals is similar to
that of the constituent substrings.

5.2.2. BLOCKED SAMPLING FOR DERIVATION MESHES

Suppose that a nonterminal A(7,7) is fixed for each substring s(i, j). First, we remove the
counts of pairs of rules and the (k,[)-contexts used in the derivation tree of the sentence s
from the counting table of the hierarchical PYPs. For any (k,[)-context (z,«) and nonter-
minals A, P(A — - - |(z,a)) and P(A — -|(z,a)) can easily be calculated as a posterior of
the hierarchical PYPs using CRP(Eq. 2).

Recall that A(-,-) is fixed in this sampling step. We define the modified inside proba-
bilities restricted by A(-,-) as follows:

P (i, j,0) = Pr(s(1,i — ) A(i, j)a =40 s(1,i = 1)s(i, j)a),

where A(i, j) =40 s(i, j) means that the nonterminals are restricted by A(-,), i.e., if a
substring s(#',j") of s(i,7) is derived from one nonterminal, that nonterminal is A(¢', j).
We can calculate Pi;(i,j, ) for all i,j,a € V! in a bottom-up manner, as follows:

7j—1
PI;(Z,j, Oé) = ZP (A(%]) — A(Zv h)A(h + 17])’(8(172 - 1),04)) Pl—;(la haA(h+17j)a)P1;(h+17ja Ck)

h=1
(4)
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After Pi; have been calculated, a new derivation mesh is sampled in a top-down manner, i.e.,
for each s(3, j), we determine its children s(¢, h) and s(h+1, j) according to the probabilities
in the right-hand side of Eq. 4, except « is determined by tracing the ancestors of s(i,j),
as described in the previous section.

Whether s(7, j) is constituent or not is determined naturally as follows: 1) s(1,m) is
constituent; and 2) if some substring is constituent, its children are constituent. Thus,
for constituent substrings, tracing the ancestors is well-defined since each of them has one
constituent parent. However, this is not the case for distuent substrings. To trace the
ancestors, even for distuent substrings, it is necessary to determine a map from the distuent
to parent substrings. We sample a parent s(i,h) ( or s(h,j) ) for each distuent s(i,j),
according to the following probability for each h:

Pr(S =4C) s(1,i — 1)A(i, h)a(i, ) = s(1,i — 1)A(i, ))A(j + 1, h)a(i, h) =4C) s(1,m))
=P (i, h,a(i, ) P(A(i, h) — A(i, /) A(j + 1, h)[(s(1,i — 1), a(i, h)))
P (6,5, AG + 1, h)a(i, b)) PL (5 + 1, b, ai, b)),

where «(i, h) is the right-hand context of A(i, h), which is identified uniquely since part of
the derivation tree that comprises the upper nodes greater than s(i,j) has already been

sampled. After sampling the parent of s(i, ), Pc;rut (1,7,a(t,7)) is calculated as follows:

Pgut(z j, Z out (s he (i, h))P(AG, h) — A, §)A(G + 1,h)[(s(1,4 — 1), a(i, h)))

P (6,5, A(G + 1, R)a(i, h)).

6. Experiments

Using experiments, we assess the following two points: a) the mixing speed and the practical
computational cost of the proposed sampling method; and b) the effect of (k,!)-context-
sensitive probabilities. We used sentences from the Brown Corpus (Francis and Kucera,
1982) with lengths of less than 16 as the input data for the experiments. Part-of-speech
tags annotated in the corpus were assumed to be terminals. We let (k,[) = (0,0) and (1,0),
i.e., implemented the algorithms for usual PCFGs and (1, 0)-context-sensitive PCFGs.

As shown in Fig. 2(a), compared to the blocked sampler, the proposed sampler finally
gives the better score than the blocked sampler, though it slowly mixes in the early stage.
The slow mixing is considered to be the effect of the pointwise sampling for nonterminals
in the proposed sampling method.

Fig. 2(b) shows the practical computational cost of both methods as a function of the
number of nonterminals. The cost of the blocked sampling is extremely high for the large
number of nonterminals, while that of the proposed method is small and the slope is rela-
tively flat. Since the number of nonterminals increases as the time is elapsed, the blocked
sampler becomes inefficient except for the early stage and thus does not give better results
than the proposed sampler finally.

Fig. 3(a) shows the result of the proposed sampler for learning (1,0)-context-sensitive
PCFGs. The mixing speed appears to be faster and the final score is better than it of
PCFGs. The numbers of nonterminals are around 50 though they still appear to grow in
the last stage (Fig. 3(b)).
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Figure 3: Experimental results for (1,0)-context-sensitive PCFGs with the proposed sampler.

Modified Kneser-Ney (Kneser and Ney, 1995) (MKN) is known to be a language model
which give high perplexities. As Tab. 1 shows, the score of PCFGs learned by the proposed
sampler is slightly worse than the best one of MKNs (4-gram). The score of learned (1,0)-
context-sensitive PCFGs is slightly better than those of MKNs.? In addition, the numbers
of nonterminals for (1,0)-context-sensitive PCFGs are smaller than those for PCFGs. This
is a natural result because the existence of contexts allows multiple probabilities to be

assigned to a nonterminal in (1,0)-context-sensitive PCFGs.

Since the smaller number

of nonterminals gives the smaller computational cost for sampling, learning CFGs with
(1,0)-context-sensitive probabilities has the effect of reducing the actual computational
cost compared to learning PCFGs.

3. As Fig. 2(a) and Fig. 3(a) shows, the scores of learned PCFGs and (1, 0)-context-sensitive PCFGs may
grow more if we take sampling iterations more.
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Table 1: Comparing proposed methods with a baseline algorithm (modified Kneser-Ney). “Score”
represents the average of log P(sentence) in the test data. The average of 4 trials is taken
in the row of “(1,0)-context”. Type-0 and type-2 nonterminals represent those which have
a terminal and two nonterminals in the left-hand side of rules, respectively.

The num. of The num. of

Method name Score  type-0 nonterminals type-2 nonterminals
(0, 0)-context(blocked sampler) 27.043 60 37
(0,0)-context(proposed sampler)  25.775 122 94
(1,0)-context(proposed sampler) 25.596 46.0 6.75
modified Kneser-Ney(unigram) 39.407 - -
modified Kneser-Ney(bigram) 27.067 - -
modified Kneser-Ney(trigram) 25.802 - -
modified Kneser-Ney(4-gram) 25.675 - -
modified Kneser-Ney(5-gram) 25.823 - -
modified Kneser-Ney (6-gram) 25.902 - -

7. Discussion

We show that taking a value of k that is not zero gives good results in terms of both
prediction accuracy and computational cost in the experiments. On the other hand, as
shown in Sec. 5, the computational cost of the blocked sampler and the proposed sampler
are proportional to |[V["*3 and |V|"*!, respectively. Taking a value of I that is not zero
increases the computational cost largely. Since the computational cost become critical, the
proposed sampler may be of advantage when [ # 0.

Another concern is that, although the order of constructing the hierarchies of base
measures is straightforward and it may be appropriate in general cases, it is likely that these
hierarchies will fail to capture the appropriate patterns of contexts in many cases. Pickhardt
et al. (2014) proposed the use of combinations of skipped n-grams for smoothing and showed
that these combination actually yielded better result. For (k,[)-context-sensitive PCFGs,
we should examine whether it might be possible to mix the orders of constructing the
hierarchies of base measures.
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