JMLR: Workshop and Conference Proceedings 34:167-181, 2014 Proceedings of the 12th ICGI

Bigger is Not Always Better: on the Quality of Hypotheses
in Active Automata Learning

Rick Smetsers R.SMETSERS@QCS.RU.NL
Michele Volpato M.VOLPATO@CS.RU.NL
Frits Vaandrager F.VAANDRAGER@CS.RU.NL

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands

Sicco Verwer S.E.VERWERQ@QTUDELFT.NL
Institute for Intelligent Systems and Software, Delft University of Technology, The Netherlands

Editor: Alexander Clark, Makoto Kanazawa and Ryo Yoshinaka

Abstract

In Angluin’s L* algorithm a learner constructs a sequence of hypotheses in order to learn
a regular language. Each hypothesis is consistent with a larger set of observations and is
described by a bigger model. From a behavioral perspective, however, a hypothesis is not
always better than the previous one, in the sense that the minimal length of a counterex-
ample that distinguishes a hypothesis from the target language may decrease. We present
a simple modification of the L* algorithm that ensures that for subsequent hypotheses the
minimal length of a counterexample never decreases, which implies that the distance to
the target language never increases in a corresponding ultrametric. Preliminary experi-
mental evidence suggests that our algorithm speeds up learning in practical applications
by reducing the number of equivalence queries.

Keywords: Active learning, automata learning, distance metrics

1. Introduction

Automata learning techniques have become increasingly important for their applications to
a wide variety of software engineering problems, especially in the analysis and testing of
complex systems. Recently, they have been successfully applied for security protocol testing
(Shu and Lee, 2007), for the analysis of botnet command and control protocols (Cho et al.,
2010), in regression testing of telecommunication protocols (Hungar et al., 2003), and in
conformance testing of communication protocols (Aarts et al., 2014).

Automata learning aims to identify an unknown target language from examples of its
members and nonmembers (Gold, 1967). In active automata learning, introduced in the
seminal work by Angluin (1987), a learner identifies the language with the help of an oracle
(in contrast to passive learning, where the learner is provided with data). Angluin’s L*
algorithm is characterized by the iterative alternation between two phases. In the first phase,
the learner poses membership queries to construct a hypothesis. In the second phase it asks
an equivalence query to determine if the hypothesis correctly describes the language. The
oracle either signals success (if the hypothesis correctly describes the language) or provides a
counterexample that distinguishes the hypothesis and the language. The algorithm iterates
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in this way until it finds a hypothesis that correctly describes the target language. In the
learning process, each successive hypothesis is described by a bigger model.

In this paper, we show that a bigger model is not always better. Different notions of
quality exist for a hypothesis and we argue that a valid metric for quality should be based on
its behaviour, i.e. the strings in its language. In systems engineering, a potential bug in the
far-away future is less troubling than a potential bug today (de Alfaro et al., 2003). Based on
this observation, we study a well-known metric based on minimal-length counterexamples
and we show that the quality of successive hypotheses may decrease in such a setting. To
correct for this, we propose a simple modification to L* that finds a counterexample at
the cost of a membership query if this is the case. As a result, we make sure that each
hypothesis is at least as good as the previous one, and we possibly decrease the number
of equivalence queries required in the learning process. We give preliminary experimental
evidence that in a realistic setting our modification speeds up learning, because in practice,
equivalence queries are typically expensive to answer (Smeenk, 2012). In a case study, we
show that our modification helps in learning a piece of industrial control software used in
Océ printers.

Recently, the L* algorithm has been adapted for learning the behaviour of reactive
systems (see Steffen et al., 2011; Shahbaz and Groz, 2009). In practice, when learning
such systems, it is impossible to exhaustively search for counterexamples; we have to stop
learning at some point. As a result, the oracle is not always perfect and it is possible that
the final hypothesis is incorrect. Contrary to the original L* algorithm, our modification
guarantees that in such a case the final hypothesis will behave correctly for at least as long
as all previous hypotheses.

Related work Improvements of L* have been investigated before, see Balcdzar et al.
(1997) for an overview of early work. Optimisations for large alphabets are discussed in Ir-
fan et al. (2012), and practical optimisations that improve both the number of queries and
time required to answer them are given in Bauer et al. (2012) and Irfan et al. (2010). Dis-
tance metrics for automata have been studied extensively before, but the majority of this
work has been done in a setting where statistical information is available (for an overview,
see de la Higuera, 2010, chap. 5). To the best of our knowledge, no earlier work has com-
pared successive hypotheses produced by L* from the perspective of their counterexamples.
Length-bounded counterexamples have been used in Ipate (2012), and minimal-length coun-
terexamples in Birkendorf et al. (2000) and Ibarra and Jiang (1991). These are, however,
strong assumptions. Instead, our modification works in a standard L* setting.

Outline We recall regular languages, Angluin’s L* algorithm and metric spaces in Sec-
tion 2. Then, in Section 3, we define a metric for comparing languages, and we show that
L* may construct hypotheses that are worse than previous ones according to this metric.
Section 4 provides an algorithm that solves this problem and some preliminary experimental
results. We conclude our work in Section 5.

2. Preliminaries

Definitions Let X be a finite alphabet of symbols. A string over X is a finite sequence of
symbols. We denote with 3* the set of all strings over . The empty string is denoted by
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Figure 1: A canonical DFA over the alphabet {a,b}. Elements of @) are represented by
nodes, and elements of F' by double circle nodes. The initial state is indicated by
the non-labelled arrow. An edge between states p and ¢, labeled with an element
a of the alphabet, is present if and only if §(p,a) = q.

€. A language is a subset of ¥*. We denote Ly, the set of all languages over the alphabet
3., and we shorten it to £ if 3 is clear or not significant in the context.

A regular language is any language that is accepted by some deterministic finite au-
tomaton (DFA), which is a tuple A = (X, @, qo, F, §), where ¥ is a finite alphabet, @ is a
finite set of states, qy € @ is the initial state, F' C @ is the set of accepting states, and
0:QxXY — Q is the transition function between states. We extend ¢ to Q x ¥* — @ in the
usual way. The language accepted by A is the set of strings u such that §(go,u) € F, and is
denoted L. Two DFAs A and A’ are equivalent, denoted A = A’ if they accept the same
language, i.e Ly = Ly. A DFA is canonical if no other equivalent DFA has fewer states.
In the rest of the paper, all DFAs are considered to be canonical, unless specified otherwise.
Figure 1 shows an example canonical DFA that we will use throughout this paper.

We say that a string u distinguishes A and A" if u € Ly <= wu ¢ La/. Such a string
is called a distinguishing string for L4 and La/. A minimal-length distinguishing string for
two languages L and L’ is defined as a string v, such that, for each string w, |w| < |v|
implies w € L <= w € L. There exist efficient algorithms for finding a minimal-length
distinguishing string between two DFAs (see for example Dovier et al. 2001).

Learning regular languages with L* Angluin’s L* algorithm is an efficient algorithm
where a learner identifies an unknown regular language L with the help of an oracle. The
oracle answers two types of queries about the target language. In a membership query the
learner asks if a string is in the language. After having posed a number of membership
queries, the learner constructs a canonical DFA Ay that is consistent with all the replies
given by the oracle so far. The language H that this DFA accepts is the learner’s hypothesis
for the target language. Depending on the context, the word “hypothesis” is either used
to refer to a language H, or to the canonical DFA that accepts this language Ag. In an
equivalence query the learner asks about the correctness of H. The oracle replies positively
if H = L. If this is not the case, the oracle returns a distinguishing string that shows that
the hypothesis is incorrect. Such a string is called a counterexample. An oracle that answers
these two types of queries is known as a minimally adequate teacher.

The L* algorithm maintains an observation table in which it stores the answers to all
membership queries posed so far. The observation table consists of a set of access strings to
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the states of the hypothesis DFA, their one-symbol extensions, and a set of distinguishing
suffizes. An observation table can be visualized as a table that has the access strings and
their one-symbol extensions as its row labels and the distinguishing suffixes as its column
labels. A cell has a value of 1 if and only if the concatenation of the corresponding prefix
(access sequence or one-symbol extension) and (distinguishing) suffix is in the language.
Otherwise, a cell has a value of 0. If all cells are filled, the table is complete. Example
complete observation tables are shown in Table 1.

In order to construct a hypothesis DFA from the observation table, it needs to be closed
and consistent. An observation table is closed if for each row labeled with a one-symbol
extension there exists a row with an access string that has an identical value in every
column. An observation table is consistent if for all rows labeled with access strings that
have an identical value in every column, it holds that the rows labeled by their one-symbol
extensions have an identical value in every row as well.

Algorithm 1: The L* algorithm

Initialize observation table;
Make table closed and consistent;
repeat
Construct hypothesis H;
Ask equivalence query for H, let ¢ be the response;
if ¢ contains a counterexample then
Handle counterexample c;
Make the table closed and consistent;
end

until ¢ does not contain a counterexample;

We provide a high-level description of L* (Algorithm 1). For a more detailed description we
refer to de la Higuera (2010, chap. 9). First, the observation table is initialized such that the
set of access strings and the set of distinguishing strings both contain €, and the algorithms
asks membership queries for € and ¥ (the one-symbol extensions of €¢). Then, the table
is checked for closedness and consistency. If the table is not closed or not consistent, an
element from the one-symbol extensions is added to the access strings, and its one-symbol
extensions are added to the table (a new state is added). This process is repeated until the
table is closed and consistent. Once the table is closed and consistent, a hypothesis DFA
A= (%,Q,q, F,d) is constructed in the following way:

e () contains exactly one state for every access sequence. This ensures that for every
pair of states, the corresponding rows have different values in at least one column;

e (o is the state in @) for access sequence ¢;
e [ contains states in () for access sequences that are in the language;

e The one-symbol extensions are used to define &, where 6(d(qo, s),a) = 6(qo,t) if and
only if (one-symbol extension) s-a and (access string) ¢ have identical values in every
column.
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a,b
a
a,b
a
b
a,b b
(a) Initial hypothe- (b) Hypothesis af- (¢) Hypothesis after handling
sis. ter handling ba. abaa.

Figure 2: Starting the learning process.

The hypothesis is presented to the oracle in an equivalence query. If the oracle replies
positively, the learner has successfully learned the target language and the algorithm ter-
minates. Otherwise, the oracle provides a counterexample and the algorithm modifies the
observation table. There are many different strategies for handling a counterexample (see
e.g. Maler and Pnueli, 1995; Rivest and Schapire, 1993; Shahbaz and Groz, 2009; Steffen
et al., 2011). In this paper we use the strategy described by Steffen et al. (2011), but our
contribution is independent from the one that is used. After handling a counterexample the
table is not closed anymore, so an element from the one-symbol extensions is added to the
access strings (a new state is added), and more membership queries are asked to obtain a
new hypothesis. The algorithm iterates in this fashion until it produces a correct hypoth-
esis. Each hypothesis in the learning process is described by a canonical DFA, and each
successive hypothesis has more states than the previous one. Assume that the canonical
DFA accepting the target language has n states, then the algorithm clearly terminates, be-
cause the number of equivalence queries is limited by n. An example run of L* is described
in Example 1.

Example 1 We show how L* constructs the first three hypotheses while learning the lan-
guage described by Figure 1. We start by asking membership queries for €, a and b and we
store the answers in an observation table. We find that the table is not closed, so we add
a to S and we ask membership queries for aa and ab. Then, we construct the table shown
in Table 1(a) and the corresponding hypothesis shown in Figure 2(a). This hypothesis is
presented as an equivalence query. The oracle replies that our hypothesis evaluates ba in-
correctly. We handle this counterexample in the table and after asking more membership
queries, we construct the table shown in Table 1(b) and we present the hypothesis shown in
Figure 2(b) as an equivalence query. This time, the oracle presents abaa as a counterexam-
ple. We use this information to construct the table shown in Table 1(c) and the hypothesis
shown in Figure 2(c).

Metric spaces In order to reason about the quality of hypotheses produced by L*, we
need a function to compare them. A function is called a metric, if it satisfies the conditions
in Definition 1.
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Table 1: Observation tables. Rows are labeled by access strings (top) and their one-symbol
extensions (bottom), columns are labeled with distinguishing suffixes.

(a) Initial observa- (b) Observation table (c) Observation table after

tion table. after handling ba. handing abaa.
€ € a € a aa
e 1 e 1 0 e 1 0 1
a 0 a 0 1 a 0 1 O
b 0 b 0 0 b 0 0 1
aa 1 aa 1 0 ab 1 0 O
ab 1 ab 1 0 aba 0 0 O
ba 0 1 aa 1 O 1
bb 0 O ba 0 1 O
bb 0 0 1
abb 0 0 1
abaa 0 0 1
abab 1 0 0

Definition 1 Let X be a set, then a function d : X x X — R, where R is the set of real
numbers, is a metric on X if:

1. d(z,y) =0 <= z =y (identity);
2. d(z,y) = d(y,z) (symmetry);
3. d(z,y) <d(x,z)+d(z,y) (triangle inequality).
A metric is an ultrametric if in addition it satisfies a stronger version of triangle inequality:
4. d(z,y) < max (d(z,z),d(z,y)) (strong triangle inequality).

Note that any metric is nonnegative. Given a set X and a metric d on X, the pair (X, d)
is called a metric space. If d is an ultrametric on X, we call (X,d) an ultrametric space.
In metric and ultrametric spaces, the function d provides the set X with the concept of
distance between its elements. Given three elements x,y,z € X, we say that x is closer
to z than y if d(z,2) < d(y,z). In an ultrametric space (X,d), for any triple of elements
x,y,z € X, two of the distances among them are equal and the third one is equal or smaller
(Lemma 2).

Lemma 2 Let (X,d) be an ultrametric space and let x,y, z be elements of X, then:
d(z,y) # d(y,z) = d(z,2) = max (d(z,y),d(y, 2)).

Proof Assume d(z,y) > d(y, z). Then, because of strong triangle inequality, we obtain that
d(z,z) < max (d(z,y),d(y, z)) = d(z,y) and that d(z,y) < max (d(y,z),d(,z)) = d(z,2)
(because d(y, z) < d(z,y)). Thus d(z,y) = d(z, z). [ |
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3. Languages in a Metric Space

In the process of learning a language, different notions of quality exist for a hypothesis. The
L* algorithm guarantees that each hypothesis explains all observations from membership
queries seen so far. Moreover, each successive hypothesis is based on more observations
than the previous one, because a counterexample adds new information. As a result, each
hypothesis has more states than the previous one (see Figure 2, for example).

In this section, we show that a bigger model is not always better. In fact, the size
difference between a hypothesis and the target DFA is not a valid metric. Let Ay and
Ap be DFAs with m and n states respectively, and let H, H' € £ be the languages that
they accept. Then it is possible that m = n and H # H’. Hence, a function on the
number of states is not a valid metric on £, because it does not satisfy the identity axiom
of Definition 1.

We argue that a valid metric should be based on the behaviour of a hypothesis, in terms
of the strings in its language. Assume that, with regard to such a metric, a hypothesis is
more distant to the target language than the previous one. Then, if one can detect this
divergence, there must be some information that can be used to improve the hypothesis,
without the need of asking an equivalence query. We recall a well-known metric for compar-
ing two languages (see de Bakker and Zucker, 1982, for example). Intuitively, this metric
is based on the minimal length of distinguishing strings: languages are more distant if they
are distinguished by shorter strings. Example 2 shows that in L*, the minimal length of
a counterexample for hypotheses may decrease. As a result, the distance to the target
language increases.

Example 2 Let us continue the process for learning the language represented by Figure 1.
The starting point is the hypothesis accepted by Figure 3(a). In this hypothesis all strings
of length 4 are evaluated correctly and we are presented bbbaa as a counterexample. While
handling bbbaa something peculiar happens: our new hypothesis (Figure 3(b)) incorrectly
changes behaviour for bbbb. Hence, an error has been introduced, and the quality of our
hypothesis has decreased.

(a) Third hypothesis. The (b) Fourth hypothesis.  The string
string bbbb is evaluated cor- bbbb is evaluated incorrectly.
rectly.

Figure 3: After handling bbbaa (a minimal-length counterexample), a shorter string (bbbb)
incorrectly ends in an accepting state. Grey nodes denote the state that bbbb
ends in.
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Given two different languages L1 and Lo, let u be a minimal-length string that distinguishes
them. Clearly, u distinguishes any DFA accepting L; from any DFA accepting Ly and vice
versa. In Definition 3 we present a metric to compare L; and Lo based on the length
of this string. Similar metrics have been used in literature, e.g. in concurrency theory
(de Bakker and Zucker, 1982). Note that, if two languages are not equal, there must exist
a distinguishing string. The intuition is that, the longer this string is, the closer L; and Lo
are.

Definition 3 Let L1 and Lo be two languages. The ultrametric d is the function

[0 if L1 = Lo
d(Ly, Le) = { 27" otherwise

where n is the minimal length of a string that distinguishes L1 and Lo.
Lemma 4 The pair (L,d) with d defined by Definition 3 is an ultrametric space.

Proof We prove that the pair (£,d) with d defined by Definition 3 satisfies the three
axioms of an ultrametric. Let L, Ly and L3 be languages in £. Then

i) d(Li,L2) =0 <= Lj = La: (<) by definition;
(=) it must hold that L; = Ly because 2 "12l where u;5 is a minimal-length string
that distinguish Lo from Lg, can never evaluate to 0;

ii) d(Ly,La) = d(Lga,L1): the strings that distinguish L; from Ly are the same that
distinguish Lo from Lq;

iii) d(L1,L2) < max(d(La,Ls),d(Ls,Ly)): if any two among Li, Ly and L3 are equal,
then it holds trivially. Otherwise, if they are all different, then let wi2, uo3 and
u3; be minimal-length strings that pairwise distinguish them. We show that |ujs| >
min (|ugsl, |us1|) (which is equivalent to d(Li, L2) < max (d(La,L3),d(Ls,L1))). By
contradiction, assume |uj2| < min (Juasl, |ug1]). By definition of minimal-length distin-
guishing strings, Vw such that (jw| < |ugs|) A (|w| < |us1]) it holds that (w € Ly <=
w € L) AN (w € Ly <= w € Lj), in particular for w = uj3. But, then, uj2 is not a
distinguishing string for L; and Lo which is a contradiction.

In Example 2 we have used minimal-length counterexamples to illustrate that L* can pro-
duce a hypothesis that is more distant to the target language than the previous one. Unfor-
tunately, in the process of learning an unknown target language, finding a minimal-length
counterexample for a hypothesis is a difficult task. We can however make use of the strong
triangle inequality property of ultrametrics (see Lemma 2) to check a hypothesis’ relative
distance to the target at the cost of a single membership query. By Lemma 2, for the
ultrametric described in Definition 3 this means that for any triple of elements, two of the
minimal-length distinguishing strings will have equal lengths and the third will be of equal
or greater length.
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Lemma 5 Let (£, d) be the ultrametric space with d defined by Definition 3. Let L, H and
H' be languages in L with H # H' and let v be any minimal-length distinguishing string for
H and H'. Then:

d(L,H) <d(L,H') = (veH < vel)

Proof Let u and v’ be minimal-length strings distinguishing L from H and H’, respectively.
Then by Definition 3, d(L, H) < d(L, H') implies that |u| > |u’|. Moreover, by Lemma 2
d(L,H) < d(L,H') implies that d(L, H') = d(H, H') which in turn implies that |v| = |/,
and hence that |u| > |v|. It follows that v € H <= v € L, because u is a minimal-length
distinguishing string. |

Assume that H and H' are successive hypotheses for L and that v is a minimal-length
string that distinguishes the two hypotheses. Then to verify that H' is at least as close as
H it suffices to ask a membership query for v. If H evaluates v incorrectly, then according
to Lemma 5, H' is at least as close as H. If H evaluates v correctly, we cannot be sure
that this is the case, but we have found a new counterexample for H’ without asking an
equivalence query. The algorithm that we present in Section 4 makes use of this result to
guarantee that the distance to L does not increase.

4. Monitoring the Quality of Hypotheses

In the previous section we have seen that L* can change the behaviour of strings that
happened to be handled correctly before. As a result, the distance of a hypothesis to
the target language can increase. In this section, we propose a modification to L* which
guarantees that the distance to the target language does not increase in the ultrametric
space (L, d), with d defined in Definition 3.

Definition 6 Let H and H' be successive hypotheses in process of identifying an unknown
language L, and let d be the ultrametric defined in Definition 3, then H' is stable if and
only if d(H,L) > d(H', L).

Our modification to the L* algorithm is shown in Algorithm 2. In the algorithm we main-
tain a stable hypothesis H that is known to be the best we have seen so far according to
Definition 6. The main idea is that a candidate hypothesis H' is refined until it is at least as
good as the stable hypothesis before asking an equivalence query. As a result, each stable
hypothesis is at least as good as the previous one.

We start by constructing the initial stable hypothesis H that we present in an equivalence
query. If the oracle replies positively, the learner has successfully learned the target language
and the algorithm terminates. If this is not the case we obtain a counterexample ¢, which
we use to construct a candidate hypothesis H’. Then, we use a standard algorithm to
obtain a minimal-length string v that distinguishes the stable hypothesis and the candidate
hypothesis.

According to Lemma 5, we are sure that the candidate (H’) is at least as good as
the previous stable hypothesis (H) if v is evaluated correctly by the candidate H'. If,
however, v is evaluated correctly by the previous stable hypothesis H (and the condition
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Algorithm 2: Modified L* algorithm

Initialize observation table;
Make table closed and consistent;
repeat
Construct stable hypothesis H;
Ask equivalence query for H, let ¢ be the response;
if ¢ contains a counterexample then
Handle counterexample c;
Make table closed and consistent;
repeat
Construct candidate hypothesis H';
Obtain minimal-length string v that distinguishes H and H';
if v distinguishes H' and L then
Handle counterexample v;
Make table closed and consistent;

end

until v distinguishes H and L;
end

until ¢ does not contain a counterexample;

is not met), then we cannot guarantee that the candidate has improved. In this case, we
have however found a counterexample (v) without asking an equivalence query. We use
this counterexample to construct a new (and bigger) candidate H' (following the standard
L* procedure) and we again ask for a minimal-length string v that distinguishes the new
candidate from the stable hypothesis. The algorithm iterates in this way until it finds a
minimal-length distinguishing string v that is evaluated correctly by the candidate. In this
case we break the loop, promote the candidate to stable and ask for the next equivalence
query. The correctness and termination of our algorithm are proven by Theorem 7.

Theorem 7 The execution of Algorithm 2 terminates, and each stable hypothesis is at least
as good as the previous one.

Proof First, note that the inner loop handles a counterexample in the regular way. Hence,
each candidate hypothesis has more states than any previous hypothesis. We show that the
number of iterations in the inner loop is finite, which proves that the algorithm terminates,
given the termination of the original L* algorithm.

Let H' be the candidate hypothesis obtained from H by handling ¢, and let v be a
minimal-length distinguishing string for H' and H. Let v and «' be (unknown) minimal-
length counterexamples of H and H' respectively, and note that u can never be longer than
c. Moreover, note that v can never be longer than ¢ because, by construction, c € H <=
c ¢ H' and v is a string that distinguishes H and H'.

If v distinguishes H and L, then v is a counterexample for H. Hence, by contraposition
of Lemma 5, d(L, H) > d(L, H'). The algorithm breaks out of the inner loop and promotes
H' to stable. If, instead v distinguishes H' and L, then it might be the case that |u| > |u/|
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(and hence that d(L,H) < d(L,H')). Thus, given that H' evaluates v incorrectly, v can
be used as a counterexample obtaining a new hypothesis H” and a new minimal-length
distinguishing string v” for H” and H. Note that v does not distinguish H” and L, and
hence that v # v”. Consequently, in successive loops, the algorithm never processes v again,
because all hypotheses are consistent with the membership queries asked so far. Given that
there are a finite number of strings that are not longer than ¢, the inner loop terminates. l

In Example 3 we show that, by using Algorithm 2, each stable hypothesis is at least as good
as the previous one. As a result, we reduce the number of equivalence queries required in
learning the language represented by Figure 1.

Example 3 Let us continue the process for learning the language represented by the DFA in
Figure 1. Our starting point is the hypothesis in Figure 3(a). When this hypothesis is pre-
sented as an equivalence query, the oracle provides bbbaa as a counterexample. By handling
this counterexample, we obtain the hypothesis in Figure 3(b). The original L* would present
this hypothesis to the oracle in an equivalence query. Instead, Algorithm 2 first verifies that
the hypothesis is at least as good as the previous one. To do so, it finds a minimal-length
string (bbbb) that distinguishes it from the previous hypothesis (Figures 3(a)). Then, it
asks a membership query to check if the behaviour has changed. The membership query
returns false, and so does the previous hypothesis. Hence, an error was introduced in the
current hypothesis. Instead of presenting the hypothesis as an equivalence query, it is refined
by handling bbbb.

For the refined hypothesis, the algorithm performs another inequivalence check. This
time, a minimal-length string that distinguishes the current hypothesis from the previous
one is bbbaa, the initial counterexample. This string is evaluated incorrectly in the previous
hypothesis (and correctly in the current one). Therefore, the algorithm ezits the loop and
continues learning. The current hypothesis is, presented as an equivalence query, and the
oracle replies affirmatively. Algorithm 2 required four equivalence queries to learn the target
language, one less than the original L* algorithm. Moreover, the algorithm guarantees that
each hypothesis is at least as good as the previous one, contrary to the original L* algorithm.

4.1. Experimental Results

In this section, we give preliminary experimental evidence that our algorithm speeds up
learning. We have implemented Algorithm 2 on top of L* in LEARNLIB, a state-of-the-art
tool for active automata learning (Raffelt et al., 2009; Merten et al., 2011), and we have
compared the number of equivalence queries that it requires. Compared to an implementa-
tion of the original L* algorithm, Algorithm 2 requires approximately 4% less equivalence
queries. The experiments were conducted on randomly generated DFAs with a varying
number of states (100-2000) and alphabet (2-20).

To show that the contributions of this paper are suited for practical learning problems
as well, we have applied them in a more realistic setting. Recently, automata learning
techniques have become increasingly important for the construction of models for software
components. Smeenk (2012) used the L* algorithm to learn the behaviour of the Engine
Status Manager (ESM), a piece of industrial software that controls the transition from one
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status to another in Océ printers!. Learning the behaviour of this software is hard because of
the many details involved. A key challenge that the authors faced was the task of searching
for a counterexample: more than 263 million sequences of input actions were not enough to
fully learn the behaviour of the system. As a result, the learning process was terminated
before the correct hypothesis was found. In total, the time required for learning exceeded
19 hours, of which over 7 hours were spent on searching for counterexamples. Altogether,
131 hypotheses were generated. The partially correct final hypothesis had 3,326 states.
Using the distance metric described in Section 3 we were able to verify that the partially
correct final hypothesis was the best one seen so far. However, by comparing intermediate
hypotheses (Algorithm 2), we have found a counterexample for four hypotheses without
having to search for them using an equivalence query. In these cases, a minimal-length
distinguishing string for two successive hypotheses had incorrectly changed its behaviour.
With the use of our algorithm, we would have been able to detect these mistakes. As a
result, it is highly likely that our algorithm would have reduced the time required to learn
the final hypothesis. This case study shows the implications of our contributions in practice:
behaviour-based metrics can provide useful information about hypotheses in the learning
process. Using this information, we reduce the number of equivalence queries required.

5. Conclusions and Future Work

Bigger hypotheses in active automata learning are not always better. In this paper, we have
shown that different notions of quality exist for a hypothesis. We have argued that a valid
metric should be based on the behaviour of a hypothesis. To the best of our knowledge, our
work is the first to address the quality of hypotheses in active learning from such a solid,
theoretical perspective.

Using a well-known metric based on minimal-length counterexamples, we have shown
that the quality of successive hypotheses produced by L* may decrease. To correct this, we
have proposed a simple modification to L* that makes sure that each hypothesis is at least
as good as the previous one.

Experiments and a case study have provided preliminary evidence that our contributions
are effective in practice. Moreover, they have shown that behaviour-based metrics can
provide useful information about the learning process, that can be used to reduce the
number of equivalence queries required in active learning.

The results of this paper may provide insights in the problem of finding counterexamples
for an hypothesis. In a realistic setting, where the help of an oracle is unavailable, we
have to search for counterexamples by posing membership queries. In our experiments,
we have shown that a minimal-length distinguishing string for successive hypotheses has a
relatively high chance to be a counterexample. In future work, we wish to investigate if
other distinguishing strings are good candidates as well. A search strategy based on these
strings might find a counterexample more quickly.

1. A detailed description of the case study, with models and statistics, is available at http://www.mbsd.
cs.ru.nl/publications/papers/fvaan/ESM/.
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