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Abstract

In this paper a new algorithm for the induction of a Directed Acyclic Word Graph (DAWG)
is proposed. A DAWG can serve as a very efficient data structure for lexicon representa-
tion and fast string matching, and have a variety of applications. Similar structures are
being investigated in the theory of formal languages and grammatical inference, namely
deterministic and nondeterministic finite automata (DFA and NFA, respectively). Since
a DAWG is acyclic the proposed method is suited for problems where the target language
does not necessarily have to be infinite. The experiments have been performed for a dataset
from the domain of bioinformatics, and our results are compared with those obtained using
the current state-of-the-art methods in heuristic DFA induction.
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1. Introduction

The automata play a central role in grammatical inference. The earliest theoretical re-
sults and practical methods in the field, concerned finite-state machines. Even now, when
more and more work is being devoted to context-free grammars and other string-rewriting
systems, a great deal of research is being conducted on automata induction methods. As
this study will be especially focused on obtaining a directed acyclic word graph (which is
a special case of an automaton) from finite positive and negative data, the various models of
incremental learning and their decidability questions have not been mentioned. The book
by de la Higuera (2010) can be of major help on such theoretical aspects of grammatical
inference.

As far as algorithms for data-driven inductive inference of finite-state automata are con-
cerned, the following classifications can be applied: the algorithms that output deterministic
or non-deterministic automata, the class of languages they identify in the limit, and the
exact methods (the inference of minimum size DFAs) or heuristic methods (the inference
of automata which are just consistent with an input). The latter taxonomy is the one on
which we base this work, as we are interested in the analysis of biological sequences, and only
non-exact methods are suitable algorithms to process such large data sets. For instances of
exact methods, the reader is referred to Biermann and Feldman (1972); Grinchtein et al.
(2006); Heule and Verwer (2010). Heuristic methods which aim at selecting a small but
not necessarily minimum size solution had marvelous success in DFA competitions (Lang
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et al., 1998; Lucas and Reynolds, 2005). The most successful approaches are based on the
idea of creating clusters of states to merge them in order to come up with a solution that
is always consistent with the learning data. These methods, commonly known as state
merging algorithms, start with the prefix tree acceptor for the training set and fold it up
into a compact hypothesis by merging compatible pairs of states (Lang et al., 1998; Oncina
and Garćıa, 1992; Trakhtenbrot and Barzdin, 1973).

With respect to the problem of DAWG construction one should draw attention to a num-
ber of material facts. There are also two types of DAWGs. A directed graph is called
deterministic when no transitions exist that have the same labels and leave the same state.
This property results in a very efficient search function. Graphs that do not have this
property are called nondeterministic. The latter are generally smaller than the former but
they are a little slower to search. Throughout the paper, we assume a DAWG to be nonde-
terministic. It is well known that NFA or a regular expression minimization (which are of
a nondeterministic character, too) is computationally hard: it is PSPACE-complete (Meyer
and Stockmeyer, 1972). Jiang and Ravikumar (1993) showed, moreover, that the mini-
mization problem for NFAs or regular expressions remains PSPACE-complete, even when
specifying the regular language by a DFA. Thus the problem of constructing a k-vertex
DAWG that matches a set of input words is probably of exponential complexity. Some
work has been done on the problem but for the set of examples only (i.e., without the
presence of counter-examples and without the aim of generalization), see the algorithms
devised by Amilhastre et al. (1999) and Sgarbas et al. (2001).

In the present algorithm a DAWG is achieved based on a learning sample containing
the examples and counter-examples1. It is a two-phase procedure. In the first phase an
initial graph is built in a way that resembles the construction of the minimal DFA, but
nondeterminism is also allowed. In the second phase the graph is extended so as to increase
the number of accepted words.

We have implemented our induction algorithm of a DAWG and started applying it
to a real bioinformatics task, i.e. classification of amyloidogenic hexapeptides. Amyloids
are proteins capable of forming fibrils instead of the functional structure of a protein (Ja-
roniec et al., 2004), and are responsible for a group of diseases called amyloidosis, such as
Alzheimers, Huntingtons disease, and type II diabetes (Uversky and Fink, 2004). Further-
more, it is believed that short segments of proteins, like hexapeptides consisting of 6-residue
fragments, can be responsible for amyloidogenic properties (Thompson et al., 2006). Since
it is not possible to experimentally test all such sequences, several computational tools for
predicting amyloid chains have emerged, inter alia, based on physico-chemical properties
(Hamodrakas, 2011) or using machine learning approach (Stanislawski et al., 2013; Un-
old, 2012a,b). It is worth noting that proteins, but not amyloids, were recognized also by
learning automata in (Coste and Kerbellec, 2006).

To test the performance of our DAWG approach, the following five programs have
been used in experiments: an implementation of the Trakhtenbrot-Barzdin state merging
algorithm, as described in Lang (1992); a MATLAB2 implementation of the RPNI (Regular
Positive and Negative Inference) algorithm (Akram et al., 2010); the implementations of
two various versions of Rodney Price’s Abbadingo winning idea of evidence-driven state

1. These examples and counter-examples are also called positive and negative words.
2. MATLAB is a registered trademark of The MathWorks, Inc.
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merging (Lang et al., 1998); a program based on the Rlb state merging algorithm (Lang,
1997). The comparison to other classical automata learning algorithms such as ECGI (Rulot
et al., 1989), DeLeTe (Denis et al., 2000), k-RI (Angluin, 1982), or k-TSSI (Garcia et al.,
1990) needs further work. Also comparing with modified versions of the state merging
algorithms, to ensure that returned automata are acyclic (by forbidding merges resulting
in loops), deserves additional exploration.

The present paper is organized as follows. Section 2 gives the necessary definitions orig-
inating from graph theory and formal languages. Section 3 presents the proposed procedure
of the construction of a DAWG. Section 4 discusses the preliminary experimental results
of the new approach as well as evaluation of the methodology. Conclusions and research
perspectives are contained in Section 5.

2. Definitions

A directed graph, or digraph, is a pair G = (V,A), where V is a finite, non-empty set
of vertices and A has as elements ordered pairs of different vertices called arcs; that is,
A ⊆ V × V . In a digraph G = (V,A) the in-degree of a vertex v is the number of arcs of
the form u, v that are in A. Similarly, the out-degree of v is the number of arcs of A that
have the form v, u. A walk w = (v1, v2, . . . , vk) of G is a sequence of vertices in V such that
(vj , vj+1) ∈ A for j = 1, . . . , k − 1. Furthermore, if k > 1 and vk = v1, then w is said to be
closed. A path in G is a walk without repetitions. A cycle is a closed path.

An alphabet is a finite, non-empty set of symbols. We use the symbol Σ for an alphabet.
A word (or sometimes string) is a finite sequence of symbols chosen from an alphabet. For
a word w, we denote by |w| the length of w. The empty word λ is the word with no symbols.
Let x and y be words. Then xy denotes the concatenation of x and y, that is, a word formed
by making a copy of x and following it by a copy of y. We denote as usual by Σ∗ the set
of words over Σ and by Σ+ the set Σ∗ − {λ}. A word w is called a prefix of a word x if
there is a word u such that x = wu. It is a proper prefix if u 6= λ. The set of all prefixes
that can be obtained from the set of words X will be denoted by P(X). Let X be a subset
of Σ∗. For w ∈ Σ∗, we define the left quotients w−1X = {u ∈ Σ∗ | wu ∈ X}.

A DAWG G = (s, t, V,A,Σ, `) is a digraph (V,A) with no cycles together with an al-
phabet Σ and with a label `(u, v) ∈ 2Σ − {∅} for each (u, v) ∈ A, in which there is exactly
one vertex with in-degree 0—the source s, and exactly one vertex with out-degree 0—the
terminal t. It can be proved that in any DAWG, every vertex is reachable from the source.
Furthermore, from every vertex the terminal is reachable. So there are no useless vertices.
We will say that a word w ∈ Σ+ is stored by G if there is a labeled path from the source to
the terminal such that this path spells out the word w. Let L(G) be the set of all words that
are spelled out by paths from s to t. We can formally define it by the transition function
δ : V ×Σ+ → 2V which is given inductively by

1. δ(v, a) = {u ∈ V | (v, u) ∈ A ∧ a ∈ `(v, u)}, for a ∈ Σ,

2. δ(v, wa) =
⋃n
i=1 δ(ui, a), where {u1, u2, . . . , un} = δ(v, w), for w ∈ Σ+ and a ∈ Σ.

Therefore, we have L(G) = {w ∈ Σ+ | t ∈ δ(s, w)}. Using the terminology of automata,
a DAWG could be referred to as a non-deterministic finite automaton that has exactly one
accepting state and recognizes a finite language.
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a,b

Figure 1: The initial DAWG built based on the set {a, b, ab}

Let G = (s, t, V,A,Σ, `) be a directed acyclic word graph. To measure the potency, p,
of (u, v) ∈ A we make the following definition: p(u, v) is the number of paths from v to t
or 1 if v = t. Naturally, for all v ∈ V − {s, t} we have p(u, v) =

∑
(v,w)∈A p(v, w). Thus, by

means of memoization, all potencies can be determined in time O(|A|2).

3. Efficient Construction of a DAWG from Informed Samples

A sample is a finite set of data. The sample can be informed in which case it is a pair
(S+, S−) of finite sets of strings. S+ contains the positive examples and S− contains the
negative examples (also called the counter-examples). Here and subsequently, we assume
a sample to be non-conflicting (i.e., S+ ∩ S− = ∅) and not containing the empty word.

The present algorithm is two-phased. In the first phase, based on the examples, an initial
DAWG, GS+ , is constructed. Its aim is to discover the structure of an unknown finite
language. In the second phase the DAWG is extended step by step by the addition of new
labels. The possibility of getting a DAWG that stores an expected language is the purpose
of this extension procedure. So as to avoid the acceptance of a counter-example, the second
phase is controlled by means of S−.

An initial DAWG is constructed based on the following definitions. Its set of vertices is

V = {w−1S+ | w ∈ P(S+)}.

Its source is s = S+, its terminal is t = {λ}, and its arcs and labels are defined for v ∈ V and
a ∈ Σ by a ∈ `(v, a−1v) ⇔ a−1v 6= ∅ and a ∈ `(v, t) ⇔ λ ∈ a−1v. From these definitions
we can conclude that L(GS+) = S+. For example, the initial DAWG G{a,b,ab} is shown in
Figure 1. Needless to say, in a computer implementation after building a digraph it is more
convenient to represent its vertices as integers rather than sets of words.

We are now in a position to describe Procedure Extend, which, in an iterative process,
improves the current word digraph by putting some additional labels onto the existing arcs.
This auxiliary deposal leads in turn to an increase in the number of stored words and this
is why we can get a DAWG that represents a more accurate or exact (sought) language.
Please notice that the order of putting new labels alters the results, hence a greedy heuristic
is used in order to obtain the most words consistent with a sample. The algorithm starts
with the arcs of higher potency, then those of low potency are processed. The language
membership problem (test if t ∈ δ(s, w)) may be efficiently resolved by a memoized function
derived from the definition of δ in time O(|w| · |V |2).

Let n be the sum of the lengths of all examples, m be the sum of the lengths of all
counter-examples, and k be the size of an alphabet. Since both |V | and |A| in GS+ are
O(n), and the computation cost of determining V and A is in O(n2), the running time of
the present method is O(kmn3). It is also noteworthy that an achieved DAWG stores only
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Procedure Extend(GS+ , S−)

sort A according to decreasing potencies
for (u, v) ∈ A do

for a ∈ Σ do
if a 6∈ `(u, v) then

add a to `(u, v)
if there is a word w ∈ S− such that t ∈ δ(s, w) then

remove a from `(u, v)
end

end

end

end

words of the same length as those observed in the set of examples. Therefore, it is pointless
to have a negative example of length i, when none of the positive examples is of length i.

4. Experimental Results

In order to test our approach we considered the recently published Hexpepset dataset, con-
taining a binary classification of 2452 hexapeptides made using the Pafig method (Tian
et al., 2009). The original dataset contains 1226 positive samples and 1226 negative sam-
ples, however, according to Kotulska and Unold (2013), the Pafig method produces falsely
correct results of classification. In Kotulska and Unold (2013) all 2452 hexapeptides of the
Hexpepset dataset were applied to three state-of-the-art methods: FoldAmyloid (Garbuzyn-
skiy et al., 2010) with five sets of different parameters, Waltz (Maurer-Stroh et al., 2010)
with six sets of different parameters, and AmylPred (Hamodrakas et al., 2007). In total, all
of these 12 methods returned 1676 instances unanimously classified (1648 negative samples
and 28 positive samples)3. This set of unanimous classified hexapeptides was divided ran-
domly into two equal training and test sets, each of them containing 14 positive examples
and 824 counter-examples (denoted by the Limited training-test set).

To extend the dataset, we can use majority voting to all instances rejected by the
above approach. Each hexapeptide is classified as a positive/negative example if most of
12 methods (i.e. 11, 10, . . . , 7) classifies it as a positive/negative, respectively. All examples
which received an equal number of votes (of 6) are not considered here. As a result, we get
733 extra instances (611 negative and 122 positive samples). In this case the training set
comprises all unanimous classified hexapeptides (1648 negative examples and 28 positive),
and the testing set consists of all extra added 6-residue fragments (both sets are denoted
by the Extended training-test set).

The DAWG approach was tested among five heuristic state-merging DFA induction
algorithms: the Trakhtenbrot-Barzdin state merging algorithm (denoted Traxbar) (Lang,
1992), the RPNI algorithm (denoted RPNI) (Akram et al., 2010), two versions of evidence-

3. http://www.biomedcentral.com/1471-2105/14/351/additional, last accessed May 5, 2014.
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driven state merging (denoted by Reference and Blue-fringe) (Lang et al., 1998), and the
Rlb algorithm (denoted Rlb) (Lang, 1997)4.

The classification results were evaluated based on typical measures: Recall, Precision,
Balanced Accuracy, and area under the Receiver Operating Characteristic (ROC) curve
(AUC). Recall and Precision are defined as follows:

Recall (true positive rate, Sensitivity) = tp/(tp+fn),
Specificity (true negative rate) = tn/(tn+fp),
Precision = tp/(tp+fp)

where tp, fp, fn and tn represent the numbers of true positives (correctly recognized amy-
loids), false positives (non-amyloids recognized as amyloids), false negatives (amyloids recog-
nized as non-amyloids) and true negatives (correctly recognized non-amyloids), respectively.

Recall (completeness) in the context of amyloid recognition is the ratio of amyloids re-
trieved to the total number of amyloids in the dataset, Precision (exactness) is the fraction of
the amyloids that are relevant to the find. Since the class distribution is not uniform among
the classes both in Limited and Extended training-test sets (the set of positive hexapep-
tides forms a minority class), and to avoid inflated performance, the Balanced Accuracy
and AUC were applied. Both of these metrics handle well with imbalanced datasets. The
Balanced Accuracy (B.Acc) is defined as the arithmetic mean of Sensitivity and Specificity.
AUC measures the area under the ROC curve (Fawcett, 2006), which represents the rela-
tionship between the true positive rate and the false positive rate of a bunch of classifiers
resulting from different output thresholds5. However, in the case of binary classifiers, which
we are faced with, the AUC may be computed easily using the following formula (Castro
and Braga, 2012):

AUC(f) =
1

|S+| × |S−|

∑
p∈S+

∑
n∈S−

G(f(p)− f(n))

 ,

where G(t) is defined as

G(t) =


0 : t < 0,

0.5 : t = 0,

1 : t > 0,

and assuming that f(x) ∈ {0, 1} is dependent on mapping an instance x to negative (0)
or positive (1) class. The AUC has an important statistical property: it is equivalent to
the probability that a classifier f will rank a randomly chosen positive instance higher than
a randomly chosen negative instance.

Table 1 summarizes the performances of the six compared methods. It transpires that
the DAWG approach gained the highest Recall, Balanced Accuracy and AUC among tested
heuristics, both for Limited and Extended training-test sets. It is worth noting, that in

4. We used implementations from the webpage http://code.google.com/p/gitoolbox/ for the RPNI and
from http://abbadingo.cs.nuim.ie/dfa-algorithms.tar.gz for the remaining algorithms.

5. It is possible to choose different thresholds, if a classifier yields a numeric value (for instance probability
or score) that represents the degree to which an object is a member of a class.
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a (bio)medical context, Recall is regarded as primary score, as the goal of classification is
to identify all real positive cases (i.e. in our case amyloids). What is more, both AUC
metric and B.Acc sort the compared methods in the same order, almost irrespective of the
training-test set applied (the only difference is the highest position of the Reference state
merging among methods over the Extended set). This demonstrates the high correlation of
the two metrics, as well as the similar characteristics of the two training-test sets. Note that
the extended training set includes more examples, but the extended testing set is based on
less reliable data than the limited set.

Due to the method of constructing Limited training-test set, the presented results
over this dataset can be considered as a comparision with dedicated bioinformatics tools:
FoldAmyloid (Garbuzynskiy et al., 2010), Waltz (Maurer-Stroh et al., 2010) and AmylPred
(Hamodrakas et al., 2007). All these mentioned approaches classified hexapeptides fault-
lessly, and as such gained the highest scores of Precision, Recall, Balanced Accuracy, and
AUC metrics.

Table 1: Comparison of DAWG with other heuristic DFA induction methods over limited
and extended training-test sets. P=Precision, R=Recall, B.Acc=Balanced Accu-
racy, AUC=area under the ROC curve. The table is arranged in order of decreasing
Balanced Accuracy regarding Limited training-test set.

Limited training-test set Extended training-test set
Method P R B.Acc AUC P R B.Acc AUC

DAWG 0.2034 0.8571 0.9273 0.9001 0.4038 0.5164 0.7071 0.6821
Rlb 0.6875 0.7857 0.8910 0.8898 0.6232 0.3525 0.6167 0.6549

Traxbar 0.5238 0.7857 0.8910 0.8868 0.4706 0.3279 0.6007 0.6271
Reference 0.4545 0.7142 0.8547 0.8499 0.4757 0.4016 0.6429 0.6566

Blue-fringe 1.0 0.5 0.7458 0.75 0.6486 0.1967 0.5279 0.5877
RPNI 0.6667 0.4285 0.7095 0.7125 0.7917 0.1557 0.5052 0.5738

It would be interesting to test the performance of DFA induction methods, including
DAWG approach, on only experimentally asserted amyloid sequences. Table 2 presents
the results obtained by the compared methods on amyloidogenic dataset, composed by 116
hexapeptides known to induce amyloidosis and by 161 hexapeptides that do not induce
amyloidosis (Maurer-Stroh et al., 2010). The set of experimentally verified hexapeptides
was divided randomly into two equal training and test sets, each of them containing 58
positive examples and 80/81 (training/testing) counter-examples. It is not hard to notice,
that experimental set is much smaller than computational made datasets (one order of
magnitude) and better balanced. Nevertheless, the DAWG approach achieved best Recall
and Balanced Accuracy metrics, rightly predicting 94.8% of the actual amyloid cases, and
as such can be used with a high reliability to recognize amyloid proteins.

5. Conclusions and Future Work

We have proposed an efficient method for inferring a directed acyclic word graph from finite
positive and negative data. The idea behind the method is to build a nondeterministic word

213



Wieczorek Unold

Table 2: Comparison of DAWG with other heuristic DFA induction methods over ex-
perimental verified set. P=Precision, R=Recall, B.Acc=Balanced Accuracy,
AUC=area under the ROC curve. The table is arranged in order of decreasing
Balanced Accuracy.

Experimental set
Method P R B.Acc AUC

DAWG 0.4264 0.9483 0.8241 0.5173
Traxbar 0.5658 0.7414 0.7515 0.6669
RPNI 0.6667 0.4285 0.7095 0.7125
Rlb 0.5 0.6207 0.6462 0.5881

Blue-fringe 0.4019 0.7069 0.6237 0.4769
Reference 0.3402 0.5689 0.4869 0.3894

graph that stores exactly the example set, and then to extend it by putting new transition
labels in a manner that maximizes the set of stored (accepted) words, while assuring that
none of the counter-examples is accepted.

In this work, we have used data derived from the recently published Hexpepset dataset
and experimentally verified dataset for the inference of a DAWG among the other five
heuristic state-merging DFA induction algorithms. The DAWG approach outperformed
significantly all compared heuristic methods in terms of Recall and Balanced Accuracy for
all tested sets (and in term of AUC for computational made sets). As a by-product, we
also propose a more justified—by using unanimous classification by three state-of-the-art
methods—amyloid hexapeptide dataset (called Limited training-test set) than the reference
Hexpepset.

The work we are carrying out at present is the application of the proposed method not
only to recognize amyloid proteins, but also to generate them. Observing that having the
statistical distribution of aminoacids in hexapeptides (Kotulska and Unold, 2013), we are
able to produce by means of an induced directed acyclic word graph a set of new likely fibril-
forming segments in the protein sequences. The amyloidogenicity of generated sequences
can be later tested, for example by a simplified 3D profile method (Stanislawski et al., 2013).
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