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Abstract
In sparse recovery we are given a matrix A ∈ Rn×m (“the dictionary”) and a vector of the form
AX where X is sparse, and the goal is to recover X . This is a central notion in signal processing,
statistics and machine learning. But in applications such as sparse coding, edge detection, com-
pression and super resolution, the dictionary A is unknown and has to be learned from random
examples of the form Y = AX where X is drawn from an appropriate distribution — this is the
dictionary learning problem. In most settings, A is overcomplete: it has more columns than rows.
This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only
previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012)
who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our al-
gorithm applies to incoherent dictionaries which have been a central object of study since they were
introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is µ-incoherent
if each pair of columns has inner product at most µ/

√
n.

The algorithm makes natural stochastic assumptions about the unknown sparse vector X ,
which can contain k ≤ cmin(

√
n/µ log n,m1/2−η) non-zero entries (for any η > 0). This is

close to the best k allowable by the best sparse recovery algorithms even if one knows the dictio-
nary A exactly. Moreover, both the running time and sample complexity depend on log 1/ε, where
ε is the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our al-
gorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the
dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend
polynomially on 1/ε, and this is necessary.

1. Introduction

Finding sparse representations for data —signals, images, natural language— is a major focus of
computational harmonic analysis (Elad, 2010; Mallat, 1998). This requires having the right dic-
tionary A ∈ Rn×m for the dataset, which allows each data point to be written as a sparse linear
combination of the columns of A. For images, popular choices for the dictionary include sinu-
soids, wavelets, ridgelets, curvelets, etc. (Mallat, 1998) and each one is useful for different types of
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features: wavelets for impulsive events, ridgelets for discontinuities in edges, curvelets for smooth
curves, etc. It is common to combine such hand-designed bases into a single dictionary, which is
“redundant” or “overcomplete” because m � n. This can allow sparse representation even if an
image contains many different “types” of features jumbled together. In machine learning dictionar-
ies are also used for feature selection (Pontil et al., 2007) and for building classifiers on top of sparse
coding primitives (Kavukcuoglu et al., 2008).

In many settings hand-designed dictionaries do not do as well as dictionaries that are fit to the
dataset using automated methods. In image processing such discovered dictionaries are used to
perform denoising (Elad and Aharon, 2006), edge-detection (Mairal et al., 2008), super-resolution
(Yang et al., 2008) and compression. The problem of discovering the best dictionary to a dataset
is called dictionary learning and also referred to as sparse coding in machine learning. Dictionary
learning is also a basic building block in the design of deep learning systems (Ranzato et al., 2007).
See Aharon (2006); Elad (2010) for further applications. In fact, the dictionary learning problem
was identified by Olshausen and Field (1997) as part of a study on internal image representations in
the visual cortex. Their work suggested that basis vectors in learned dictionaries often correspond
to well-known image filters such as Gabor filters.

Our goal is to design an algorithm for this problem with provable guarantees in the same spirit
as recent work on nonnegative matrix factorization (Arora et al., 2012a), topic models (Arora et al.,
2012b; Anandkumar et al., 2012) and mixtures models (Moitra and Valiant, 2010; Belkin and Sinha,
2010). (We will later discuss why current algorithms in Lewicki and Sejnowski (2000), Engan et al.
(1999), Aharon et al. (2006), Kreutz-Delgado et al. (2003), Lee et al. (2006) do not come with such
guarantees.) Designing such algorithms for dictionary learning has proved challenging. Even if the
dictionary is completely known, it can be NP-hard to represent a vector u as a sparse linear combi-
nation of the columns of A (Davis et al., 1997). However for many natural types of dictionaries, the
problem of finding a sparse representation is computationally easy. The pioneering work of Donoho
and Huo (1999), Donoho and Elad (2003) and Gribonval and Nielsen (2003) (building on the un-
certainty principle of Donoho and Stark (1999)) presented a number of important examples (in fact,
the ones we used above) of dictionaries that are incoherent and showed that `1-minimization can
find a sparse representation in a known, incoherent dictionary if one exists.

Definition 1 (µ-incoherent) An n×m matrix A whose columns are unit vectors is µ-incoherent if
∀i 6= j we have 〈Ai, Aj〉 ≤ µ/

√
n. We will refer to A as incoherent if µ is O(log n).

A randomly chosen dictionary is incoherent with high probability (even if m = n100). Donoho
and Huo (1999) gave many other important examples of incoherent dictionaries, such as one con-
structed from spikes and sines, as well as those built up from wavelets and sines, or even wavelets
and ridgelets. There is a rich body of literature devoted to incoherent dictionaries (see additional
references in Gilbert et al. (2003)). Donoho and Huo (1999) proved that given u = Av where v
has k nonzero entries, where k ≤

√
n/2µ, basis pursuit (solvable by a linear program) recovers v

exactly and it is unique. Gilbert et al. (2003) (and subsequently Tropp et al. (2003)) gave algorithms
for recovering v even in the presence of additive noise. Tropp (2004) gave a more general exact
recovery condition (ERC) under which the sparse recovery problem for incoherent dictionaries can
be algorithmically solved. All of these require n > k2µ2. In a foundational work, Candes et al.
(2006) showed that basis pursuit solves the sparse recovery problem even for n = O(k log(m/k))
if A satisfies the weaker restricted isometry property (Candes and Tao, 2005). Also if A is a full-
rank square matrix, then we can compute v from A−1u, trivially. But our focus here will be on
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incoherent and overcomplete dictionaries; extending these results to RIP matrices is left as a major
open problem.

The main result in this paper is an algorithm that provably learns an unknown, incoherent dictio-
nary from random samples Y = AX whereX is a vector with at most k ≤ cmin(

√
n/µ log n,m1/2−η)

non-zero entries (for any η > 0, small enough constant c > 0 depending on η). Hence we can al-
low almost as many non-zeros in the hidden vector X as the best sparse recovery algorithms which
assume that the dictionary A is known. The precise requirements that we place on the distributional
model are described in Section 1.2. We can relax some of these conditions at the cost of increased
running time or requiring X to be more sparse. Finally, our algorithm can tolerate a substantial
amount of additive noise, an important consideration in most applications including sparse coding,
provided it is independent and uncorrelated with the dictionary.

1.1. Related Works

Algorithms used in practice Dictionary learning is solved in practice by variants of alternat-
ing minimization. Lewicki and Sejnowski (2000) gave the first approach; subsequent popular ap-
proaches include the method of optimal directions (MOD) of Engan et al. (1999), and K-SVD of
Aharon et al. (2006). The general idea is to maintain a guess for A and X and at every step either
update X (using basis pursuit) or update A by, say, solving a least squares problem. Provable guar-
antees for such algorithms have proved difficult because the initial guesses may be very far from the
true dictionary, causing basis pursuit to behave erratically. Also, the algorithms could converge to a
dictionary that is not incoherent, and thus unusable for sparse recovery. (In practice, these heuristics
do often work.)

Algorithms with guarantees An elegant paper of Spielman et al. (2012) shows how to provably
recover A exactly if it has full column rank, and X has at most

√
n nonzeros. However, requiring

A to be full column rank precludes most interesting applications where the dictionary is redundant
and hence cannot have full column rank (see Donoho and Huo (1999); Elad (2010); Mallat (1998)).
Moreover, the algorithm in Spielman et al. (2012) is not noise tolerant.

After the initial announcement of this work, Agarwal et al. (2013b,a) independently gave prov-
able algorithms for learning overcomplete and incoherent dictionaries. Their first paper (Agarwal
et al., 2013b) requires the entries inX to be independent random±1 variables. Their second (Agar-
wal et al., 2013a) gives an algorithm –a version of alternating minimization– that converges to the
correct dictionary given a good initial dictionary (such a good initialization can only be found using
Agarwal et al. (2013b) in special cases, or more generally using this paper). Unlike our algorithms,
theirs assume the sparsity of X is at most n1/4 or n1/6 (assumption A4 in both papers), which are
far from the n1/2 limit of incoherent dictionaries. The main change from the initial version of our
paper is that we have improved the dependence of our algorithms from poly(1/ε) to log 1/ε (see
Section 4).

After this work, Barak et al. (2014) give an quasi-polynomial time algorithm for dictionary
learning using sum-of-squares SDP hierarchy. The algorithm can output an approximate dictionary
even when sparsity is almost linear in the dimensions with weaker assumptions.

Independent Component Analysis When the entries of X are independent, algorithms for in-
dependent component analysis or ICA (Comon, 1994) can recover A. Frieze et al. (1996) gave a
provable algorithm that recoversA up to arbitrary accuracy, provided entries inX are non-Gaussian

3



ARORA GE MOITRA

(when X is Gaussian, A is only determined up to rotations anyway). Subsequent works considered
the overcomplete case and gave provable algorithms even whenA is n×m withm > n (Lathauwer
et al., 2007; Goyal et al., 2014).

However, these algorithms are incomparable to ours since the algorithms are relying on differ-
ent assumptions (independence vs. sparsity). With sparsity assumption, we can make much weaker
assumptions on how X is generated. In particular, all these algorithms require the support Ω of the
vector X to be at least 3-wise independent (Pr[u, v, w ∈ Ω] = Pr[u ∈ Ω]Pr[v ∈ Ω]Pr[w ∈ Ω])
in the undercomplete case and 4-wise independence in the overcomplete case . Our algorithm
only requires the support S to have bounded moments (Pr[u, v, w ∈ Ω] ≤ ΛPr[u ∈ Ω]Pr[v ∈
Ω]Pr[w ∈ Ω] where Λ is a large constant or even a polynomial depending on m,n, k, see Defini-
tion 5). Also, because our algorithm relies on the sparsity constraint, we are able to get almost exact
recover in the noiseless case (see Theorem 4 and Section 4). This kind of guarantee is impossible
for ICA without sparsity assumption.

1.2. Our Results

A range of results are possible which trade off more assumptions with better performance. We give
two illustrative ones: the first makes the most assumptions but has the best performance; the second
has the weakest assumptions and somewhat worse performance. The theorem statements will be
cleaner if we use asymptotic notation: the parameters k, n,m will go to infinity and the constants
denoted as “O(1)” are arbitrary so long as they do not grow with these parameters.

First we define the class of distributions that the k-sparse vectors must be drawn from. We
will be interested in distributions on k-sparse vectors in Rm where each coordinate is nonzero with
probability Θ(k/m) (the constant in Θ(·) can differ among coordinates).

Definition 2 (Distribution class Γ and its moments) The distribution is in class Γ if (i) each nonzero
Xi has expectation 0 and lies in [−C,−1]∪ [1, C] where C = O(1). (ii) Conditioned on any subset
of coordinates in X being nonzero, the values Xi are independent of each other.

The distribution has bounded `-wise moments if the probability that X is nonzero in any subset
S of ` coordinates is at most c` times

∏
i∈S Pr[Xi 6= 0] where c = O(1).

Remark: (i) The bounded moments condition trivially holds for any constant ` if the set of
nonzero locations is a random subset of size k. The values of these nonzero locations are allowed to
be distributed very differently from one another. (ii) The requirement that nonzero Xi’s be bounded
away from zero in magnitude is similar in spirit to the Spike-and-Slab Sparse Coding (S3C) model
of Goodfellow et al. (2012), which also encourages nonzero latent variables to be bounded away
from zero to avoid degeneracy issues that arise when some coefficients are much larger than others.
(iii) In the rest of the paper we will be focusing on the case when C = 1, all the proofs generalize
directly to the case C > 1 by losing constant factors in the guarantees.

Because of symmetry in the problem, we can only hope to learn dictionary A up to permutation
and sign-flips. We say two dictionaries are column-wise ε-close, if after appropriate permutation
and flipping the corresponding columns are within distance ε.

Definition 3 Two dictionaries A,B ∈ Rn×m are column-wise ε-close, if there exists a permutation
π and θ ∈ {±1}m such that ‖(Ai)− θi(B)π(i)‖ ≤ ε.
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Later when we are talking about two dictionaries that are ε-close, we always assume the columns
are ordered correctly so that ‖Ai −Bi‖ ≤ ε.

Theorem 4 There is a polynomial time algorithm to learn a µ-incoherent dictionary A from ran-
dom examples. With high probability the algorithm returns a dictionary Â that is column-wise ε
close toA given random samples of the form Y = AX , whereX ∈ Rn is chosen according to some
distribution in Γ and A is in Rn×m:

• If k ≤ cmin(m2/5,
√
n

µ logn) and the distribution has bounded 3-wise moments, c > 0 is a

universal constant, then the algorithm requires p1 samples and runs in time Õ(p2
1n).

• If k ≤ cmin(m(`−1)/(2`−1),
√
n

µ logn) and the distribution has bounded `-wise moments, c > 0
is a constant only depending on `, then the algorithm requires p2 samples and runs in time
Õ(p2

2n)

• Even if each sample is of the form Y (i) = AX(i) + ηi, where ηi’s are independent spheri-
cal Gaussian noise with standard deviation σ = o(

√
n), the algorithms above still succeed

provided the number of samples is at least p3 and p4 respectively.

In particular p1 = Ω((m2/k2) logm+mk2 logm+m logm log 1/ε) and p2 = Ω((m/k)`−1 logm+
mk2 logm log 1/ε) and p3 and p4 are larger by a σ2/ε2 factor.

Remark: The sparsity that our algorithm can tolerate – the minimum of
√
n

µ logn and m1/2−η –
approaches the sparsity that the best known algorithms require even if A is known.
Although the running time and sample complexity of the algorithm are relatively large polynomials,
there are many ways to optimize the algorithm. See the discussion in Section 5.

Now we describe the other result which requires fewer assumptions on how the samples are
generated, but require more stringent bounds on the sparsity:

Definition 5 (Distribution class D) A distribution is in class D if (i) the events Xi 6= 0 have
weakly bounded second and third moments, in the sense that Pr[Xi 6= 0 and Xj 6= 0] ≤ nεPr[Xi 6=
0]Pr[Xj 6= 0], Pr[Xi, Xj , Xt 6= 0] ≤ o(n1/4)Pr[Xi 6= 0]Pr[Xj 6= 0]Pr[Xt 6= 0]. (ii) Each
nonzero Xi is in [−C,−1] ∪ [1, C] where C = O(1).

The following theorem is proved similarly to Theorem 4, and is sketched in Appendix G.

Theorem 6 There is a polynomial time algorithm to learn a µ-incoherent dictionary A from ran-
dom examples of the form Y = AX , where X is chosen according to some distribution in D. If
k ≤ cmin(m1/4, n

1/4−ε/2
√
µ ) and we are given p ≥ Ω(max(m2/k2 logm, mn

3/2 logm logn
k2µ

)) sam-
ples , then the algorithm succeeds with high probability, and the output dictionary is column-wise
ε = O(k

√
µ/n1/4−ε/2) close to the true dictionary. The algorithm runs in time Õ(p2n+m2p). The

algorithm is also noise-tolerant as in Theorem 4.
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1.3. Proof Outline

The key observation in the algorithm is that we can test whether two samples share the same dictio-
nary element (see Section 2.1). Given this information, we can build a graph whose vertices are the
samples, and edges correspond to samples that share the same dictionary element. A large cluster
in this graph corresponds to the set of all samples with Xi 6= 0. In Section 2.2 we give an algorithm
for finding all the large clusters. Then we show how to recover the dictionary given the clusters
in Section 3. This allows us to get a rough estimate of the dictionary matrix. Section 4 gives an
algorithm for refining the solution in the noiseless case. The three main parts of the techniques are:

Overlapping Clustering: Heuristics such as MOD (Engan et al., 1999) or K-SVD (Aharon et al.,
2006) have a cyclic dependence: If we knew A, we could solve for X and if we knew all of the
X’s we could solve for A. Our main idea is to break this cycle by (without knowing A) finding
all of the samples where Xi 6= 0. We can think of this as a cluster Ci. Although our strategy
is to cluster a random graph, what is crucial is that we are looking for an overlapping clustering
since each sample X belongs to k clusters! Many of the algorithms which have been designed
for finding overlapping clusterings (e.g. Arora et al. (2012c), Balcan et al. (2013)) have a poor
dependence on the maximum number of clusters that a node can belong to. Instead, we give a
simple combinatorial algorithm based on triplet (or higher-order) tests that recovers the underlying,
overlapping clustering. In order to prove correctness of our combinatorial algorithm, we rely on
tools from discrete geometry, namely the piercing number (Matousek, 2002; Alon and Kleitman,
1992).

Recovering the Dictionary: Next, we observe that there are a number of natural algorithms for
recovering the dictionary once we know the clusters Ci. We can think of a random sample from
Ci as applying a filter to the samples we are given, and filtering out only those samples where
Xi 6= 0. The claim is that this distribution will have a much larger variance along the direction
Ai than along other directions, and this allows us to recovery the dictionary either using a certain
averaging algorithm, or by computing the largest singular vector of the samples in Ci. In fact, this
latter approach is similar to K-SVD (Aharon et al., 2006) and hence our analysis yields insights into
why these heuristics work.

Fast Convergence: The above approach yields provable algorithms for dictionary learning whose
running time and sample complexity depend polynomially on 1/ε. However once we have a suit-
ably good approximation to the true dictionary, can we converge at a much faster rate? We analyze a
simple alternating minimization algorithm ITERATIVE AVERAGE and we derive a formula for its up-
dates where we can analyze it by thinking of it instead as a noisy version of the matrix power method
(see Lemma 20). This analysis is inspired by recent work on analyzing alternating minimization for
the matrix completion problem (Jain et al., 2013; Hardt, 2013), and we obtain algorithms whose
running time and sample complexity depends on log 1/ε. Hence we get algorithms that converge
rapidly to the true dictionary while simultaneously being able to handle almost the same sparsity as
in the sparse recovery problem where A is known!

NOTATION: Throughout this paper, we will use Y (i) to denote the ith sample and X(i) as the
vector that generated it – i.e. Y (i) = AX(i). Let Ω(i) denote the support of X(i). For a vector X let
Xi be the ith coordinate. For a matrix A ∈ Rn×m (especially the dictionary matrix), we use Ai to
denote the i-th column (the i-th dictionary element). Also, for a set S ⊂ {1, 2, ...,m}, we use AS
to denote the submatrix of A with columns in S. We will use ‖A‖F to denote the Frobenius norm
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and ‖A‖ to denote the spectral norm. Moreover we will use Γ to denote the distribution on k-sparse
vectors X that is used to generate our samples, and Γi will denote the restriction of this distribution
to vectors X where Xi 6= 0. When we are working with a graph G we will use ΓG(u) to denote the
set of neighbors of u in G. Throughout the paper “with high probability” means the probability is
at least 1− n−∆ for large enough ∆.

2. The Connection Graph and Overlapping Clustering

2.1. The Connection Graph

In this part we show how to test whether two samples share the same dictionary element, i.e.,
whether the supports Ω(i) and Ω(j) intersect. The idea is we can check the inner-product of Y (i) and
Y (j), which can be decomposed into the sum of inner-products of dictionary elements

〈Y (i), Y (j)〉 =
∑

p∈Ω(i),q∈Ω(j)

〈Ap, Aq〉X(i)
p X(j)

q

If the supports are disjoint, then each of the terms above is small since 〈Ap, Aq〉 ≤ µ/
√
n by the

incoherence assumption. Moreover we will use the Hanson-Wright inequality (see Appendix A)
to show that each sum is close to its expectation. This observation is formalized in the following
lemma:

Lemma 7 Suppose kµ <
√
n

C′ logn for large enough constant C ′ (depending on C in Definition 2).
Then if Ω(i) and Ω(j) are disjoint, with high probability |〈Y (i), Y (j)〉| < 1/2.

We defer the proof of this lemma to Appendix A. In our algorithm, we build the following graph:

Definition 8 Given p samples Y (1), Y (2), ..., Y (p), build a connection graph on p nodes where i and
j are connected by an edge if and only if |〈Y (i), Y (j)〉| > 1/2.

This graph will “miss” some edges, since if a pair X(i) and X(j) have intersecting support we do
not necessarily meet the above condition. But by Lemma 7 (with high probability) this graph will
not have any false positives:

Corollary 9 With high probability, each edge (i, j) present in the connection graph corresponds to
a pair where Ω(i) and Ω(j) have non-empty intersection.

Consider a sample Y (1) for which there is an edge to both Y (2) and Y (3). This means that there
is some coordinate i in both Ω(1) and Ω(2) and some coordinate i′ in both Ω(1) and Ω(3). However
the challenge is that we do not immediately know if Ω(1),Ω(2) and Ω(3) have a common intersection
or not.

2.2. Overlapping Clustering

Our goal in this section is to determine which samples Y have Xi 6= 0 just from the connection
graph. To do this, we will identify a combinatorial condition that allows us to decide whether or
not a set of three samples Y (1), Y (2) and Y (3) that have supports Ω(1),Ω(2) and Ω(3) respectively –
have a common intersection or not. From this condition, it is straightforward to give an algorithm
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that correctly groups together all of the samples Y that have Xi 6= 0. In order to reduce the number
of letters used we will focus on the first three samples Y (1), Y (2) and Y (3) although all the claims
and lemmas hold for all triples.

Suppose we are given two samples Y (1) and Y (2) with supports Ω(1) and Ω(2) where Ω(1) ∩
Ω(2) = {i}. We will prove that this pair can be used to recover all the samples Y for which Xi 6= 0.
This will follow because we will show that the expected number of common neighbors between
Y (1), Y (2) and Y will be large if Xi 6= 0 and otherwise will be small. So throughout this subsection
let us consider a sample Y = AX and let Ω be its support. We will need the following elementary
claim, whose proof we defer to Appendix A.

Claim 10 Suppose Ω(1) ∩Ω(2) ∩Ω(3) 6= ∅, then PrY [ for all j = 1, 2, 3, |〈Y, Y (j)〉| > 1/2] ≥ k
2m

This claim establishes a lower bound on the expected number of common neighbors of a triple,
if they have a common intersection. Next we establish an upper bound, if they don’t have a common
intersection. Suppose Ω(1)∩Ω(2)∩Ω(3) = ∅. In principle we should be concerned that Ω could still
intersect each of Ω(1), Ω(2) and Ω(3) in different locations. Let a = |Ω(1) ∩Ω(2)|, b = |Ω(1) ∩Ω(3)|
and c = |Ω(2) ∩ Ω(3)|. We defer the proof of the following lemma to Appendix A:

Lemma 11 Suppose that Ω(1) ∩ Ω(2) ∩ Ω(3) = ∅. Then the probability that Ω intersects each of
Ω(1), Ω(2) and Ω(3) is at most

k6

m3
+

3k3(a+ b+ c)

m2

Note that if Γ has bounded higher order moment, the probability that two sets of size k intersect in
at least Q elements is at most (k

2

m )Q. Hence we can assume that with high probability there is no
pair of samples whose supports intersect in more than a constant number of locations. When Γ only
has bounded 3-wise moment see Appendix A.1.

Let us quantitatively compare our lower and upper bound: If k ≤ cm2/5 then the expected
number of common neighbors for a triple with Ω(1) ∩ Ω(2) ∩ Ω(3) 6= ∅ is much larger than the
expected number of common neighbors of a triple whose common intersection is empty. Under
this condition, if we take p = O(m2/k2 log n) samples each triple with a common intersection will
have at least T common neighbors, and each triple whose common intersection is empty will have
less than T/2 common neighbors.

Hence we can search for a triple with a common intersection as follows: We can find a pair
of samples Y (1) and Y (2) whose supports intersect. We can take a neighbor Y (3) of Y (1) in the
connection graph (at random), and by counting the number of common neighbors of Y (1), Y (2) and
Y (3) we can decide whether or not their supports have a common intersection.

Definition 12 We will call a pair of samples Y (1) and Y (2) an identifying pair for coordinate i if
the intersection of Ω(1) and Ω(2) is exactly {i}.

Theorem 13 The output of OVERLAPPINGCLUSTER is an overlapping clustering where each set
corresponds to some i and contains all Y (j) for which i ∈ Ω(j). The algorithm runs in time Õ(p2n)

and succeeds with high probability if k ≤ cmin(m2/5,
√
n

µ logn) and if p = Ω(m
2 logm
k2

)

Proof: We can use Lemma 7 to conclude that each edge in G corresponds to a pair whose support
intersects. We can appeal to Lemma 11 and Claim 10 to conclude that for p = Ω(m2/k2 logm),
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Algorithm 1 OVERLAPPINGCLUSTER, Input: p samples Y (1), Y (2), ..., Y (p)

1. Compute a graph G on p nodes where there is an edge between i and j iff |〈Y (i), Y (j)〉| > 1/2

2. Set T = pk
10m

3. Repeat Ω(m log2m) times:

4. Choose a random edge (u, v) in G

5. Set Su,v = {w : |ΓG(u) ∩ ΓG(v) ∩ ΓG(w)| ≥ T} ∪ {u, v}
6. Delete any set Su,v where u, v are contained in a strictly smaller set Sa,b (also delete any duplicates)

7. Output the remaining sets Su,v

with high probability each triple with a common intersection has at least T common neighbors, and
each triple without a common intersection has at most T/2 common neighbors.

In fact, for a random edge (Y (1), Y (2)), the probability that the common intersection of Ω(1)

and Ω(2) is exactly {i} is Ω(1/m) because we know that they do intersect, and that intersection
has a constant probability of being size one and it is uniformly distributed over m possible loca-
tions. Appealing to a coupon collector argument we conclude that if the inner loop is run at least
Ω(m log2m) times then the algorithm finds an identifying pair (u, v) for each column Ai with high
probability.

Note that we may have pairs that are not an identifying triple for some coordinate i. However,
any other pair (u, v) found by the algorithm must have a common intersection. Consider for example
a pair (u, v) where u and v have a common intersection {i, j}. Then we know that there is some
other pair (a, b) which is an identifying pair for i and hence Sa,b ⊂ Su,v. (In fact this containment
is strict, since Su,v will also contain a set corresponding to an identifying pair for j too). Hence the
second-to-last step in the algorithm will necessarily delete all such non-identifying pairs Su,v.

What is the running time of this algorithm? We needO(p2n) time to build the connection graph,
and the loop takes Õ(pmn) time. Finally, the deletion step requires time Õ(m2) since there will be
Õ(m) pairs found in the previous step and for each pair of pairs, we can delete Su,v if and only if
there is a strictly smaller Sa,b that contains u and v. This concludes the proof of correctness of the
algorithm, and its running time analysis. �

3. Recovering the Dictionary

3.1. Finding the Relative Signs

Here we show how to recover the column Ai once we have learned which samples Y have Xi 6= 0.
We will refer to this set of samples as the “cluster” Ci. The key observation is that if Ω(1) and Ω(2)

uniquely intersect in index i then the sign of 〈Y (1), Y (2)〉 is equal to the sign of X(1)
i X

(2)
i . If there

are enough such pairs Y (1) and Y (2), we can determine not only which samples Y have Xi 6= 0 but
also which pairs of samples Y and Y ′ have Xi, X

′
i 6= 0 and sign(Xi) = sign(X ′i). This is the main

step of the algorithm OVERLAPPINGAVERAGE, and we defer its description and the proof of the
following theorem to Appendix B.

9
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Theorem 14 If the input to OVERLAPPINGAVERAGE C1, ..., Cm are the true clusters {j : i ∈
Ω(j)} up to permutation, then the algorithm outputs a dictionary Â that is column-wise ε-close to
A with high probability if k ≤ min(

√
m,
√
n
µ ) and if p = Ω

(
max(m2 logm/k2,m logm/ε2)

)
Furthermore the algorithm runs in time O(p2).

3.2. An Approach via SVD

In Appendix C we give an alternative algorithm for recovering the dictionary based instead on
SVD. Intuitively if we take all the samples whose support contains index j, then every such sample
Y (i) has a component along direction Aj . Therefore direction Aj should have the largest variance
and can be found by SVD. The advantage is that methods like K-SVD which are quite popular in
practice also rely on finding directions of maximum variance, so the analysis we provide here yields
insights into why these approaches work. However, the crucial difference is that we rely on finding
the correct overlapping clustering in the first step of our dictionary learning algorithms, whereas
K-SVD and approaches like approximate it via their current guess for the dictionary.

3.3. Noise Tolerance

Here we elaborate on why the algorithm can tolerate noise provided that the noise is uncorrelated
with the dictionary (e.g. Gaussian noise). The observation is that in constructing the connection
graph, we only make use of the inner products between pairs of samples Y (1) and Y (2), the value
of which is roughly preserved under various noise models. In turn, the overlapping clustering is a
purely combinatorial algorithm that only makes use of the connection graph. Finally, we recover
the dictionary A using singular value decomposition, which is well-known to be stable under noise
(e.g. Wedin’s Theorem 35).

4. Refining the Solution
Earlier sections gave noise-tolerant algorithms for the dictionary learning problem with sample com-
plexity O(poly(n,m, k)/ε2). This dependency on ε is necessary for any noise-tolerant algorithm
since even if the dictionary has only one vector, we need O(1/ε2) samples to estimate the vector in
presence of noise. However when Y is exactly equal to AX we can hope to recover the dictionary
with better running time and much fewer samples. In particular, Geng et al. (2013) recently estab-
lished that `1-minimization is locally correct for incoherent dictionaries, therefore it seems plausible
that given a very good estimate for A there is some algorithm that computes a refined estimate of A
whose running time and sample complexity have a better dependence on ε.

In this section we analyze the local-convergence of an algorithm that is similar to K-SVD (Aharon
et al., 2006); see Algorithm 2 ITERATIVEAVERAGE. Recall BS denotes the submatrix of B whose
columns are indices in S; also, P+ = (P TP )−1P T is the left-pseudoinverse of the matrix P . Hence
P+P = I , PP+ is the projection matrix to the span of columns of P .

The key lemma of this section shows the error decreases by a constant factor in each round of
ITERATIVEAVERAGE (provided that it was suitably small to begin with). Let ε0 ≤ 1/100k. We
will defer the proofs of some of the intermediate claims to Appendix D.

Theorem 15 Suppose the dictionary A is µ-incoherent with µ/
√
n < 1/k log k, initial solution is

ε < ε0 close to the true solution (i.e. for all i ‖Bi − Ai‖ ≤ ε). With high probability the output of
ITERATIVEAVERAGE is a dictionary B′ that satisfies ‖B′i−Ai‖ ≤ (1− δ)ε, where δ is a universal
positive constant. Moreover, the algorithm runs in timeO(qnk2) and succeeds with high probability
when number of samples q = Ω(m log2m).

10
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Algorithm 2 ITERATIVEAVERAGE, Input: Initial estimation B, ‖Bi − Ai‖ ≤ ε, q samples (inde-
pendent of B) Y (1), Y (2), ...Y (q)

1. For each sample i, let Ω(i) = {j : |〈Y (i), Bj〉| > 1/2}
2. For each dictionary element j

3. Let C+
j be the set of samples that have inner product more than 1/2 with B(j) (C+

j = {i :

〈Y (i), Bj〉 > 1/2})
4. For each sample i in C+

j

5. Let X̂(i) = B+
Ω(i)Y

(i)

6. Let Qi,j = Y (i) −
∑
t∈Ω(i)\{j}BtX̂

(i)
t

7. Let B′j =
∑
i∈C+j

Qi,j/‖
∑
i∈C+j

Qi,j‖.

8. Output B′.

We will analyze the update made to the first column B1, and the same argument will work for all
columns (and hence we can apply a union bound to complete the proof). To simplify the proof,
we will let ξ denote arbitrarily small constants (whose precise value will change from line to line).
First, we establish some basic claims that will be the basis for our analysis of ITERATIVEAVERAGE.

Claim 16 SupposeA is a µ incoherent matrix with µ/
√
n < 1/k log k. If for all i, ‖Bi−Ai‖ ≤ ε0

then ITERATIVEAVERAGE recovers the correct support for each sample (i.e. Ω(i) = supp(X(i)))
and the correct sign (i.e. C+

j = {j : X
(i)
j > 0}) 1

Claim 17 The set of columns {Bi}i is µ′ = µ+O(k/
√
n)-incoherent where µ′/

√
n ≤ 1/10k.

To simplify the notation, let us permute the samples so that C+
1 = {1, 2, ..., l}. The probability

that X(i)
1 > 0 is Θ(k/m) and so for q = Θ(m log2m) samples with high probability the number of

samples l where X(i)
1 > 0 is Ω(qk/m) = Ω(k log2m).

Definition 18 Let Mi be the matrix (0, BΩ(i)\{1})B
+
Ω(i) .

Then we can write Qi,1 = (I −Mi)Y
(i). Let us establish some basic properties of Mi that we will

need in our analysis:

Claim 19 Mi has the following properties: (1) MiB1 = 0 (2) For all j ∈ Ω(i)\{1}, MiBj = Bj
and (3) ‖Mi‖ ≤ 1 + ξ

Proof: The first and second property follow immediately from the definition of Mi, and the third
property follows from the Gershgorin disk theorem. �

1. Notice that this is not a “with high probability” statement, the support is always correctly recovered. That is why we
use Ω(i) both in the algorithm and for the true support

11
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For the time being, we will consider the vector B̂1 =
∑l

i=1Qi,1/
∑l

i=1X
(i)
1 . We cannot com-

pute this vector directly (note that B̂1 and B′1 are in general different) but first we will show that
B̂1 and A1 are suitably close. To accomplish this, we will first find a convenient expression for the
error:

Lemma 20

A1 − B̂1 =
l∑

i=1

X
(i)
1∑l

i=1X
(i)
1

Mi(A1 −B1)−
∑l

i=1

∑
j∈Ω(i)\{1}(I −Mi)(Aj −Bj)X(i)

j∑l
i=1X

(i)
1

. (1)

Proof: The proof is mostly carefully reorganizing terms and using properties of Mi’s to simplify
the expression. See Appendix D for details. �

We will analyze the two terms in the above equation separately. The second term is the most
straightforward to bound, since it is the sum of independent vector-valued random variables (after
we condition on the support Ω(i) of each sample in C+

1 .

Claim 21 If l > Ω(k log2m), then with high probability the second term of Equation (1) is
bounded by ε/100.

All that remains is to bound the first term. Note that the coefficient of ‖Mi(A1−B1)‖ is indepen-
dent of the support, and so the first term will converge to its expectation - namely E[‖Mi(A1−B1)‖].
So it suffices to bound this expectation.

Lemma 22 E[‖Mi(A1 −B1)‖] ≤ (1− δ)ε.

Proof: We will break up A1 − B1 onto its component (x) in the direction B1 and its orthogonal
component (y) in B⊥1 . First we bound the norm of x:

‖x‖ = |〈A1 −B1, B1〉| = |〈A1 −B1, A1 −B1〉|/2 ≤ ε2/2

Next we consider the component y. Consider the supports Ω(1) and Ω(2) of two random samples
from C+

1 . These sets certainly intersect at least once, since both contain {1}. Yet with probability at
least 2/3 this is their only intersection (e.g. see Claim 30). If so, let S = (Ω(1) ∪Ω(2))\{1}. Recall
that ‖BT

S ‖ ≤ 1 + ξ. However BT
S y is the concatenation of BT

Ω(1)y and BT
Ω(2)y and so we conclude

that ‖BT
Ω(1)y‖ + ‖BT

Ω(2)y‖ ≤ (1 + ξ)
√

2. Since the spectral norm of (0, BΩ(i)\{1}) is bounded, we
conclude that ‖M1y‖+ ‖M2y‖ ≤ (1 + ξ)

√
2. This implies that

E[‖Mi(A1 −B1)‖] ≤ E[‖Mix‖] + E[‖Miy‖] ≤ (2/3)(1 + ξ)(
√

2/2)ε+ (1/3)(1 + ξ)ε+ ε2/2

And this is indeed at most (1− δ)ε which concludes the proof of the lemma. �

Combining the two claims, we know that with high probability B̂1 has distance at most (1− δ)ε
to A1. However, B′1 is not equal to B̂1 (and we cannot compute B̂1 because we do not know the
normalization factor). The key observation here is B̂1 is a multiple of B′1, the vector B′1 and A1 all
have unit norm, so if B̂1 is close to A1 the vector B′1 must also be close to A1.

Claim 23 If x and y are unit vectors, and x′ is a multiple of x then ‖x′ − y‖ ≤ ε < 1 implies that
‖x− y‖ ≤ ε

√
1 + ε2

This concludes the proof of Theorem 15. To bound the running time, observe that for each
sample, the main computations involve computing the pseudo-inverse of a n × k matrix, which
takes O(nk2) time.
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5. Discussion

This paper shows it is possible to provably get around the chicken-and-egg problem inherent in
dictionary learning: not knowing A seems to prevents recovering X’s and vice versa. By using
combinatorial techniques to recover the support of each X without knowing the dictionary, our
algorithm suggests a new way to design algorithms.

Currently the running time is Õ(p2n) time, which may be too slow for large-scale problems.
But our algorithm suggests more heuristic versions of recovering the support that are more efficient.
One alternative is to construct the connection graph G and then find the overlapping clustering by
running a truncated power method (Yuan and Zhang, 2013) on ei + ej (a vector that is one on
indices i, j and zero elsewhere and (i, j) is an edge). In experiments, this recovers a good enough
approximation to the true clustering that can then be used to smartly initialize KSVD so that it
does not have to start from scratch. In practice, this yields a hybrid method that converges much
more quickly and succeeds more often. Thus we feel that in practice the best algorithm may use
algorithmic ideas presented here.

We note that for dictionary learning, making stochastic assumptions seems unavoidable. Inter-
estingly, our experiments help to corroborate some of the assumptions. For instance, the condition
E[Xi|Xi 6= 0] = 0 used in our best analysis also seems necessary for KSVD; empirically we have
seen its performance degrade when this is violated.

Acknowledgements We would like to thank Aditya Bhaskara, Tengyu Ma and Sushant Sachdeva
for numerous helpful discussions throughout various stages of this work.
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Appendix A. Concentration and Clustering

Here we give the deferred proofs from Section 2.1 and Section 2.2. Before proving Lemma 7, first
we state Hanson-Wright inequality:

Theorem 24 (Hanson-Wright) (Hanson and Wright, 1971) LetX be a vector of independent, sub-
Gaussian random variables with mean zero and variance one. Let M be a symmetric matrix. Then

Pr[|XTMX − tr(M)| > t] ≤ 2exp{−cmin(t2/‖M‖2F , t/‖M‖2)}

Now we prove Lemma 7:

Proof: Let N be the k × k submatrix resulting from restricting ATA to the locations where X(i)

and X(j) are non-zero. Set M to be a 2k × 2k matrix where the k × k submatrices in the top-left
and bottom-right are zero, and the k × k submatrices in the bottom-left and top-right are (1/2)N
and (1/2)NT respectively. Here we think of the vector X as being a length 2k vector whose first
k entries are the non-zero entries in X(i) and whose last k entries are the non-zero entries in X(j).
And by construction, we have that

〈Y (i), Y (j)〉 = XTMX

We can now appeal to the Hanson-Wright inequality (above). Note that since Ω(i) and Ω(j)

do not intersect, the entries in M are each at most µ/
√
n and so the Frobenius norm of M is at

most µk√
2n

. This is also an upper-bound on the spectral norm of M . We can set t = 1/2, and for
kµ <

√
n/C ′ log n both terms in the minimum are Ω(log n) and this implies the lemma. �

We will also make use of a weaker bound (but whose conditions allow us to make fewer distri-
butional assumptions):

Lemma 25 If k2µ <
√
n/2 then |〈Y (i), Y (j)〉| > 1/2 implies that Ω(i) and Ω(j) intersect

Proof: Suppose Ω(i) and Ω(j) are disjoint. Then the following upper bound holds:

|〈Y (i), Y (j)〉| ≤
∑
p 6=q
|〈Ap, Aq〉X(i)

p X(j)
q | ≤ k2µ/

√
n < 1/2

and this implies the lemma. �

This only works up to k = O(n1/4/
√
µ). In comparison, the stronger bound of Lemma 7 makes use

of the randomness of the signs ofX and works up to k = O(
√
n/µ log n). Next we prove Claim 10:

Proof: Using ideas similar to Lemma 7, we can show if |Ω∩Ω(1)| = 1 (that is, the new sample has
a unique intersection with Ω(1)), then |〈Y, Y (1)〉| > 1/2.

Now let i ∈ Ω(1) ∩Ω(2) ∩Ω(3), let E be the event that Ω ∩Ω(1) = Ω ∩Ω(2) = Ω ∩Ω(3) = {i}.
Clearly, when event E happens, for all j = 1, 2, 3, |〈Y, Y (j)〉| > 1/2. The probability of E is at least

Pr[i ∈ Ω]Pr[(Ω(1) ∪ Ω(2) ∪ Ω(3)\{i}) ∩ Ω = ∅|i ∈ Ω] = k/m · (1−O(k/m) · 3k) ≥ k/2m.

Here we used bounded second moment property for the conditional probability and union
bound. �
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Finally, we prove Lemma 11:

Proof: We can break up the event whose probability we would like to bound into two (not necessar-
ily disjoint) events: (1) the probability that Ω intersects each of Ω(1), Ω(2) and Ω(3) disjointly (i.e. it
contains a point i ∈ Ω(1) but i /∈ Ω(2),Ω(3), and similarly for the other sets ). (2) the probability that
Ω contains a point in the common intersection of two of the sets, and one point from the remaining
set. Clearly if Ω intersects the each of Ω(1), Ω(2) and Ω(3) then at least one of these two events must
occur.

The probability of the first event is at most the probability that Ω contains at least one element
from each of three disjoint sets of size at most k. The probability that Ω contains an element of just
one such set is at most the expected intersection which is k2

m , and since the expected intersection of
Ω with each of these sets are non-positively correlated (because they are disjoint) we have that the
probability of the first event can be bounded by k6

m3 .
Similarly, for the second event: consider the probability that Ω contains an element in Ω(1) ∩

Ω(2). Since Ω(1) ∩Ω(2) ∩Ω(3) = ∅, then Ω must also contain an element in Ω(3) too. The expected
intersection of Ω and Ω(1) ∩Ω(2) is ka

m and the expected intersection of Ω and Ω(3) is k2

m , and again
the expectations are non-positively correlated since the two sets Ω(1) ∩Ω(2) and Ω(3) are disjoint by
assumption. Repeating this argument for the other pairs completes the proof of the lemma. �

A.1. Using Only Bounded 3-wise Moment

When the support of X has only bounded 3-wise moment, it is possible to have two supports Ω
with large intersection. In that case checking the number of common neighbors cannot correctly
identify whether the three samples have a common intersection. In particular, there might be false
positives (three samples with no common intersection but has many common neighbors) but no
false negatives (still all samples with common intersection will have many common neighbors).
The algorithm can still work in this case, because it is unlikely for the two supports to have a very
large intersection:

Lemma 26 Suppose Γ has bounded 3-wise moments, k = cm2/5 for some small enough constant
c > 0. For any set Ω of size k, the probability that a random support Ω′ from Γ has intersection
larger than m1/5/100 with Ω is at most O(m−6/5).

Proof: Let T be the number of triples in the intersection of Ω and Ω′. For any triple in Ω, the
probability that it is also in Ω′ is at most O(k3/m3) by bounded 3-wise moment. Therefore E[T ] ≤(
k
3

)
O(k3/m3) = O(k6/m3).
On the other hand, whenever Ω and Ω′ has more than m1/5/100 intersections, T is larger than(

m1/5/100
3

)
. By Markov’s inequality we know Pr[|Ω ∩ Ω′| ≥ m1/5/100] ≤ O(m−6/5). �

Since the probability of having false positives is small (but not negligible), we can do a simple
trimming operation when we are computing the set Su,v in Algorithm 1. We shall change the
definition of Su,v as follows:

1. Set S′u,v = {w : |ΓG(u) ∩ ΓG(v) ∩ ΓG(w)| ≥ T} ∪ {u, v}.

2. Set Su,v = {w : w ∈ S′u,v and |ΓG(w) ∩ S′u,v| ≥ T}.
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Now S′u,v is the same as the old definition and may have false positives. However, intuitively
the false positives are not in the cluster so they cannot have many connections to the cluster, and
will be filtered out in the second step. In particular, we have the following lemma:

Lemma 27 If (u, v) is an indentifying pair (as defined in Definition 12) for i, then with high
probability Su,v is the set Ci = {j : i ∈ Ω(j)}.

Proof: First we argue the set S′u,v is the union of Ci with a small set. By Claim 10 and Chernoff
bound, for all w ∈ Ci u, v, w has more than T common neighbors, so w ∈ S′u,v. On the other
hand, if w 6∈ Ci but w ∈ S′u,v, then by Lemma 11 we know Ω(w) must have a large intersection
with either Ω(u) or Ω(v), which has probability only O(m−6/5) by Lemma 26. Therefore again by
concentration bounds with high probability |S′u,v\Ci| ≤ p/m� T .

Now consider the second step. For the samples in Ci, the probability that they are connected to
another random sample in Ci is 1−O(k2/m), so by concentration bounds with high probability they
have at least T neighbors in Ci, and they will not be filtered and are still in Su,v. On the other hand,
for any vertex w 6∈ Ci, the expected number of edges from w to Ci is only O(k2/m)|Ci| � T , and
by concentration property, they are concentrated around the expectation with high probability. So
for any w ∈ S′u,v\Ci, it can only have O(pk3/m2) edges to Ci, and O(p/m) edges to S′u,v\Ci. The
total number of edges to S′u,v is much less than T , so all of those vertices are going to be removed,
and Su,v = C. �

This lemma ensures after we pick enough random pairs, with high probability all the correct
clusters Ci’s are among the Su,v’s. There can be “bad” sets, but same as before all those sets
contains some of the Ci, so will be removed at the end of the algorithm:

Claim 28 For any pair (u, v) with i ∈ Ω(u) ∩ Ω(v), let Ci = {j : i ∈ Ω(j)}, then with high
probability Ci ⊆ Su,v.

Proof: This is essentially in the proof of the previous lemma. As before by Claim 10 we know
Ci ⊆ S′u,v. Now for any sample in Ci, the expected number of edges to Ci is (1 − o(1))|Ci|, by
concentration bounds we know the number of neighbors is larger than T with high probability.
Then we apply union bound for all samples in Ci, and conclude that Ci ⊆ Su,v. �

Appendix B. Finding the Relative Signs

Here we prove Theorem 14.

Lemma 29 In Algorithm 3, C±i is either {u : X
(u)
i > 0} or {u : X

(u)
i < 0}.

Proof: It suffices to prove the lemma at the start of Step 8, since this step only takes the complement
of C±i with respect to Ci. Appealing to Lemma 7 we conclude that Ω(u) and Ω(v) uniquely intersect in
coordinate i then the sign of 〈Y (u), Y (v)〉 is equal to the sign ofX(u)

i X
(v)
i . Hence when Algorithm 3

adds an element to C±i it must have the same sign as the ith component of X(ui). What remains is
to prove that each node v ∈ Ci is correctly labeled. We will do this by showing that for any such
vertex, there is a length two path of labeled pairs that connects ui to v, and this is true because the
number of labeled pairs is large. We need the following simple claim:
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Algorithm 3 OVERLAPPINGAVERAGE, Input: p samples Y (1), Y (2), ...Y (p) and overlapping clus-
ters C1, C2, ..., Cm

1. For each Ci
2. For each pair (u, v) ∈ Ci that does not appear in any other Cj (X(u) and X(v) have a unique

intersection)

3. Label the pair +1 if 〈Y (u), Y (v)〉 > 0 and otherwise label it −1.

4. Choose an arbitrary ui ∈ Ci, and set C±i = {ui}
5. For each v ∈ Ci
6. If the pair ui, v is labeled +1 add v to C±i
7. Else if there is w ∈ Ci where the pairs ui, w and v, w have the same label, add v to C±i .

8. If |C±i | ≤ |Ci|/2 set C±i ← Ci\C
±
i .

9. Let Âi =
∑
v∈C±i

Y (v)/‖
∑
v∈C±i

Y (v)‖

10. Output Â, where each column is Âi for some i

Claim 30 If p > m2 logm/k2 then with high probability any two clusters share at most 2pk2/m2

nodes in common.

This follows since the probability that a node is contained in any fixed pair of clusters is at most
k2/m2. Then for any node u ∈ Ci, we would like to lower bound the number of labeled pairs it has
in Ci. Since u is in at most k − 1 other clusters Ci1 , ..., Cik−1

, the number of pairs u, v where v ∈ Ci
that are not labeled for Ci is at most

k−1∑
t=1

|Cit ∩ Ci| ≤ k · 2pk2/m2 � pk/3m = |Ci|/3

Therefore for a fixed node u for at least a 2/3 fraction of the other nodes w ∈ Ci the pair u,w is
labeled. Hence we conclude that for each pair of nodes ui, v ∈ Ci the number of w for which both
ui, w and w, v are labeled is at least |Ci|/3 > 0 and so for every v, there is a labeled path of length
two connecting ui to v. �

Using this lemma, we are ready to prove Algorithm 3 correctly learns all columns of A.

Proof: We can invoke Lemma 29 and conclude that C±i is either {u : X
(u)
i > 0} or {u : X

(u)
i < 0},

whichever set is larger. Let us suppose that it is the former. Then each Y (u) in C±i is an independent
sample from the distribution conditioned on Xi > 0, which we call Γ+

i . We have that EΓ+
i

[AX] =

cAi where c is a constant in [1, C] because EΓ+
i

[Xj ] = 0 for all j 6= i.
Let us compute the variance:

E
Γ+
i

[‖AX − E
Γ+
i

AX‖2] ≤ E
Γ+
i

X2
i +

∑
j 6=i

E
Γ+
i

[X2
j ] ≤ C2 +

∑
j 6=i

C2k/m ≤ C2(k + 1),

Note that there are no cross-terms because the signs of each Xj are independent. Furthermore
we can bound the norm of each vector Y (u) via incoherence. We can conclude that if |C±i | >
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C2k logm/ε2, then with high probability ‖Âi−Ai‖ ≤ ε using vector Bernstein’s inequality (Gross
(2009), Theorem 12). This latter condition holds because we set C±i to itself or its complement
based on which one is larger. �

Appendix C. An Approach via SVD

Here we give an alternative algorithm for recovering the dictionary based instead on SVD. Let us
fix some notation: Let Γi be the distribution conditioned on Xi 6= 0. Then once we have found the
overlapping clustering, each cluster is a set of random samples from Γi. Also let α = |〈u,Ai〉|.

Definition 31 Let R2
i = 1 +

∑
j 6=i〈Ai, Aj〉2EΓi [X

2
j ].

Note that R2
i is the projected variance of Γi on the direction u = Ai. Our goal is to show that for

any u 6= Ai (i.e. α 6= 1), the variance is strictly smaller.

Lemma 32 The projected variance of Γi on u is at most

α2R2
i + α

√
(1− α2)

2µk√
n

+ (1− α2)(
k

m
+
µk√
n

)

Proof: Let u|| and u⊥ be the components of u in the direction of Ai and perpendicular to Ai.
Then we want bound EΓi [〈u, Y 〉2] where Y is sampled from Γi. Since the signs of each Xj are
independent, we can write

EΓi [〈u, Y 〉2] =
∑
j

EΓi [〈u,AjXj〉2] =
∑
j

EΓi [〈u|| + u⊥, AjXj〉2]

Since α = ‖u||‖ we have:

EΓi [〈u, Y 〉2] = α2R2
i + EΓi [

∑
j 6=i

(2〈u||, Aj〉〈u⊥, Aj〉+ 〈u⊥, Aj〉2)X2
j ]

Also EΓi [X
2
j ] = (k − 1)/(m− 1). Let v be the unit vector in the direction u⊥. We can write

EΓi [
∑
j 6=i
〈u⊥, Aj〉2X2

j ] = (1− α2)(
k − 1

m− 1
)vTA−iA

T
−iv

where A−i denotes the dictionary A with the ith column removed. The maximum over v of
vTA−iA

T
−iv is just the largest singular value of A−iAT−i which is the same as the largest singu-

lar value of AT−iA−i which by the Greshgorin Disk Theorem (see e.g. Horn and Johnson (1990)) is
at most 1 + µ√

n
m. And hence we can bound

EΓi [
∑
j 6=i
〈u⊥, Aj〉2X2

j ] ≤ (1− α2)(
k

m
+
µk√
n

)

Also since |〈u||, Aj〉| = α|〈Ai, Aj〉| ≤ αµ/
√
n we obtain:

E[
∑
j 6=i

2〈u||, Aj〉〈u⊥, Aj〉X2
j ] ≤ α

√
(1− α2)

2µk√
n

and this concludes the proof of the lemma. �
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Algorithm 4 OVERLAPPINGSVD, Input: p samples Y (1), Y (2), ...Y (p)

1. Run OVERLAPPINGCLUSTER (or OVERLAPPINGCLUSTER2) on the p samples

2. Let C1, C2, ...Cm be the m returned overlapping clusters

3. Compute Σ̂i = 1
|Ci|
∑
Y ∈Ci Y Y

T

4. Compute the first singular value Âi of Σ̂i

5. Output Â, where each column is Âi for some i

Definition 33 Let ζ = max{ µk√
n
,
√

k
m}, so the expression in Lemma 32 can be be an upper bounded

by α2R2
i + 2α

√
1− α2 · ζ + (1− α2)ζ2.

We will show that an approach based on SVD recovers the true dictionary up to additive accu-
racy ±ζ. Note that here ζ is a parameter that converges to zero as the size of the problem increases,
but is not a function of the number of samples. So unlike the algorithm in the previous subsection,
we cannot make the error in our algorithm arbitrarily small by increasing the number of samples,
but this algorithm has the advantage that it succeeds even when E[Xi] 6= 0.

Corollary 34 The maximum singular value of Γi is at least Ri and the direction u satisfies ‖u −
Ai‖ ≤ O(ζ). Furthermore the second largest singular value is bounded by O(R2

i ζ
2).

Proof: The bound in Lemma 32 is only an upper bound, however the direction α = 1 has variance
R2
i > 1 and hence the direction of maximum variance must correspond to α ∈ [1−O(ζ2), 1]. Then

we can appeal to the variational characterization of singular values (see Horn and Johnson (1990))
that

σ2(Σi) = max
u⊥Ai

uTΣiu

uTu

Then condition that α ∈ [−O(ζ), O(ζ)] for the second singular value implies the second part of the
corollary. �

Since we have a lower bound on the separation between the first and second singular values of
Σi, we can apply Wedin’s Theorem and show that we can recover Ai approximately even in the
presence of noise.

Theorem 35 (Wedin) (Wedin, 1972) Let δ = σ1(M)− σ2(M) and let M ′ = M +E and further-
more let v1 and v′1 be the first singular vectors of M and M ′ respectively. Then

sin Θ(v1, v
′
1) ≤ C ‖E‖

δ

Hence even if we do not have access to Σi but rather an approximation to it Σ̂i (e.g. an empirical
covariance matrix computed from our samples), we can use the above perturbation bound to show
that we can still recover a direction that is close to Ai – and in fact converges to Ai as we take more
and more samples.

22



NEW ALGORITHMS FOR LEARNING INCOHERENT AND OVERCOMPLETE DICTIONARIES

Theorem 36 If the input to OVERLAPPINGSVD is the correct clustering, then the algorithm out-
puts a dictionary Â so that for each i, ‖Ai−Âi‖ ≤ ζ with high probability if k ≤ cmin(

√
m,

√
n

µ logn)
and if

p ≥ max(m2 logm/k2,
mn logm log n

ζ2
)

Proof: Appealing to Theorem 13, we have that with high probability the call to OVERLAPPING-
CLUSTER returns the correct overlapping clustering. Then given n logn

ζ2
samples from the distribu-

tion Γi the classic result of Rudelson implies that the computed empirical covariance matrix Σ̂i is
close in spectral norm to the true co-variance matrix Rudelson (1999). This, combined with the
separation of the first and second singular values established in Corollary 34 and Wedin’s Theorem
35 imply that we recover each column of A up to an additive accuracy of ε and this implies the
theorem. Note that since we only need to compute the first singular vector, this can be done via
power iteration Golub and van Loan (1996) and hence the bottleneck in the running time is the call
to OVERLAPPINGCLUSTER. �

Appendix D. Refining the Solution

In this section, we prove the deferred claims from Section 4. First we prove Claim 16:

Proof: We can compute 〈Y (i), B1〉 =
∑

j∈Ω(i) X
(i)
j 〈Aj , B1〉 and the total contribution of all of the

terms besides X(i)
1 〈A1, B1〉 for j 6= 1 is at most 1/3. This implies the claim. �

Then we prove Lemma 20:

Proof: Let us first compute B̂1 −B1:

B̂1 −B1 =

∑l
i=1X

(i)
1 ((I −Mi)A1 −B1) +

∑l
i=1

∑
j∈Ω(i)\{1}(I −Mi)AjX

(i)
j∑l

i=1X
(i)
1

=

l∑
i=1

X
(i)
1∑l

i=1X
(i)
1

(I −Mi)(A1 −B1) +

∑l
i=1

∑
j∈Ω(i)\{1}(I −Mi)(Aj −Bj)X(i)

j∑l
i=1X

(i)
1

.

The last equality uses the first and second properties of Mi from the above claim. Consequently we
have

A1 − B̂1 = (A1 −B1)− (B̂1 −B1)

=
l∑

i=1

X
(i)
1∑l

i=1X
(i)
1

Mi(A1 −B1)−
∑l

i=1

∑
j∈Ω(i)\{1}(I −Mi)(Aj −Bj)X(i)

j∑l
i=1X

(i)
1

.

And this is our desired expression. �

Next we prove Claim 21:

Proof: The denominator is at least l and the numeratoris the sum of at most lk independent random
vectors with mean zero, and whose length is at most 3Cε. We can invoke the vector Bernstein’s
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Algorithm 5 OVERLAPPINGCLUSTER2, Input: p samples Y (1), Y (2), ..., Y (p), integer `

1. Compute a graph G on p nodes where there is an edge between i and j iff |〈Y (i), Y (j)〉| > 1/2

2. Set T = pk
Cm2`

3. Repeat Ω(k`−2m log2m) times:

4. Choose a random node u in G, and `− 1 neighbors u1, u2, ...u`−1

5. If |ΓG(u) ∩ ΓG(u1) ∩ ... ∩ ΓG(u`−1)| ≥ T
6. Set Su1,u2,...u`−1

= {w s.t. |ΓG(u) ∩ ΓG(u1) ∩ ... ∩ ΓG(w)| ≥ T} ∪ {u1, u2, ...u`−1}
7. Delete any set Su1,u2,...u`−1

if u1, u2, ...u`−1 are contained in a strictly smaller set Sv1,v2,...v`−1

8. Output the remaining sets Su1,u2,...u`−1

inequality Gross (2009), and conclude that the sum is bounded byO(C
√
lk logmε) with high prob-

ability. After normalization the second term is bounded by ε/100. �

Finally, we prove Claim 23:

Proof: We have that ‖x− y‖2 = sin2 θ + (1− cos θ)2 where θ is the angle between x and y. Note

that sin θ ≤ ‖x′− y‖ ≤ ε so hence ‖x− y‖ ≤
√
ε2 + (1−

√
1− ε2)2. Note that for 0 ≤ a ≤ 1 we

have 1− a ≤
√

1− a and this implies the claim. �

Appendix E. A Higher Order Algorithm

Here we extend the algorithm OVERLAPPINGCLUSTER presented in Section 2.2 to succeed even
when k ≤ cmin(m1/2−η,

√
n/µ log n). The premise of OVERLAPPINGCLUSTER is that we can

distinguish whether or not a triple of samples Y (1), Y (2), Y (3) has a common intersection based
on their number of common neighbors in the connection graph. However for k = ω(m2/5) this
is no longer true! But we will instead consider higher-order groups of sets. In particular, for any
η > 0 there is an ` so that we can distinguish whether an `-tuple of samples Y (1), Y (2), ..., Y (`) has
a common intersection or not based on their number of common neighbors, and this test succeeds
even for k = Ω(m1/2−η).

The main technical challenge is in showing that if the sets Ω(1),Ω(2), ...,Ω(`) do not have
a common intersection, that we can upper bound the probability that a random set Ω intersects
each of them. To accomplish this, we will need to bound the number of ways of piercing ` sets
Ω(1),Ω(2), ...,Ω(`) that have bounded pairwise intersections by at most s points (see definitions
below and Lemma 40), and this is the key to analyzing our higher order algorithm OVERLAPPING-
CLUSTER2. We will defer the proofs of the key lemmas and the description of the algorithm in this
section to Appendix E.

Nevertheless what we need is an analogue of Claim 10 and Lemma 11. The first is easy, but
what about an analogue of Lemma 11? To analyze the probability that a set Ω intersects each of the
sets Ω(1),Ω(2), ...,Ω(`) we will rely on the following standard definition:

Definition 37 Given a collection of sets Ω(1),Ω(2), ...,Ω(`), the piercing number is the minimum
number of points p1, p2, ..., pr so that each set contains at least one point pi.

24



NEW ALGORITHMS FOR LEARNING INCOHERENT AND OVERCOMPLETE DICTIONARIES

The notion of piercing number is well-studied in combinatorics (see e.g. Matousek (2002)).
However, one is usually interested in upper-bounding the piercing number. For example, a classic
result of Alon and Kleitman concerns the (p, q)-problem (Alon and Kleitman, 1992): Suppose we
are given a collection of sets that has the property that each choice of p of them has a subset of q
which intersect. Then how large can the piercing number be? Alon and Kleitman proved that the
piercing number is at most a fixed constant c(p, q) independent of the number of sets (Alon and
Kleitman, 1992).

However, here our interest in piercing number is not in bounding the minimum number of
points needed but rather in analyzing how many ways there are of piercing a collection of sets with
at most s points, since this will directly yield bounds on the probability that Ω intersects each of
Ω(1),Ω(2), ...,Ω(`). We will need as a condition that each pair of sets has bounded intersection, and
this holds in our model with high-probability.

Claim 38 With high probability, the intersection of any pair Ω(1),Ω(2) has size at most Q

Definition 39 We will call a set of ` sets a (k,Q) family if each set has size at most k and the
intersection of each pair of sets has size at most Q.

Lemma 40 The number of ways of piercing (k,Q) family (of ` sets) with s points is at most
(`k)s. And crucially if ` ≥ s + 1, then the number of ways of piercing it with s points is at most
Qs(s+ 1)(`k)s−1.

Proof: The first part of the lemma is the obvious upper bound. Now let us assume ` ≥ s+ 1: Then
given a set of s points that pierce the sets, we can partition the ` sets into s sets based on which of
the s points is hits the set. (In general, a set may be hit by more than one point, but we can break ties
arbitrarily). Let us fix any s+ 1 of the ` sets, and let U be the the union of the pairwise intersections
of each of these sets. Then U has size at mostQs(s+1). Furthermore by the Pigeon Hole Principle,
there must be a pair of these sets that is hit by the same point. Hence one of the s points must belong
to the set U , and we can remove this point and appeal to the first part of the lemma (removing any
sets that are hit by this point). This concludes the proof of the second part of the lemma, too. �

Theorem 41 The algorithm OVERLAPPINGCLUSTER2(`) finds an overlapping clustering where
each set corresponds to some i and contains all Y (j) for which X(j)

i 6= 0. The algorithm runs in
time Õ(k`−2mp+p2n) and succeeds with high probability if k ≤ cmin(m(`−1)/(2`−1),

√
n

µ logn) and
if p = Ω(m2/k2 logm+ k`−2m log2m)

In order to prove this theorem we first give an analogue of Claim 10:

Claim 42 Suppose Ω(1) ∩ Ω(2) ∩ ... ∩ Ω(`) 6= ∅, then

PrY [ for all j = 1, 2, ..., `, |〈Y, Y (j)〉| > 1/2] ≥ k

2m

The proof of this claim is identical to the proof of Claim 10. Next we give the crucial corollary of
Lemma 40.
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Corollary 43 The probability that Ω hits each set in a (k,Q) family (of ` sets) is at most

∑
2≤s≤`−1

(Qs(s+ 1)(`k)s−1)
( k
m

)s
+
∑
s≥`

(`k2

m

)s
where Cs is a constant depending polynomially on s.

Proof: We can break up the probability of the event that Ω hits each set in a (k,Q) family into
another family of events. Let us consider the probability that X pierces the family with s ≤ ` − 1
points or s ≥ ` points. In the former case, we can invoke the second part of Lemma 40 and the
probability that X hits any particular set of s points is at most (k/m)s. In the latter case, we can
invoke the first part of Lemma 40. �

Note that if k ≤ m1/2 then k/m is always greater than or equal to ks−1(k/m)s. And so
asymptotically the largest term in the above sum is (k2/m)` which we want to be asymptotically
smaller than k/m which is the probability in Claim 42. So if k ≤ cm(`−1)/(2`−1) then above bound
is o(k/m) which is asymptotically smaller than the probability that a given set of ` nodes that have
a common intersection are each connected to a random (new) node in the connection graph. So
again, we can distinguish between whether or not an `-tuple has a common intersection or not and
this immediately yields a new overlapping clustering algorithm that works for k almost as large as√
m, although the running time depends on how close k is to this bound.

Appendix F. Extensions: Proof Sketch of Theorem 6

Let us first examine how the conditions in the hypothesis of Theorem 4 were used in its proof and
then discuss why they can be relaxed.

Our algorithm is based on three steps: constructing the connection graph, finding the overlap-
ping clustering, and recovering the dictionary. However if we invoke Lemma 25 (as opposed to
Lemma 7) then the properties we need of the connection graph follow from each X being at most k
sparse for k ≤ n1/4/

√
µ without any distributional assumptions.

Furthermore, the crucial steps in finding the overlapping clustering are bounds on the probability
that a sample X intersects a triple with a common intersection, and the probability that it does
so when there is no common intersection (Claim 10 and Lemma 11). Indeed, these bounds hold
whenever the probability of two sets intersecting in two or more locations is smaller (by, say, a
factor of k) than the probability of the sets intersecting once. This can be true even if elements in
the sets have significant positive correlation (but for the ease of exposition, we have emphasized
the simplest models at the expense of generality). Lastly, Algorithm 3 we can instead consider
the difference between the averages for Si and Ci\Si and this succeeds even if E[Xi] is non-zero.
This last step does use the condition that the variables Xi are independent, but if we instead use
Algorithm 4 we can circumvent this assumption and still recover a dictionary that is close to the
true one.

Finally, the “bounded away from zero” assumption in Definition 2 can be relaxed: the resulting
algorithm recovers a dictionary that is close enough to the true one and still allows sparse recov-
ery. This is because when the distribution has the anti-concentration property, a slight variant of
Algorithm 1 can still find most (instead of all) columns with Xi 6= 0.
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Using the ideas from this part, we give a proof sketch for Theorem 6

Proof:[sketch for Theorem 6] The proof follows the same steps as the proof of Theorem 36. There
are a few steps that needs to be modified:

1. Invoke Lemma 25 instead of Lemma 7.

2. For Lemma 11, use the weaker bound on the 4-th moment. This is still OK because k is
smaller now.

3. In Definition 31, redefine R2
i to be Ex∈Di [〈Ai, Ax〉

2].

4. In Lemma 32, use the bound R2
iα

2 + α
√

1− α22k
√
µ/n1/4 + (1− α2)k2µ/

√
n in order to

take the correlations between Xi’s into account.

�

Remark: Based on different assumptions on the distribution, there are algorithms with different
trade-offs. Theorem 6 is only used to illustrate the potential of our approach and does not try to
achieve optimal trade-off in every case.

A major difference from class Γ is that the Xi’s do not have expectation 0 and are not forbidden
from taking values close to 0 (provided they do have reasonable probability of taking values away
from 0). Another major difference is that the distribution of Xi can depend upon the values of other
nonzero coordinates. The weaker moment condition allows a fair bit of correlation among the set
of nonzero coordinates.

It is also possible to relax the condition that each nonzero Xi is in [−C,−1] ∪ [1, C]. Instead
we require Xi has magnitude at most O(1), and has a weak anti-concentration property: for every
δ > 0 it has probability at least cδ > 0 of exceeding δ in magnitude. This requires changing
Algorithm 1 in the following ways:

For each set S, let T be the subset of vertices that have at least 1 − 2δ neighbors in S: T =
{i ∈ S, |ΓG(i) ∩ S| ≥ (1 − 2δ)|S|. Keep sets S that 1 − 2δ fraction of the vertices are in T
(|T | ≥ (1−2δ)|S|).Here the choice of δ depend on parameters µ, n, k, and effects the final accuracy
of the algorithm. This ensures for any remaining S, there must be a single coordinate that everyX(i)

for i ∈ S is nonzero on.
In the last step, only output sets that are significantly different from the previously outputted

sets (significantly different means the symmetric difference is at least pk/5m)

Appendix G. Discussion: Overlapping Communities

There is a connection between the approach used here, and the recent work on algorithms for finding
overlapping communities (see in particular Arora et al. (2012c), Balcan et al. (2013)). We can think
of the set of samples Y for which Xi 6= 0 as a “community”. Then each sample is in more than one
community, and indeed for our setting of parameters each sample is contained in k communities.
We can think of the main approach of this paper as:

If we can find all of the overlapping communities, then we can learn an unknown dictionary.

27



ARORA GE MOITRA

So how can we find these overlapping communities? The recent papers Arora et al. (2012c),
Balcan et al. (2013) pose deterministic conditions on what constitutes a community (e.g. each
node outside of the community has fewer edges into the community than do other members of the
community). These papers provide algorithms for finding all of the communities, provided these
conditions are met. However for our setting of parameters, both of these algorithms would run in
quasi-polynomial time. For example, the parameter “d” in the paper Arora et al. (2012c) is an upper-
bound on how many communities a node can belong to, and the running time of the algorithms in
Arora et al. (2012c) are quasi-polynomial in this parameter. But in our setting, each sample Y
belongs to k communities – one for each non-zero value in X – and the most interesting setting
here is when k is polynomially large. Similarly, the parameter “θ” in Balcan et al. (2013) can be
thought of as: If node u is in community c, what is the ratio of the edges incident to u that leave the
community c compared to the number that stay inside c? Again, for our purposes this parameter “θ”
is roughly k and the algorithms in Balcan et al. (2013) depend quasi-polynomially on this parameter.

Hence these algorithms would not suffice for our purposes because when applied to learning
an unknown dictionary, their running time would depend quasi-polynomially on the sparsity k. In
contrast, our algorithms run in polynomial time in all of the parameters, albeit for a more restricted
notion of what constitutes a community (but one that seems quite natural from the perspective of
dictionary learning). Our algorithm OVERLAPPINGCLUSTER finds all of the overlapping “com-
munities” provided that whenever a triple of nodes shares a common community they have many
more common neighbors than if they do not all share a single community. The correctness of the
algorithm is quite easy to prove, once this condition is met; but here the main work was in showing
that our generative model meets these neighborhood conditions.
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