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Abstract
We study contextual bandits with ancillary constraints on resources, which are common in real-
world applications such as choosing ads or dynamic pricing of items. We design the first algorithm
for solving these problems that improves over a trivial reduction to the non-contextual case. We
consider very general settings for both contextual bandits (arbitrary policy sets, Dudik et al. (2011))
and bandits with resource constraints (bandits with knapsacks, Badanidiyuru et al. (2013a)), and
prove a regret guarantee with near-optimal statistical properties.

1. Introduction

Contextual bandits is a machine learning framework in which an algorithm makes sequential de-
cisions according to the following protocol: in each round, a context arrives, then the algorithm
chooses an action from the fixed and known set of possible actions, and then the reward for this ac-
tion is revealed; the reward may depend on the context, and can vary over time. Contextual bandits
is one of the prominent directions in the literature on online learning with exploration-exploitation
tradeoff; many problems in this space are studied under the name multi-armed bandits.

A canonical example of contextual bandit learning is choosing ads for a search engine. Here,
the goal is to choose the most profitable ad to display to a given user based on a search query and
the available information about this user, and optimize the ad selection over time based on user
feedback such as clicks. This description leaves out many important details, one of which is that
every ad is associated with a budget which constrains the maximum amount of revenue which that
ad can generate. In fact, this issue is so important that in some formulations it is the primary problem
(e.g., Devanur and Vazirani, 2004).

The optimal solution with budget constraints fundamentally differs from the optimal solution
without constraints. As an example, suppose that one ad has a high expected revenue but a small
budget such that it can only be clicked on once. Should this ad be used immediately? From all
reasonable perspectives, the answer is “no”. From the user’s or advertiser’s perspective, we prefer
that this ad be displayed for the user with the strongest interest rather than for a user who simply
has more interest than in other options. From a platform’s viewpoint, it is better to have more ads
in the system, since they effectively increases the price paid in a second price auction. And from
everyone’s viewpoint, it is simply odd to burn out the budget of an ad as soon as it is available.
Instead, a small budget should be parceled out over time.
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To address these issues, we consider a generalization of contextual bandits in which there are
one or several resources that are consumed by the algorithm. This formulation has many natu-
ral applications. Dynamic ad allocation follows the ad example described above: here, resources
correspond to advertisers’ budgets. In dynamic pricing, a store with a limited supply of items to
sell can make customized offers to customers. In dynamic procurement, a contractor with a batch
of jobs and a limited budget can experiment with prices offered to the workers, e.g. workers in a
crowdsourcing market. The above applications have been studied on its own, but never in models
that combine contexts and limited resources.

We obtain the first known algorithm for contextual bandits with resource constraints that im-
proves over a trivial reduction to the non-contextual version of the problem. As such, we merge
two lines of work on multi-armed bandits: contextual bandits and bandits with resource constraints.
While significant progress has been achieved in each of the two lines of work (in particular, optimal
solutions have been worked out for very general models), the specific approaches break down when
applied to our model.

Our model. We define resourceful contextual bandits (in short: RCB), a common generalization
of two general models for contextual bandits and bandits with resource constraints: respectively,
contextual bandits with arbitrary policy sets (e.g., Langford and Zhang, 2007; Dudik et al., 2011)
and bandits with knapsacks (Badanidiyuru et al., 2013a).

There are several resources that are consumed by the algorithm, with a separate constraint on
each. In each round, the algorithm receives a reward and consumes some amount of each resource,
in a manner that depends on the context and the chosen action, and may be randomized. We consider
a stationary environment: in each round, the context and the mapping from actions to rewards and
resource consumption is sampled independently from a fixed joint distribution, called the outcome
distribution. Rewards and consumption of various resources can be correlated in an arbitrary way.
The algorithm stops as soon as any constraint is violated. Initially the algorithm is given no in-
formation about the outcome distribution (except the distribution of context arrivals). In particular,
expected rewards and resource consumptions are not known.

An algorithm is given a finite set Π of policies: mappings from contexts to actions. We compete
against algorithms that must commit to some policy in Π before each round. Our benchmark is a
hypothetical algorithm that knows the outcome distribution and makes optimal decisions given this
knowledge and the restriction to policies in Π. The benchmark’s expected total reward is denoted
OPT(Π). Regret of an algorithm is defined as OPT(Π) minus the algorithm’s expected total reward.

For normalization, per-round rewards and resource consumptions lie in [0, 1]. We assume that
the distribution of context arrivals is known to the algorithm.

Discussion of the model. Allowing stochastic resource consumptions and arbitrary correlations
between per-round rewards and per-round resource consumptions is essential: this is why our model
subsumes diverse applications such as the ones discussed above,1 and many extensions thereof.
Further discussion of the application domains can be found in Appendix A.

Intuitively, the policy set Π consists of all policies that can possibly be learned by a given
learning method, such as linear estimation or decision trees. Restricting to Π allows meaningful
performance guarantees even if competing against all possible policies is intractable. The latter is
common in real-life applications, as the set of possible contexts can be very large.

1. For example, in dynamic pricing the algorithm receives a reward and consumes a resource only if an item is sold.
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Our benchmark can change policies from one round to another without restriction. As we prove,
this is essentially equivalent in power to the best fixed distribution over policies. However, the best
fixed policy may perform substantially worse.2

Our stopping condition corresponds to hard constraints: an advertiser cannot exceed his budget,
a store cannot sell more items than it has in stock, etc. An alternative stopping condition is to restrict
the algorithm to actions that cannot possibly violate any constraint if chosen in the current round,
and stop if there is no such action. This alternative is essentially equivalent to the original version.3

Moreover, we can w.l.o.g. allow our benchmark to use this alternative.

Our contributions: main algorithm. We design an algorithm, called Mixture Elimination,
and prove the following guarantee on its regret.

Theorem 1 For all RCB problems with K actions, d resources, time horizon T , and for all policy
sets Π. Algorithm Mixture Elimination achieves expected total reward

REW ≥ OPT(Π)−O
(
1 + 1

B OPT(Π)
)√

dKT log (dKT |Π|), (1)

where B = miniBi is the smallest of the resource constraints B1 , . . . , Bd.

This regret guarantee is optimal in several regimes. First, we achieve an optimal square-root
“scaling” of regret: if all constraints are scaled by the same parameter α > 0, then regret scales
as
√
α. Second, if B = T (i.e., there are no constraints), we recover the optimal Õ(

√
KT ) regret.

Third, we achieve Õ(
√
KT ) regret for the important regime when OPT(Π) and B are at least a con-

stant fraction of T . In fact, Badanidiyuru et al. (2013a) provide a complimentary Ω(
√
KT ) lower

bound for this regime, which holds in a very strong sense: for any given tuple (K,B, OPT(Π), T ).
The

√
log |Π| term in Theorem 1 is unavoidable (Dudik et al., 2011). The dependence on the

minimum of the constraints (rather than, say, the maximum or some weighted combination thereof)
is also unavoidable (Badanidiyuru et al., 2013a). For strongest results, one can rescale per-round
rewards and per-round consumption of each resource so that they can be as high as 1.4

Note that the regret bound in Theorem 1 does not depend on the number of contexts, only on
the number of policies in Π. In particular, it tolerates infinitely many contexts. On the other hand,
if the set X of contexts is not too large, we can also obtain a regret bound with respect to the best
policy among all possible policies. Formally, take Π = {all policies} and observe that |Π| ≤ K |X|.

Further, Theorem 1 extends to policy sets Π that consist of randomized policies: mappings from
contexts to distributions over actions. This may significantly reduce |Π|, as a given randomized
policy might not be representable as a distribution over a small number of deterministic policies.5

We assume deterministic policies in the rest of the paper.

2. The expected total reward of the best fixed policy can be half as large as that of the best distribution. This holds
for several different domains including dynamic pricing / procurement, even without contexts (Badanidiyuru et al.,
2013a). Note that without resource constraints, the two benchmarks are equivalent.

3. Each budget constraint changes by at most one, which does not affect our regret bounds in any significant way.
4. E.g., if per-round consumption of each resource is deterministically at most 1

10
, then multiplying all per-round con-

sumption by 10 would increase the B by a factor of 10, and hence result in a stronger regret bound.
5. We can reduce RCB with randomized policies to RCB with deterministic policies simply by replacing each context x

with a vector (a(x, π) : π ∈ Π) such that a(x, π) = π(x), and encoding the randomization in policies through the
randomization in the context arrivals. While this blows up the context space, it does not affect our regret bound.

3



BADANIDIYURU LANGFORD SLIVKINS

Computational issues. This paper is focused on proving the existence of solutions to this prob-
lem, and the mathematical properties of such a solution. The algorithm is specified as a mathemati-
cally well-defined mapping from histories to actions; we do not provide a computationally efficient
implementation. Such “information-theoretical” results are common for the first solutions to new,
broad problem formulations (e.g. Kleinberg et al., 2008; Kleinberg and Slivkins, 2010; Dudik et al.,
2011). In particular, in the prior work for RCB without resource constraints there exists an algorithm
with Õ(

√
KT ) regret (Auer et al., 2002; Dudik et al., 2011), but for all known computationally

efficient algorithms regret scales with T as T 2/3 (Langford and Zhang, 2007).

Our contributions: partial lower bound. We derive a partial lower bound: we prove that RCB
is essentially hopeless for the regime OPT(Π) ≤ B ≤

√
KT/2. The condition OPT(Π) ≤ B is

satisfied, for example, in dynamic pricing with limited supply.

Theorem 2 Any algorithm for RCB incurs regret Ω(OPT(Π)) in the worst case over all problem
instances such that OPT(Π) ≤ B ≤

√
KT/2 (using the notation from Theorem 1).

The above lower bound is specific to the general (“contextual”) case of RCB. In fact, it points
to a stark difference between RCB and the non-contextual version: in the latter, o(OPT) regret is
achievable as long as (for example) B ≥ log T (Badanidiyuru et al., 2013a).

While Theorem 2 is concerned with the regime of small B, note that in the “opposite” regime
of very large B, namely B �

√
KT , the regret achieved in Theorem 1 is quite low: it can be

expressed as Õ(
√
KT + ε · OPT(Π)), where B = 1

ε

√
KT .

Our contributions: discretization. In some applications of RCB, such as dynamic pricing and
dynamic procurement, the action space is a continuous interval of prices. Theorem 1 usefully applies
whenever the policy set Π is chosen so that the number of distinct actions used by policies in Π is
finite and small compared to T . (Because one can w.l.o.g. remove all other actions.) However, one
also needs to handle problem instances in which the policies in Π use prohibitively large or infinite
number of actions.

We consider a paradigmatic example of RCB with an infinite action space: contextual dynamic
pricing with a single product and prices in the [0, 1] interval. We derive a corollary of Theorem 1
that applies to an arbitrary finite policy set Π.

Theorem 3 Consider contextual dynamic pricing with a limited supply B of a single product. Let
Π be the policy set and T be the time horizon. Then algorithm Mixture Elimination, parame-
terized by a suitably chosen policy set Π′ achieves expected total reward

REW ≥ OPT(Π)−O
(

(TB)1/3 · log (TB|Π|)
)
. (2)

Here Π′ depends only on the original policy set Π and the parameters B, T .

The regret bound is optimal (up to log factors) for the important regime B ≥ Ω(T ), due to the
Ω(B2/3) lower bound from Babaioff et al. (2012) for the non-contextual case. Note that the theorem
makes no assumptions on Lipschitz-continuity w.r.t. prices.6

6. This is not very surprising, as an optimal algorithm for the non-contextual case from Babaioff et al. (2012) does not
assume Lispshitz-continuity, either. However, Lipschitz-continuity has been essential in some of the preceding work
on dynamic pricing, e.g. Besbes and Zeevi (2009).
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We use discretization: we reduce the original problem to one in which actions (i.e., prices) are
multiples of some carefully chosen ε > 0. Our approach proceeds as follows. For each ε > 0 we
define a “discretized” policy set Πε that approximates Π and only uses prices that are multiples of ε.
We use Theorem 1 to obtain a regret bound relative to Πε; here the ε controls the tradeoff between
the number of actions (and therefore the regret) and the “discretization error” of Πε. The technical
difficulty here is to bound the discretization error; then we optimize the choice of ε to obtain the
regret bound relative to Π.

Extending the discretization approach beyond dynamic pricing with a single product is prob-
lematic even without contexts, see Section 6 for further discussion.

Discussion: main challenges in RCB. The central issue in bandit problems is the tradeoff between
exploration: acquiring new information, and exploitation: making seemingly optimal decisions
based on this information. In this paper, we resolve the explore-exploit tradeoff in the presence of
contexts and resource constraints. Each of the three components (explore-exploit tradeoff, contexts,
and resource constraints) presents its own challenges, and we need to deal with all these challenges
simultaneously. Below we describe these individual challenges one by one.

A well-known naive solution for explore-exploit tradeoff, which we call pre-determined ex-
ploration, decides in advance to allocate some rounds to exploration, and the remaining rounds to
exploitation. The decisions in the exploration rounds do not depend on the observations, whereas
the observations from the exploitation rounds do not impact future decisions. While this approach is
simple and broadly applicable, it is typically inferior to more advanced solutions based on adaptive
exploration – adapting the exploration schedule to the observations, so that many or all rounds serve
both exploration and exploitation.7 Thus, the general challenge in most explore-exploit settings is
to design an appropriate adaptive exploration algorithm.

Resource constraints are difficult to handle for the following three reasons. First, an algorithm’s
ability to exploit is constrained by resource consumption for the purpose of exploration; the latter
is stochastic and therefore difficult to predict in advance. Second, the expected per-round reward is
no longer the right objective to optimize, as the action with the highest expected per-round reward
could consume too much resources. Instead, one needs to take into account the expected reward
over the entire time horizon. Third, the best fixed policy is no longer the right benchmark; instead,
the algorithm should search over distributions over policies, which is a much larger search space.

In contextual bandit problems, an algorithm effectively chooses a policy π ∈ Π in each round.
Naively, this can be reduced to a non-contextual bandit problem in which “actions” correspond to
policies. In particular, the main results in Badanidiyuru et al. (2013a) directly apply to this reduced
problem. However, the action space in the reduced problem has size |Π|; accordingly, regret scales
as
√
|Π| in the worst case. The challenge in contextual bandits is to reduce this dependence. In

particular, note that we replace
√
|Π| with log |Π|, an exponential improvement.

Related work. Multi-armed bandits have been studied since Thompson (1933) in Operations Re-
search, Economics, and several branches of Computer Science, see (Gittins et al., 2011; Bubeck
and Cesa-Bianchi, 2012) for background. This paper unifies two active lines of work on bandits:
contextual bandits and bandits with resource constraints.

Contextual Bandits (Auer, 2002; Langford and Zhang, 2007) add contextual side information
which can be used in prediction. This is a necessary complexity for virtually all applications of

7. For example, the difference in regret between pre-determined and adaptive exploration is Õ(
√
KT ) vs. O(K log T )

for stochastic K-armed bandits, and Õ(T 3/4) vs. Õ(B2/3) for dynamic pricing with limited supply.
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bandits since it is far more common to have relevant contextual side information than no such infor-
mation. Several versions have been studied in the literature, see (Bubeck and Cesa-Bianchi, 2012;
Dudik et al., 2011; Slivkins, 2011) for a discussion. For contextual bandits with policy sets, there
exist two broad families of solutions, based on multiplicative weight algorithms (Auer et al., 2002;
McMahan and Streeter, 2009; Beygelzimer et al., 2011) or confidence intervals (Dudik et al., 2011;
Agarwal et al., 2012). We rework the confidence interval approach, incorporating and extending the
ideas from the work on resource-constrained bandits (Badanidiyuru et al., 2013a).

Prior work on resource-constrained bandits includes dynamic pricing with limited supply (Babaioff
et al., 2012; Besbes and Zeevi, 2009, 2012), dynamic procurement on a budget (Badanidiyuru et al.,
2012; Singla and Krause, 2013; Slivkins and Vaughan, 2013), dynamic ad allocation with advertis-
ers’ budgets (Slivkins, 2013), and bandits with a single deterministic resource (Guha and Munagala,
2007; Gupta et al., 2011; Tran-Thanh et al., 2010, 2012). Badanidiyuru et al. (2013a) define and
optimally solve a common generalization of all these settings: the non-contextual version of RCB.
An extensive discussion of these and other applications, including applications to repeated auctions
and network routing, can be found in (Badanidiyuru et al., 2013a).

To the best of our knowledge, the only prior work that explicitly considered contextual bandits
with resource constraints is György et al. (2007). This paper considers a somewhat incomparable
setting with a single unconstrained resource. The regret bound is against the best fixed policy, and
scales as a root of the number of policies.

Our setting can be seen as a contextual bandit version of stochastic packing (e.g. Devanur and
Hayes, 2009; Devanur et al., 2011). The difference is in the feedback structure: in stochastic pack-
ing, full information about each round is revealed before that round.

While we approximate our benchmark OPT(Π) with a linear program optimum, our algorithm
and analysis are conceptually very different from the vast literature on approximately solving linear
programs, and in particular from LP-based work on bandit problems such as Guha et al. (2010).

In concurrent and independent work, Agrawal and Devanur (2014) study a model for contextual
bandits with resource constraints that is incomparable with ours. The dependence of expected re-
wards and resource consumptions on contexts and arms is more restrictive, namely linear. Whereas
the model for resource constraints is more general, e.g., allowing diminishing returns.

Organization of the paper. In the body of the paper we define the main algorithm, prove its
correctness, and describe the key steps of regret analysis. The appendices contain a discussion of
the application domains (Appendix A), missing proofs from the body of the paper (Appendix B-
C), the proof of the lower bound (Appendix D) and a discretization result for contextual dynamic
pricing (Appendix E). The state-of-art for RCB and the directions for further work are discussed in
Conclusions (Sections 6) and Appendix F.

2. Problem formulation and preliminaries

We consider an online setting where in each round an algorithm observes a context x from a possibly
infinite known set of possible contexts X and chooses an action a from a finite known set A. The
world then specifies a reward r ∈ [0, 1] and the resource consumption. There are d resources that can
be consumed, and the resource consumption is specified by numbers ci ∈ [0, 1] for each resource i.
Thus, the world specifies the vector (r; c1 , . . . , cd), which we call the outcome vector; this vector
can depend on the the chosen action a and the round. There is a known hard constraint Bi ∈ R+

on the consumption of each resource i; we call it a budget for resource i. The algorithm stops at the
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earliest time τ when any budget constraint is violated; its total reward is the sum of the rewards in
all rounds strictly preceding τ . The goal of the algorithm is to maximize the expected total reward.

We are only interested in regret at a specific time T (time horizon) which is known to the
algorithm. Formally, we model time as a specific resource with budget T and a deterministic con-
sumption of 1 for every action. So d ≥ 2 is the number of all resources, including time. W.l.o.g.,
Bi ≤ T for every resource i.

We assume that an algorithm can choose to skip a round without doing anything. Formally, we
posit a null action: an action with 0 reward and 0 consumption of all resources except the time. This
is for technical convenience, so as to enable Lemma 5.

Stochastic assumptions. We assume that there exists an unknown distribution D(x, r, ci), called
the outcome distribution, from which each round’s observations are created independently and iden-
tically, where the vectors are indexed by individual actions. In particular, context x is drawn from
the marginal distributionDX(·), and the observed reward and resource consumptions for each action
a are drawn from the conditional distribution D(ra, cia|x). We assume that the marginal distribu-
tion over contexts D(x) is known.

Policy sets and the benchmark. An algorithm is given a finite set Π of policies – mappings from
contexts to actions. Our benchmark is a hypothetical algorithm that knows the outcome distribution
D, and makes optimal decisions given this knowledge. The benchmark is restricted to policies in Π:
before each round, it must commit to some policy π ∈ Π, and then choose action π(x) upon arrival
of any given context x. The expected total reward of the benchmark is denoted OPT(Π). Regret of
an algorithm is OPT(Π) minus the algorithm’s expected total reward.

Uniform budgets. We say that the budgets are uniform ifBi = B for each resource i. Any problem
instance can be reduced to one with uniform budgets by dividing all consumption values for every
resource i by Bi/B, where B = miniBi. (That is tantamount to changing the units in which we
measure consumption of resource i.) We assume uniform budgets B from here on.

Notation. Let r(π) = E(x,r)∼D[rπ(x)] and ci(π) = E(x,ci)∼D[ciπ(x)] be the expected per-round
reward and the expected per-round consumption of resource i for policy π. Similary, define r(P ) =
Eπ∼P [r(π)] and ci(P ) = Eπ∼P [ci(π)] as the natural extension to a distribution P over policies.

The tuple µ = ( (r(π); c1(π) , . . . , cd(π)) : π ∈ Π ) is called the expected-outcomes tuple .
For a distribution P over policies, let P (π) is the probability that P places over policy π. By a

slight abuse of notation, let P (a|x) =
∑

π(x)=a P (π) be the probability that P places on action a
given context x. Thus, each context x induces a distribution P (·|x) over actions.

2.1. Linear approximation and the benchmark

We set up a linear relaxation that will be crucial throughout the paper. As a by-product, we (effec-
tively) reduce our benchmark OPT(Π) to the best fixed distribution over policies.

A given distribution P over policies defines an algorithm ALGP : in each round a policy π is
sampled independently from P , and the action a = π(x) is chosen. The value of P is the total
reward of this algorithm, in expectation over the outcome distribution.

As the value of P is difficult to characterize exactly, we approximate it (generalizing the ap-
proach from (Babaioff et al., 2012; Badanidiyuru et al., 2013a) for the non-contextual version). We
use a linear approximation where all rewards and consumptions are deterministic and the time is
continuous. Let r(P, µ) and ci(P, µ) be the expected per-round reward and the expected per-round
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consumption of resource i for policy π ∼ P , given expected-outcomes tuple µ. Then the linear
approximation corresponds to the solution of a simple linear program:

Maximise t r(P, µ) in t ∈ R
subject to t ci(P, µ) ≤ B for each i

t ≥ 0.
(3)

The solution to this LP, which we call the LP-value of P , is

LP(P, µ) = r(P, µ) miniB/ci(P, µ). (4)

Denote OPTLP = supP LP(P, µ), where the supremum is over all distributions P over Π.

Lemma 4 OPTLP ≥ OPT(Π).

Therefore, it suffices to compete against the best fixed distribution over Π, as approximated
by OPTLP, even though our benchmark OPT(Π) allows unrestricted changes over time. Note that
proving regret bounds relative to OPTLP rather than to OPT(Π) only makes our results stronger.

A distribution P over Π that attains the supremum value OPTLP is called LP-optimal. Such P is
called LP-perfect if furthermore |support(P )| ≤ d and ci(P, µ) ≤ B/T for each resource i. We
find it useful to consider LP-perfect distributions throughout the paper.

Lemma 5 An LP-perfect distribution exists for any instance of RCB.

Lemma 4 and Lemma 5 are proved for the non-contextual version of RCB in Badanidiyuru et al.
(2013a). The general case can be reduced to the non-contextual version via a standard reduction
where actions in the new problem correspond to policies in Π in the original problem. For Lemma 5,
Badanidiyuru et al. (2013a) obtain an LP-perfect distribution by mixing an LP-optimal distribution
with the “null action”; this is why we allow the null action in the setting.

3. The algorithm: Mixture Elimination

The algorithm’s goal is to converge on a LP-perfect distribution over policies. The general design
principle is to explore as much as possible while avoiding obviously suboptimal decisions.

Overview of the algorithm. In each round t, the following happens.

1. Compute estimates. We compute high-confidence estimates for the per-round reward r(π)
and per-round consumption ci(π), for each policy π ∈ Π and each resource i. The collection I of
all expected-outcomes tuple that are consistent with these high-confidence estimates is called the
confidence region.

2. Avoid obviously suboptimal decisions. We prune away all distributions P over policies in Π
that are not LP-perfect with high confidence. More precisely, we prune all P that are not LP-perfect
for any expected-outcomes tuple in the confidence region I; the remaining distributions are called
potentially LP-perfect. LetF be the convex hull of the set of all potentially LP-perfect distributions.

3. Explore as much as possible. We choose a distribution P ∈ F which is balanced, in the sense
that no action is starved; see Equation (5) for the precise definition. Note that balanced distributions
are typically not LP-perfect.
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Algorithm 1 Mixture Elimination

1: Parameters: #actions K, time horizon T , budget B, benchmark set Π, context distributionDX.
2: Data structure: “confidence region” I ← {all feasible expected-outcomes tuples}.

3: For each round t = 1 . . . T do
4: ∆t = {distributions P over Π: P is LP-perfect for some µ ∈ I}.
5: Let Ft be the convex hull of ∆t.
6: Let απ,t = maxP∈Ft P (π), ∀π ∈ Π.
7: Choose a “balanced” distribution Pt ∈ Ft: any P ∈ Ft such that ∀π ∈ Π

E
x∼DX

[
1

(1− q0)P (π(x)|x) + q0
K

]
≤ 2K

απ,t
, where q0 = min

(
1
2 ,
√

K
T log(K T |Π|)

)
. (5)

8: Observe context xt; choose action at to ”play”:
9: with probability q0, draw at u.a.r. in A; else, draw π ∼ Pt and let at = π(xt).

10: Observe outcome vector (r, c1 , . . . , cd).
11: Halt if one of the resources is exhausted.
12: Eliminate expected-outcomes tuples from I that violate equations (6-7)

4. Select an action. We choose policy π ∈ Π independently from P . Given context x, the action
a is chosen as a = π(x). The algorithm adds some random noise: with probability q0, the action a
is instead chosen uniformly at random, for some parameter q0.

The algorithm halts as soon as the time horizon is met, or one of the resources is exhausted.
The pseudocode can be found in Algorithm 1.

Some details. After each round t, we estimate the per-round consumption ci(π) and the per-round
reward r(π), for each policy π ∈ Π and each resource i, using the following unbiased estimators:

c̃i(π) =
ci 1{a=π(x)}

P [a = π(x) |x]
and r̃(π) =

r 1{a=π(x)}

P [a = π(x) |x]
.

The corresponding time-averages up to round t are denoted

ĉt,i(π) = 1
t−1

t−1∑
s=1

c̃s,i(π) and r̂t(π) = 1
t−1

t−1∑
s=1

r̃s(π).

We show that with high probability these time-averages are close to their respective expecta-
tions. To express the confidence term in a more lucid way, we use the following shorthand, called
confidence radius: radt(ν) =

√
Crad ν/t, where Crad = Θ(log(d T |Π|)) is a parameter which we

will fix later. We show that w.h.p. the following holds:

|r(π)− r̂t(π)| ≤ radt (K/απ,t) , (6)

|ci(π)− ĉt,i(π)| ≤ radt (K/απ,t) for all i. (7)

(Here απ,t = maxP∈Ft P (π), as in Algorithm 1.)
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4. Correctness of the algorithm

We need to prove that in each round t, some P ∈ Ft satisfies (5), and Equations (6-7) hold for all
policies π ∈ Π with high probability.

Notation. Recall that Pt is the distribution over Π chosen in round t of the algorithm, and q0 is the
noise probability. The “noisy version” of Pt is defined as

P ′t(a|x) = (1− q0)Pt(a|x) + q0/K (∀x ∈ X, a ∈ A).

Then action at in round t is drawn from distribution P ′t(·|xt).

Lemma 6 In each round t, some P ∈ Ft satisfies (5).
Proof First we prove that Ft is compact; here each distribution over Π is interpreted as a |Π|-
dimensional vector, and compactness is w.r.t. the Borel topology on R|Π|. This can be proved via
standard real analysis arguments; we provide a self-contained proof in Appendix B.

In what follows we extend the minimax argument from Dudik et al. (2011). Our proof works
for any q0 ∈ [0, 1

2 ] and any compact and convex set F ⊂ FΠ.
Denote απ = maxP∈F P (π), for each π ∈ Π. Let FΠ be the set of all distributions over Π.
Equation (5) holds for a given P ∈ F if and only if for every distribution Z ∈ FΠ we have that

f(P,Z) , E
x∼DX

E
π∼Z

[
απ

P ′(π(x)|x)

]
≤ 2K,

where P ′ is the noisy version of P . It suffices to show that

min
P∈F

max
Z∈FΠ

f(P,Z) ≤ 2K. (8)

We use a min-max argument: noting that f is a convex function of P and a concave function of Z,
by the Sion’s minimax theorem (Sion, 1958) we have that

min
P∈F

max
Z∈FΠ

f(P,Z) = max
Z∈FΠ

min
P∈F

f(P,Z). (9)

For each policy π ∈ Π, let βπ ∈ argmaxβ∈F β(π) be a distribution which maximizes the probability
of selecting π. Such distribution exists because β 7→ β(π) is a continuous function on a compact
set F . Recall that απ = βπ(π).

Given any Z ∈ FΠ, define distribution PZ ∈ FΠ by PZ(π) =
∑

φ∈Π Z(φ)βφ(π). Note that
PZ is a convex combination of distributions in F . Since F is convex, it follows that PZ ∈ F . Also,
note that PZ(a|x) ≥

∑
π∈Π: π(x)=a Z(π)απ. Letting P ′Z be the noisy version of PZ , we have:

min
P∈F

f(P,Z) ≤ f(PZ , Z) = E
x∼DX

[∑
π

Z(π)απ
P ′Z(π(x)|x)

]

= E
x∼DX

∑
a∈A

∑
π∈Π: π(x)=a

Z(π)απ
P ′Z(a|x)

 = E
x∼DX

[∑
a∈X

∑
π∈Π: π(x)=a Z(π)απ

(1− q0)PZ(a|x) + q0/K

]

≤ E
x∼DX

[∑
a∈X

1

1− q0

]
=

K

1− q0
≤ 2K.

Thus, by Equation (9) we obtain Equation (8). �
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To analyze Equations (6-7), we will use Bernstein’s inequality for martingales (Freedman,
1975), via the following formulation from Bubeck and Slivkins (2012):

Lemma 7 Let G0 ⊆ G1 ⊆ . . . ⊆ Gn be a filtration, and X1, . . . , Xn be real random vari-
ables such that Xt is Gt-measurable, E(Xt|Gt−1) = 0 and |Xt| ≤ b for some b > 0. Let
Vn =

∑n
t=1 E(X2

t |Gt−1). Then with probability at least 1− δ it holds that

∑n
t=1Xt ≤

√
4Vn log(nδ−1) + 5b2 log2(nδ−1).

Lemma 8 With probability at least 1− 1
T , Equations (6-7) hold for all rounds t and policies π ∈ Π.

Proof Let us prove Equation (6). (The proof of (7) is similar.) Fix round t and policy π ∈ Π. We
bound the conditional variance of the estimators r̃t(π). Specifically, let Gt be the σ-algebra induced
by all events up to (but not including) round t. Then

E
[
r̃t(π)2 | Gt

]
= E

x∼DX, a∼P ′t

[
r2
t 1{π(x)=a}

P ′t(a|x)2

]
≤ E

x∼DX

[
1

P ′t(π(x)|x)

]
≤ 2K

απ,t
.

The last inequality holds by the algorithm’s choice of distribution Pt. Since the confidence region
I in our algorithm is non-increasing over time, it follows that απ,t is non-increasing in t, too. We
conclude that Var [r̃s(π) | Gs] ≤ 2K/απ,t for each round s ≤ t. Therefore, noting that r̃t(π) ≤
1/P ′(π(xt)|xt) ≤ K/q0, we obtain Equation (6) by applying Lemma 7 with Xt = r̃t(π)− r(π).�

5. Regret analysis: proof of Theorem 1

We provide the key steps of the proof; the details can be found in Section C.
Let It and ∆t be, resp., the confidence region I and the set ∆ of potentially LP-perfect distri-

butions computed in round t. Let Conv(∆t) be the convex hull of ∆t.
First we bound the deviations within the confidence region.

Lemma 9 For any two expected-outcomes tuples µ′, µ′′ ∈ It and a distribution P ∈ Conv(∆t):

|ci(P, µ′)− ci(P, µ′′)| ≤ radt (dK) for each resource i (10)

|r(P, µ′)− r(P, µ′′)| ≤ radt (dK) (11)

Proof Let us prove Equation (11). (Equation (10) is proved similarly.) By definition of It:

|r(P, µ′)− r(P, µ′′)| ≤
∑

π∈Π P (π) |r(π, µ′)− r(π, µ′′)|
≤
∑

π∈Π P (π) radt (K/απ,t) .

It remains to prove that the right-hand side is at most radt(dK). By linearity, it suffices to prove
this for P ∈∆t. So let us assume P ∈∆t from here on. Recall that |support(P )| ≤ d since P is
LP-perfect, and P (π) ≤ απ,t for any policy π ∈ Π. Therefore:∑

π∈Π P (π) radt (K/απ,t) ≤
∑

π∈Π radt (KP (π))

≤ radt
(
dK

∑
π∈Π P (π)

)
= radt (dK) . �
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Using Lemma 9 and a long computation (fleshed out in Section C), we prove the following.

Lemma 10 For any two expected-outcomes tuples µ′, µ′′ ∈ It and a distribution P ∈ Conv(∆t):

LP(P, µ′)− LP(P, µ′′) ≤ ( 1
B LP(P, µ′) + 2) · T · radt(dK).

Let REWt and Ct,i be, respectively, the (realized) total reward and average consumption of re-
source i up to and including round t. Recall that P ′t is the noisy version of distribution Pt chosen by
the algorithm in round t. Given Pt, the expected revenue and resource-i consumption in round t is,
respectively, r(P ′t , µ) and ci(P ′t , µ). Denote rt = 1

t

∑t
i=1 r(P

′
t , µ) and ci,t = 1

t

∑t
i=1 ci(P

′
t , µ).

Analysis of a clean execution. Henceforth, without further notice, we assume a clean execution
where several high-probability conditions are satisfied. Formally, the algorithm’s execution is clean
if in each round t Equations (6-7) are satisfied, and moreover min

(
|1t REWt − rt|, |Ct,i − ct,i|

)
≤

radt(1).
In particular, the set ∆t of potentially LP-perfect distributions indeed contains a LP-perfect dis-

tribution. By Lemma 8 and Azuma-Hoeffding Inequality, clean execution happens with probability
at least 1− 1

T . Thus, it suffices to lower-bound the total reward REWT for a clean execution.

Lemma 11 For any distribution P ′ ∈ Conv(∆t) and any expected-outcomes tuple µ ∈ It,

min
P∈∆t

LP(P, µ) ≤ LP(P ′, µ) ≤ max
P∈∆t

LP(P, µ). (12)

The following lemma captures a crucial argument. Denote

Φt =

(
2 + 1

B

[
max

P∈FΠ, µ∈It
LP(P, µ)

])
· T · radt(dK)

Lemma 12 For any expected-outcomes tuple µ∗, µ∗∗ ∈ It and distributions P ′, P ′′ ∈ Conv(∆t):

|LP(P ′, µ∗)− LP(P ′′, µ∗∗)| ≤ 3Φt. (13)
Proof Assume P ′, P ′′ ∈ ∆t. In particular, P ′, P ′′ are LP-perfect for some expected-outcomes
tuples µ′, µ′′ ∈ It, resp. Also, some distribution P ∗ ∈ ∆t is LP-perfect for µ∗ (by Lemma 5).
Therefore:

LP(P ′, µ∗) ≥ LP(P ′, µ′)− Φt (by Lemma 10: P = P ′)

≥ LP(P ∗, µ′)− Φt

≥ LP(P ∗, µ∗)− 2Φt (by Lemma 10: P = P ∗)

≥ LP(P ′′, µ∗)− 2Φt.

We proved Equation (13) for P ′, P ′′ ∈∆t. Thus:

max
P∈∆t

LP(P, µ∗)− min
P∈∆t

LP(P, µ∗) ≤ 2Φt. (14)

Next we generalize to P ′, P ′′ ∈ Conv(∆t).

LP(P ′, µ∗) ≥ min
P∈∆t

LP(P, µ∗) (by Lemma 11)

≥ max
P∈∆t

LP(P, µ∗)− 2Φt (by Equation (14))

≥ LP(P ′′, µ∗)− 2Φt (by Lemma 11).

We proved Equation (13) for µ∗ = µ∗∗. We obtain the general case by plugging in Lemma 10. �
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In the remainder of the proof, we upper-bound Φt in terms of

Ψt = (2 + 1
B OPTLP) · T · radt(dK).

Corollary 13 Φt ≤ 2Ψt, assuming that B ≥ 6 · T · radt(dK).

Proof Follows from Lemma 12 via a simple computation, see Section C. �

Corollary 14 LP(Pt, µ) ≥ OPTLP − 12 Ψt, where µ is the actual expected-outcomes tuple.

Proof Follows from Lemma 12 and Corollary 13, observing that Pt ∈ Conv(∆t) and OPTLP =
LP(P ∗, µ) for some P ∗ ∈∆t. �

In the remainder of the proof (which is fleshed out in Section C) we build on the above lemmas
and corollaries to prove the following sequence of claims:

REWt ≥
t

T
(OPTLP −O(Ψt))

Ct,i ≤ B/T +O(radt(dK)) (15)

REWT ≥ OPTLP −O(ΨT ).

To complete the proof of Theorem 1, we re-write the last equation as REWT ≥ f(OPTLP) for an
appropriate function f(), and observe that f(OPTLP) ≥ f(OPT) because function f() is increasing.

6. Conclusions and open questions

We define a very general setting for contextual bandits with resource constraints (denoted RCB). We
design an algorithm for this problem, and derive a regret bound which achieves the optimal root-T
scaling in terms of the time horizon T , and the optimal

√
log |Π| scaling in terms of the policy set

Π. Further, we consider discretization issues, and derive a specific corollary for contextual dynamic
pricing with a single product; we obtain a regret bound that applies to an arbitrary policy set Π and
is near-optimal in the regime B ≥ Ω(T ). Finally, we derive a partial lower bound which establishes
a stark difference from the non-contextual version. These results set the stage for further study of
RCB, as discussed below.

The main open question is to combine provable regret bounds and a computationally efficient
(CE) implementation. While we focused on the statistical properties, we believe our techniques are
unlikely to lead to CE implementations. Achieving near-optimal regret bounds in a CE way has
been a major open question for contextual bandits with policy sets (without resource constraints).
Very recently, this question has been resolved in the positive in a simultaneous and independent
work (Agarwal et al., 2013). One can hope to achieve the corresponding advance on RCB, perhaps
by building on the techniques from Agarwal et al. (2013). As a stepping stone, one can target CE
algorithms with weaker regret bounds, such as T 2/3 rather than

√
T dependence on time, perhaps

building on the corresponding results for the non-constrained version (Langford and Zhang, 2007).
Computational issues aside, several open questions concern the regret bounds for RCB and ex-

tensions thereof, see Appendix F.
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Appendix A: RCB: applications and special cases

In this section we discuss the application domains of resource-constrained (contextual) bandits
in more detail. We focus on the three main application domains: dynamic pricing, dynamic pro-
curement, and dynamic ad allocation. A more extensive discussion of these and other application
domains (in the non-contextual version) can be found in Badanidiyuru et al. (2013a,b).

Dynamic pricing with limited supply. The algorithm is a monopolistic seller with a limited inven-
tory. In the basic version, there is a limited supply of identical items. In each round, a new customer
arrives, the algorithm picks a price, and offers one item for sale at this price. The customer then
either buys the item at this price, or rejects the offer and leaves. The “context” represents the avail-
able information about the current customer, such as demographics, location, etc. The probability
of selling at a given price for a given context (a.k.a. the demand distribution) is fixed over time, but
not known to the algorithm. The algorithm optimizes the revenue; it does not derive any utility from
the left-over items.

We represent this problem as an instance of RCB as follows. “Actions” are the possible prices,
and the “resource constraint” is the number of items. In each round, the outcome vector is a pair
(reward, items sold); if the offered price is p, the outcome vector is (p, 1) if there is a sale, and (0, 0)
otherwise.

Many generalizations of dynamic pricing have been studied in the literature. In particular, RCB
subsumes a number of extensions. First, an algorithm can sell multiple items to the same customer,
possibly with volume discounts or surcharges. Second, an algorithm can have multiple products for
sale, with limited inventory of each. Third, it may be advantageous to offer bundles consisting of
different products, possibly with non-additive pricing (mirroring the non-additive valuations of the
customers).

Dynamic procurement on a budget. The algorithm is a monopolistic buyer with a limited budget.
The basic version is as follows. In each round, a new customer arrives, the algorithm picks a price,
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and offers to buy one item at this price. Then the customer either accepts the offer and sells the
item at this price, or rejects the offer and leaves. The “context” is the available information on the
current customer. The probability of buying at a given price for a given context (a.k.a. the “supply
distribution”) is fixed over time, but not known to the algorithm. The algorithm maximizes the
number of items bought; it has no utility for the left-over money.

An alternative interpretation is that the algorithm is a contractor which hires workers to perform
tasks, e.g. in a crowdsourcing market. In each round, a new worker arrives, the algorithm picks
a price, and offers the worker to perform one task for this price; the worker then either accepts
and performs the task at this price, or rejects and leaves. The relevant “context” for a worker in a
crowdsourcing market may include, for example, age, location, language, and task preferences.

Here, “actions” correspond to the possible prices, and the “resource constraint” is the buyer’s
budget. In each round, the outcome vector is a pair (items bought, money spent); if the offered price
is p, then the outcome vector is (1, p) if the offer is accepted, and (0, 0) otherwise.

Dynamic procurement is a rich problem space, both for buying items and for hiring workers
(see (Slivkins and Vaughan, 2013) for a discussion of the application to crowdsourcing markets).
In particular, RCB subsumes a number of extensions of this basic setting. First, the algorithm may
offer several tasks to the same worker, possibly at a discount. Second, there may be multiple types
of tasks, each having a different value for the contractor; moreover, there may be additional budget
constraints on each task type, or on various subsets of task types. Third, a given worker can be
offered a bundle of tasks, consisting of tasks of multiple types, possibly with non-additive pricing.
Fourth, there is a way to model the presence of competition (other contractors).

Dynamic ad allocation with budgets. The algorithm is an advertising platform. In the basic
version, there is a fixed collection of ads to choose from. In each round, a user arrives, and the
algorithm chooses one ad to display to this user. The user either clicks on this ad, or leaves without
clicking. The algorithm receives a payment if and only if the ad is clicked; the payment for a given
ad is fixed over time and known to the algorithm. The “context” is the available information about
the user and the page on which the ad is displayed. The click probability for a given ad and a given
context is constant over time, but not known to the algorithm.

Each ad belongs to some advertiser (who is the one paying the algorithm when this ad is clicked).
Each advertiser may own multiple ads, and has a budget constraint: a maximal amount of money
that can be spent on all his ads. Moreover, an advertiser may specify additional budget constraints
on various subsets of the ads. The algorithm maximizes its revenue; it derives no utility from the
left-over budgets.

Here, “actions” correspond to ads, and each budget corresponds to a separate resource. In a
round when the chosen ad a is clicked, the reward is the corresponding payment v, and the resource
consumption is v for each budget that involves a, and 0 for all other budgets. If the ad is not clicked,
the reward and the consumption of each resource is 0.

RCB also subsumes more advanced versions in which multiple non-zero outcomes are possible
in each round. For example, the ad platform may record what happens after the click, e.g. the time
spent on the page linked from the ad and whether this interaction has resulted in a sale.
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Appendix B: Compactness of Ft

Recall that ∆t is the set of distributions over Π that is computed by our algorithm in each round
t, and Ft = Conv(∆t) is the convex hull of ∆t. In this appendix we prove that Ft is compact for
each t. Here each distribution over Π is interpreted as a |Π|-dimensional vector, and compactness is
with respect to the Borel topology on R|Π|.

Lemma 15 Ft is compact for each t, relative to the Borel topology on R|Π|.

Since a convex hull of compact set is compact, it suffices to prove that ∆t is compact, i.e. that
it is closed and bounded. Each distribution is contained in a unit cube, hence bounded. Thus, it
suffices to prove that ∆t is a closed subset of R|Π|.

We use the following general lemma, which can be proved via standard real analysis arguments.

Lemma 16 Consider the following setup:
• X ,Y are compact subsets of finite-dimensional real spaces RdX and RdY , respectively.
• Functions f, g1 , . . . , gd : X ×Y → [0, 1] are continuous w.r.t. product topology on X ×Y .
• H(y) = {x ∈ X : f(x, y) = supx′∈X f(x′, y) and g(x, y) ≤ 0}, for each y ∈ Y .

Then H(Y) = ∪y∈YH(y) is a closed subset of RdX .

We apply this lemma to prove that ∆t is a closed subset of R|Π|. Specifically, we take X to
be the set of all distributions over policies with support at most d, and Y be the confidence region
in round t of the algorithm. It is easy to see that both sets are closed and bounded by definition,
therefore compact. Further, for each distribution P ∈ X , each expected-outcomes tuple µ ∈ Y , and
each resource iwe define f(P, µ) to be the corresponding LP-value, and gi(P, µ) = ci(P, µ)−B/T .
Then P ∈ H(µ) if and only if P is an LP-perfect distribution with respect to µ, and H(Y) = ∆t.

This completes the proof of Lemma 15.

B.1. Proof of Lemma 16

Suppose x∗ ∈ RdX is an accumulation point of H(Y), i.e. there is a sequence x1, x2, . . . ∈ H(Y)
such that xj → x∗. Note that x∗ ∈ X since X is closed. We need to prove that x∗ ∈ H(Y).

For each j, there is yj ∈ Y such that xj ∈ H(yj). Recall that Y is closed and bounded. Since
Y is bounded, sequence {yj}j∈N contains a convergent subsequence. Since Y is closed, Y contains
the limit of this subsequence. From here on, let us focus on this convergent subsequence.

Thus, we have proved that there exists a sequence of pairs {(xj , yj)}j∈N such that
• xj ∈ H(yj) and yj ∈ Y for all j ∈ N,
• xj → x∗ ∈ X and yj → y∗ ∈ Y .

We will prove that x∗ ∈ H(y∗). For that, we need to prove two things: (i) gi(x∗, y∗) ≤ 0 for each
i, and (ii) f(x∗, y∗) = supx∈X f(x, y∗).

First, gi(x∗, y∗) ≤ 0 for each i because gi(x∗, y∗) = limj gi(xj , yj) ≤ 0 by continuity of gi.
Second, we claim that f(x∗, y∗) = supx∈X f(x, y∗). For the sake of contradiction, suppose

ε , supx∈X f(x, y∗)− f(x∗, y∗) > 0. By continuity of f , the following holds:
• f(x∗∗, y∗) = supx∈X f(x, y∗) for some x∗∗ ∈ X .
• there exists an open neighborhood S of (x∗, y∗) on which |f(x, y)− f(x∗, y∗)| < ε/4.
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• there is an open neighborhood S′ of (x∗∗, y∗) on which |f(x, y)− f(x∗∗, y∗)| < ε/4.
In particular, there are open balls BX, B

′
X ⊂ X and BY ⊂ Y such that (x∗, y∗) ∈ BX ×BY ⊂ S and

(x∗∗, y∗) ∈ B′X × BY ⊂ S′. For a sufficiently large j it holds that xj ∈ BX and yj ∈ BY. It follows
that (xj , yj) ∈ S and (x∗∗, yj) ∈ S′. Therefore:

f(x∗, y∗) > f(xj , yj)− ε/4 (since (xj , yj) ∈ S)

≥ f(x∗∗, yj)− ε/4 (using the optimality of xj)

> f(x∗∗, y∗)− ε/2 (since (x∗∗, yj) ∈ S′).

We obtain a contradiction which completes the proof.

Appendix C: Regret analysis: details for the proof of Theorem 1

C.1. Proof of Lemma 10

We restate the lemma for convenience.

Lemma For any two expected-outcomes tuples µ′, µ′′ ∈ It and a distribution P ∈ Conv(∆t):

LP(P, µ′)− LP(P, µ′′) ≤ ( 1
B LP(P, µ′) + 2) · T · radt(dK).

Proof For brevity, we will denote:

LP′ = LP(P, µ′) and LP′′ = LP(P, µ′′)

r′ = r(P, µ′) and r′′ = r(P, µ′′)

c′i = ci(P, µ
′) and c′′i = ci(P, µ

′′).

By symmetry, it suffices to prove the upper bound for LP′ − LP′′. Henceforth, assume LP′ > LP′′.
We consider two cases, depending on whether

T ≤ B/c′′i for all resources i. (16)

Case 1. Assume Equation (16) holds. Then LP′′ = T r′′. Therefore by Lemma 9

LP′ − LP′′ ≤ T r′ − T r′′ ≤ T radt(dK).

Case 2. Assume Equation (16) fails. Then LP′′ = B r′′/c′′i for some resource i. We consider
two subcases, depending on whether

T ≤ B/c′j for all resources j. (17)

Subcase 1. Assume Equation (17) holds. Then:

LP′ = T r′ (18)

LP′′ ≤ T ·min(r′, r′′) ≤ LP′ (19)

Equation (19) follows from (18) and LP′ > LP′′.
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For δ ∈ [0, c′′i ), define

r(δ) = r′′ + δ

ci(δ) = c′′i − δ
f(δ) = B r(δ)/ci(δ).

Then f() is monotonically and continuously increasing function, with f(δ) → ∞ as δ → c′′i . For
convenience, define f(c′′i ) =∞.

Let δ0 = min(c′′i , radt(dK)). By Lemma 9, we have f(δ0) ≥ Br′/c′i. Therefore:

f(0) = LP′′ < LP′ ≤ Br′/c′i ≤ f(δ0).

Thus, by Equation (19), we can fix δ ∈ [0, δ0) such that f(δ) = T ·min(r′, r′′).

LP′′ = B
r′′

c′′i
= B

r(δ)− δ
ci(δ) + δ

≥ B r(δ)− δ
ci(δ)

(
1− δ

ci(δ)

)
.

f(δ)− LP′′ ≤ B

ci(δ)
δ +B

r(δ)

ci(δ)2
δ

=

(
1 +

r(δ)

ci(δ)

)
B δ

ci(δ)

=

(
1 +

f(δ)

B

)
f(δ) δ

r(δ)

≤
(

1 +
T r′

B

)
T r′′ δ

r(δ)

≤
(

1 +
LP′

B

)
T δ

≤
(
LP′/B + 1

)
· T · radt(dK).

LP′ − f(δ) = T r′ − T min(r, r′)

≤ T · radt(dK)

LP′ − LP′′ =
(
LP′ − f(δ)

)
+
(
f(δ)− LP′′

)
≤
(
LP′/B + 2

)
· T · radt(dK).

Subcase 2. Assume Equation (17) fails. Then LP′ = B r′/c′j for some resource j. Note that
c′i ≤ c′j and c′′j ≤ c′′i by the choice of i and j.
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From these inequalities and Lemma 9 we obtain c′′i ≤ c′j + radt(dK). Therefore,

B
r′′

c′′i
≥ B r′ − radt(dK)

c′j + radt(dK)
(by Lemma 9)

≥ B r′ − radt(dK)

c′j

(
1− radt(dK)

c′j

)
.

LP′ − LP′′ = B
r′

c′j
−Br

′′

c′′i

≤

(
B

c′j
+B

r′

(c′j)
2

)
radt(dK)

≤
(
T + LP′

T

B

)
radt(dK)

≤
(
LP′/B + 1

)
· T · radt(dK). �

C.2. Proof of Lemma 11

The proof consists of two parts. The second inequality in Equation (12) follows easily because the
distribution which maximizes LP(P, µ) by definition belongs to ∆t, and so

LP(P ′, µ) ≤ max
P∈Conv(∆t)

LP(P, µ) = max
P∈∆t

LP(P, µ).

To prove the first inequality in Equation (12), we first argue that LP(P, µ) is a quasi-concave
function of P . Denote ηi(P, µ) = B · r(P, µ)/ci(P, µ) for each resource i. Then ηi is a quasi-
concave function of P since each level set (the set of distributions P that satisfy ηi(P, µ) ≥ α for
some α ∈ R) is a convex set. Therefore LP(P, µ) = mini ηi(P, µ) is a quasi-concave function of P
as a minimum of quasi-concave functions.

Since P ′ ∈ Conv(∆t), it is a convex combination P ′ =
∑

Q∈∆t
αQ Q with

∑
Q∈∆t

αQ = 1.
Therefore:

LP(P ′, µ) = LP

 ∑
Q∈∆t

αQ Q, µ


≥ min

Q∈∆t,αQ>0
LP(Q,µ) By definition of quasi-concave functions

≥ min
Q∈∆t

LP(Q,µ). �

C.3. Remainder of the proof after Lemma 12

We start with Corollary 13, which we restate here for convenience.

Corollary Φt ≤ 2Ψt, assuming that B ≥ 6 · T · radt(dK).
Proof Let γ = maxP∈FΠ,µ∈It LP(P, µ). Note that γ ≤ T . Then from Lemma 12 we obtain:

γ − OPTLP ≤ 3( γB + 2) · T · radt(dK) ≤ γ
2 + 6 · T · radt(dK). (20)
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Using (20) and Lemma 12 we get the desired bound:

Φt ≤ ( γB + 2) · T · radt(dK)

≤
(

2 OPTLP + 12 · T · radt(dK)

B
+ 2

)
· T · radt(dK)

≤
(

2 OPTLP
B

+ 4

)
· T · radt(dK) = 2Ψt. �

In the remainder of this appendix, we prove the claims in Equation (15) one by one.

Corollary 17 REWt ≥ t
T (OPTLP −O(Ψt)) for each round t ≤ τ .

Proof From Lemma 14 we obtain

T r(P ′t , µ) ≥ (1− q0) LP(Pt, µ)

≥ (1− q0) (OPTLP − 12Ψt)

≥ OPTLP − 13Ψt.

Summing up and taking average over rounds, we obtain:

T rt ≥ OPTLP − 13
t

∑t
s=1 Ψs ≥ OPTLP −O(Ψt).

By definition of clean execution, we obtain:

REWt ≥ t(rt − radt(rt)) ≥ t
T (OPTLP −O(Ψt)). �

Corollary 18 Ct,i ≤ B/T +O(radt(dK)) for each round t ≤ τ .

Proof Let µ be the (actual) expected-outcomes tuple, and recall that Pt is LP-optimal for some
expected-outcomes tuple µ′ ∈ ∆t. Then, by Lemma 9, it follows that ci(Pt, µ) ≤ ci(Pt, µ

′) +
radt(dK). Furthermore since Pt is LP-optimal for µ′ we have ci(Pt, µ′) ≤ B

T . Therefore:

ci(Pt, µ) ≤ B
T + radt(dK)

ci(P
′
t , µ) ≤ (1− q0) ci(Pt, µ) + q0

≤ B
T +O(radt(dK)).

Now summing and taking average we obtain ct,i ≤ B
T + O(radt(dK)). Using the definition of

clean execution, it follows that

Ct,i ≤ ct,i + radt(ct,i) ≤ B
T +O(radt(dK)). �
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Lemma 19 REWT ≥ OPTLP −O(ΨT ).

Proof Either τ = T or some resource i gets exhausted, in which case (using Corollary 18)

τ =
B

Cτ,i
≥ B

B
T + radτ (dK)

⇒ τ BT + τradτ (dK) ≥ B
⇒ τ BT + TradT (dK) ≥ B

⇒ τ ≥ T
(
1− T

B radT (dK)
)
. (21)

Using this lower bound and Corollary 17, we obtain the desired bound on the total revenue REWT .

REWT = REWτ ≥
τ

T
( OPTLP −O(Ψτ ) )

≥ OPTLP(1− T
B radT (dK))− O(τ Ψτ )

T

≥ OPTLP −ΨT −
O(τ Ψτ )

T
.

In the above, the first inequality holds by Corollary 17, the second by Equation (21), and the third
by definition of ΨT .

Finally, we note that τ Ψτ is an increasing function of τ , and substitute τΨτ ≤ TΨT . �

We complete the proof of Theorem 1 as follows. Re-writing Lemma 19 as REWT ≥ f(OPTLP),
for an appropriate function f(), note that REWT ≥ f(OPT) because function f() is increasing.

Appendix D: Lower bound: proof of Theorem 2

In fact, we prove a stronger theorem that implies Theorem 2.

Theorem 20 Fix any tuple (K,T,B) such that K ∈ [2, T ] and B ≤
√
KT/2. Any algorithm

for RCB incurs regret Ω(OPT(Π)) in the worst case over all problem instances with K actions, time
horizon T , smallest budget B, and policy sets Π such that OPT(Π) ≤ B.

We will use the following lemma (which follows from simple probability arguments).

Lemma 21 Consider two collections of n balls I1 and I2, each numbered from 1 to n. Let I1

consists of all red balls, while I2 consist of n − 1 red balls and 1 green ball (with labels chosen
uniformly at random). In this setting, let an algorithm is given access to random samples from one
of Ii with replacement. The algorithm is allowed to first look at the ball’s number and then decide
whether to inspect it’s color. Then any algorithmA which with probability at least 1

2 can distinguish
between I1 and I2 must inspect color of at least n/2 balls in expectation.

In the remainder of this section we prove Theorem 20.
Let us define a family of problem instances as follows. Let the set of arms be {a1, a2, . . . , aK}.

There are T/B different contexts labelled {x1, ..., xT/B} and there is a uniform distribution over
contexts. The policy set Π consists of T (K − 1)/B policies πi,j , where 2 ≤ i ≤ K and 1 ≤ j ≤
T/B. Define them as follows: πi,j(xl) = ai for l = j, and πi,j(xl) = a1 for l 6= j.
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There is just one resource constraint B (apart from time). Pulling arm a1 always costs 0 and
arm ai, i 6= 1 always costs 1. Now consider the following problem instances:

• Let F0 be the instance in which every arm always gives a reward 0. Note that OPT(F0) = 0.

• Let Fi,j be the instance in which arm ai on context xj gives reward 1, otherwise every arm on
every context gives reward 0. Note that in this case the optimal distribution over policies is just to
follow πi,j and gets reward ≈ B.

Now consider any algorithm A and let the expected number of times it pulls arm ai be pi
on input F0. Let i′, i′ 6= 1 be the arm for which this is minimum. Then by simple linearity of
expectation we get that B ≥ (K− 1)pi′ . It is also simple to see that for the algorithm to get a regret
better than Ω(OPT) it should be able to distinguish between F0 and Fi′,. at least with probability
1
2 . From lemma 21 this can be done iff pi′ ≥ T/(2B). Combining the two equations we get
B ≥ (K − 1)T/(2B). Solving for B we get B ≥

√
KT/2.

Appendix E: Discretization: proof of Theorem 3

We consider contextual dynamic pricing with B copies of a single product. The action space
consists of all prices p ∈ [0, 1]. We obtain regret bounds relative to an arbitrary policy set Π.

We will need some notation. Let S(p|x) be the probability of a sale for price p and context
x; note that S(p|x) is non-increasing in p, for any given x. For a randomized policy π, define
S(π|x) = Ep∼π(x)[S(p|x) ]. Let fε(p), p ≥ 0 be the largest price p′ ≤ p such that p′ ∈ εN. For
notational convenience, we use a special price p =∞ which corresponds to skipping a round.

As discussed in the Introduction, for each ε > 0 we define a ε-discretized policy set Πε that ap-
proximates Π and only uses multiples of ε as prices. The idea is that whenever a policy π ∈ Π picks
some price p, we replace it with the discretized price p′ = fε(p). To account for a possible decrease
in the sale probability S(·), we skip the corresponding round with probability 1− S(p)/S(p′).

Formally, for each π ∈ Π we define a randomized policy πε as follows: for each context x,

πε(x) =

{
fε(π(x)) with probability S(π|x)

S(fε(π(x)) |x)

∞ with the remaining probability.
(22)

The ε-discretized policy set is defined as Πε = {πε : π ∈ Π}.
In addition to the discretized prices, the πε has the following useful properties:
• π(x) ≥ πε(x) ≥ π(x)− ε for all contexts x,
• S(πε|x) = S(π|x) for all contexts x.
The key technical step is to bound the discretization error of Πε compared to Π, as quantified

by the difference in OPTLP(·).

Lemma 22 OPTLP(Π)− OPTLP(Πε) ≤ εB, for each ε > 0.

Proof Fix ε > 0 and a distribution P over policies in Π. Define the ε-discretized distribution Pε
over Πε in a natural way: for each policy π ∈ Π, select πε with probability P (π). It suffices to
prove that LP(Pε) ≥ LP(P )− εB.

24



RESOURCEFUL CONTEXTUAL BANDITS

Let r(P ) and c(P ) denote the expected per-round reward and the expected per-round consump-
tion for distribution P . Then

c(Pε) = E
x,π

[S(πε|x) ] = E
x,π

[S(πε|x) ] = c(P )

r(Pε) = E
x,π

[ fε(π(x)) · S(πε|x) ]

≥ E
x,π

[ (π(x)− ε) · S(πε|x) ]

≥ E
x,π

[π(x) · S(π|x) ]− ε E
x,π

[S(πε|x) ]

= r(P )− ε c(Pε).

LP(Pε) = r(Pε)
B

c(Pε)
≥ r(P )

B

c(P )
− εB.

≥ LP(P )− εB. �

Let REW(Π′) be the expected total reward when algorithm Mixture Elimination is run with
policy set Π′ which uses only K distinct actions. Recall that we actually prove a somewhat stronger
version of Theorem 1: the same regret bound (1), but with respect to OPTLP(Π′) rather than OPT(Π′).
In our setting we have d = 1 (single constraint) and OPTLP(Π

′) ≤ B. Therefore we have

REW(Π′) ≥ OPTLP(Π
′)−O

(√
KT log (KT |Π′|)

)
.

Plugging in Π′ = Πε and K = 1
ε , and using Lemma 22, we obtain

REW(Πε) ≥ OPTLP(Π)− εB −O
(√

T
ε log

(
T
ε |Πε|

))
, for each ε > 0. (23)

We obtain Theorem 3 choosing ε = ( T
B2 )1/3 and noting |Πε| ≤ |Π|.

Appendix F: Open questions

As discussed in the Conclusions, the main open question concerns combining provable regret
bounds and a computationally efficient implementation. Computational issues aside, several open
questions concern our regret bounds.

First, it is desirable to achieve the same regret bounds without assuming a known time horizon
T (as it is in most bandit problems in the literature). This may be difficult because time is one of
the resource constraints in our problem, and our techniques rely on knowing all resource constraints
in advance. More generally, one can consider a version of RCB in which some of the resource
constraints are not fully revealed to an algorithm; instead, the algorithm receives updated estimates
of these constrains over time.

Second, while our main regret bound in Theorem 1 is optimal in the important regime when
OPT(Π) and B are at least a constant fraction of T , it is not tight for some other regimes. For a con-
crete comparison, consider problem instances with a constant number of resources (d), a constant
number of actions (K), and OPT(Π) ≥ Ω(B). Then, ignoring logarithmic factors, we obtain regret
OPT(Π)

√
T/B, whereas the lower bound in Badanidiyuru et al. (2013a) is OPT(Π)/

√
B. So there

is a gap when B � T . Likewise, our result for contextual dynamic pricing with a single product
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(Theorem 3) is tight in the regime B ≥ Ω(T ), but not if B � T : ignoring the logarithmic factors,
our upper bound is (TB)1/3, whereas the lower bound from Babaioff et al. (2012) is B2/3. In both
cases, both upper and lower bounds can potentially be improved.

Third, it is important to extend the discretization approach beyond contextual dynamic pricing
with a single product. However, this is problematic even without contexts: discretization issues are
unresolved whenever one has multiple resource constraints (see Badanidiyuru et al. (2013a)), essen-
tially because there is no general technique to usefully upper-bound the discretization error. Further,
while Badanidiyuru et al. (2013a) resolve discretization for (non-contextual) dynamic procurement
with a single budget, they find that the seemingly natural mesh in which all prices are multiples of
some ε is not the right mesh for this problem.

Fourth, if there are no contexts or resource constraints then one can achieve O(log T ) regret
with an instance dependent constant; it is not clear whether one can meaningfully extend this result
to contextual bandits with resource constraints.

The model of RCB can be extended in several directions, two of which we outline below. The
most immediate extension is to unknown distribution of context arrivals. We conjecture the present
results can be extended, perhaps with a rather tedious amount of work, building on the techniques
from Dudik et al. (2011). The most important extension, in our opinion, would be from a stationary
environment to one controlled by an adversary (which can be restricted in some natural way). We
are not aware of any prior work in this direction, even for the non-contextual version.
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