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Abstract
We give a robust version of the celebrated result of Kruskal on the uniqueness of tensor decompo-
sitions: given a tensor whose decomposition satisfies a robust form of Kruskal’s rank condition, we
prove that it is possible to approximately recover the decomposition if the tensor is known up to a
sufficiently small (inverse polynomial) error.

Kruskal’s theorem has found many applications in proving the identifiability of parameters for
various latent variable models and mixture models such as Hidden Markov models, topic models
etc. Our robust version immediately implies identifiability using only polynomially many samples
in many of these settings – an essential first step towards efficient learning algorithms.

Our methods also apply to the “overcomplete” case, which has proved challenging in many
applications. Given the importance of Kruskal’s theorem in the tensor literature, we expect that our
robust version will have several applications beyond the settings we explore in this work.
Keywords: Kruskal uniqueness theorem, tensor decomposition, latent variable models

1. Introduction

Statisticians have long studied the identifiability of probabilistic models, i.e., whether the param-
eters of a model can be learned from data (Teicher (1961, 1967); Tallis and Chesson (1982)). A
central question in unsupervised learning is the efficient computation of such latent model param-
eters from observed data. The method of moments approach, pioneered by Pearson (1894), infers
model parameters from empirical moments. This approach is very powerful and is used in many
forms in applications. However in general, the method might require very high order moments
and exponential sample complexity (Moitra and Valiant (2010); Belkin and Sinha (2010); Gravin
et al. (2012)). Our focus in this work is to understand settings where moments of small order and
polynomial sample complexity suffices.

Tensor decompositions have proved to be a valuable tool for reasoning about identifiability of
probabilistic models in the algebraic statistics literature (Allman et al. (2009, 2011); Rhodes and
Sullivant (2012)). Moments of data (which can be estimated empirically) are naturally represented
by tensors (high dimensional analogs of matrices) and the low rank decomposition of such tensors
can be used to deduce the parameters of the underlying model. A fundamental result of Kruskal
(1977) on the uniqueness of tensor decompositions implies that the model parameters are uniquely
identified by this procedure. In applications to learning theory, there are two issues that arise: first,
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we cannot compute moments exactly (typically, using polynomial number of samples incurs an
inverse polynomial error). Second, the modeling of the underlying problem (as a mixture model,
say) is usually an approximate one, true up to some error. Both these issues result in small errors in
our estimates for the entries of the tensor (i.e., the moments), as given by the model. This raises the
questions: Can we approximately recover the parameters given an approximation to the moment
tensor? How small should the error be for such recovery to be possible?

Our main technical contribution is establishing such a robust version of Kruskal’s classic unique-
ness theorem for tensor decompositions, tolerating inverse polynomial error. This directly implies
polynomial identifiability (identifiability with polynomial samples) in a host of applications where
Kruskal’s theorem was used to prove identifiability assuming access to exact moment tensors (All-
man et al. (2009)). To the best of our knowledge, no such robust version of Kruskal’s theorem is
known in the literature. Given the importance of this theorem in the tensor literature, we expect that
this robust version will have applications beyond the settings we explore in this work.

We illustrate applications to learning several latent variable models. In particular, our results
imply polynomial sample complexity bounds for learning multi-view mixture models, exchange-
able (single) topic models, Hidden Markov Models, and mixtures of spherical Gaussians without
separation assumptions.1 These results also hold in the overcomplete setting, for which such bounds
have often proved difficult.

1.1. Tensors, Kruskal’s theorem, and our results

Tensors are mutlidimensional arrays – a generalization of vectors and matrices – which have been
studied intensively as methods of extracting structure from data. The low-rank decomposition of a
tensor often provides valuable insights into the structure of the data used to generate it. In sharp
contrast to matrices, where a matrix of rank R (> 1) can be expressed in many ways as a sum of R
rank-one matrices, higher order tensors typically have a unique decomposition up to much higher
ranks (R roughly c · (dimension), as we will see). The classic result of Kruskal (1977) gives a
sufficient condition for uniqueness, which has since found numerous applications.

Let us start with three dimensions. Suppose that a 3-tensor T has the following decomposition:2

T = [A B C] ≡
R∑
r=1

Ar ⊗Br ⊗ Cr (1)

Let the Kruskal rank or K-rank kA of matrix A (formed by column vectors Ar) be the maximum
value of k such that any k columns of A are linearly independent. kB and kC are similarly defined.
Kruskal’s result says that a sufficient condition for the uniqueness of the decomposition (1) is

kA + kB + kC ≥ 2R+ 2 (2)

Several alternate proofs of this fundamental result have been given (Jiang and Sidiropoulos (2004);
Stegeman and Sidiropoulos (2007); Rhodes (2010); Landsberg (2012)). Sidiropoulos and Bro
(2000) also extended this result to `-order tensors.

We give robust versions of Kruskal’s uniqueness theorem and its higher dimensional generaliza-
tion. To this end, we need a natural robust analogue of Kruskal rank: we say that K-rankτ (A) ≥ k

1. In this submission, we will focus on multi-view mixture models and Hidden Markov Models.
2. For a, b, c ∈ Rn, a⊗ b⊗ c is a rank-one tensor (dim n× n× n) whose j, k, l’th entry is ajbkcl.
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if every submatrix of A formed by k of its columns has minimum singular value at least 1/τ . (Note
that this is related to, but much weaker than the Restricted Isometry Property (RIP)). A matrix is
called bounded if its column vectors have bounded length, and we call two matrices (or tensors)
close if the Frobenius norm of the difference is small. (See Section 2 for precise definitions.)

Our main result (for three dimensions, Theorem 5) can then be stated informally as follows:
Informal Theorem. If any order 3 tensor T has a bounded rank R decomposition [A B C], where
the robust K-rankτ kA, kB, kC satisfy kA + kB + kC ≥ 2R+ 2, then any decomposition [A′ B′ C ′]
that produces a tensor ε-close to T hasA′, B′, C ′ being individually ε′-close toA,B and C respec-
tively (up to permutation and re-scaling) for ε < ε′ · poly(R,n, τ).

A similar result also holds for higher order tensors. For order ` tensors, a decomposition consists
of n×Rmatrices U (1), U (2), . . . , U (`), and if ki denotes the robust K-rankτ of U (i), then a sufficient
condition for uniqueness (in the sense above) is

k1 + k2 + · · ·+ k` ≥ 2R+ (`− 1). (3)

One way to interpret this result (as well as Kruskal’s original theorem) is as saying that a typ-
ical tensor (in a probabilistic sense) of dimension n×` and rank R ≤ `(n − 1)/2 has a unique
decomposition. This is because the corresponding n×R matrices U (i) will have K-rankτ = n.
Discussion: Kruskal type results raise a natural question: can we show uniqueness of decomposition
for super linear ranks? Note that a typical order ` tensor has rank Ω(n`−1), so there is indeed a
large gap. It is known that Kruskal’s rank conditions are best possible, however other assumptions
could also imply uniqueness. Indeed for ` = 3, algebraic geometry approaches (Chiantini and
Ottaviani (2012)) show that generic (appropriately defined) tensors of rank up to n2/16 have a
unique decomposition. Obtaining a robust version of these results is a very interesting open problem.
When ` ≥ 5, our claims can be strengthened if we do not assume worst case parameters. For
instance, our uniqueness proof for higher dimensions (together with several ideas from random
matrix theory) can be used to prove that tensors with a randomly perturbed decomposition3 have
unique decompositions for ranks up to nb

`−1
2
c ( Bhaskara et al. (2014)).

Algorithms. Given the uniqueness results, it is natural to ask if there are efficient algorithms for
recovering the decomposition under Kruskal’s conditions. Such an algorithm can be used to recover
the hidden parameters in various mixture models by estimating moments. This is a challenging
open problem when the rank is (1 + ε)n. For rank ≤ n, and in particular when the decomposition
matrices A,B,C have full column rank (any two of them being full rank also suffices), there are
several algorithms which help compute the decomposition. The work of Harshman (1970) and that
of Leurgans et al. (1993) give algorithms in this case. Anandkumar et al. (2012a) gave a power
iteration type algorithm which is particularly efficient in practice.

Can our methods yield algorithms for the overcomplete case (rank > n)? In the recent work
of Bhaskara et al. (2014), it was shown how some of our tools (such as the Khatri-Rao product)
can be used for decomposition in the overcomplete case, provided we have access to higher order
tensors. This is also in the spirit of the so-called FOOBI algorithm of De Lathauwer et al. (2007),
which looks at fourth order moments, and the work of Goyal et al. (2014).

3. With high probability in a smoothed analysis setting.
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For completeness, in appendix B, we give a simple (and general) SVD based algorithm (Theo-
rem 24) to find low-rank tensor approximation, albeit in time exponential in the rank.4 This can be
viewed as a tensor analog of low-rank approximation, which is very well-studied for matrices.
Informal Theorem. Given a tensor with a bounded, rank R decomposition up to an error ε, we
can find a rank R approximation with error O(ε) in time exp(R2 log(n/ε))poly(n).

1.2. Applications to Latent Variable Models

Kruskal’s uniqueness theorem has found a variety of applications in statistics and other fields. A ro-
bust version seems implicitly required in any application in which tensors are not given exactly. We
will present some applications to learning, and in particular to the question of learning parameters
in latent variable models.

Specifically, we will discuss multi-view models and Hidden Markov Models (HMMs), both
which have been used extensively. Until very recently, the sample complexity of learning the param-
eters was not known in the overcomplete setting (rank > dimension). The recent works of Bhaskara
et al. (2014), Goyal et al. (2014) and Anderson et al. (2013) gave efficient algorithms (which imply
sample complexity bounds) for these and related models in a smoothed analysis framework.

Our work implies polynomial sample complexity (even in the overcomplete case) whenever the
parameters satisfy a certain Kruskal rank condition. This condition seems reasonable in practice
(e.g., it also holds in a smoothed analysis framework). We will formally state the identifiability
results for both models in Section 4. Below, we state the result for multi-view models, which
illustrates the general ‘template’ of our results.

Multi-view models are mixture models with a discrete latent variable h ∈ [R], such that
Pr [h = r] = wr, for some mixture weights wr (that form a probability distribution on [R]). We are
given multiple observations or views x(1), x(2), . . . , x(`) that are conditionally independent given
the latent variable h, with E

[
x(j)|h = r

]
= µ

(j)
r . Let M (j) be the n×R matrix whose columns are

the means {µ(j)r }r∈[R]. The goal is to learn the matrices {M (j)}j∈[`] and the weights {wr}r∈[R].
Multi-view models are very expressive, and capture many well-studied models like Topic Mod-

els, Hidden Markov Models (HMMs), and random graph mixtures (Mossel and Roch (2006); All-
man et al. (2009); Anandkumar et al. (2012c)). The techniques developed for this class have also
been applied to phylogenetic tree models and certain tree mixtures (Chang (1996); Mossel and Roch
(2006); Anandkumar et al. (2012b)).

Results. Suppose the dimension of the observations (n) is δR where δ is a small positive constant
and R is the size of the range of the hidden variable, and hence the rank of the associated tensors.
Then the result (formal version in Section 4) is the following:
Informal Theorem. For a multi-view model with R topics or distributions, such that each of the
parameter matrices M (j) has robust K-rank of at least δR for some constant δ, we can learn these
parameters upto error ε with high probability using polyδ(n,R) samples.

The proofs follow from the fact that polynomially many samples suffice to estimate the `th
moment tensor up to any inverse polynomial accuracy, followed by applying our robust uniqueness
result the corresponding tensor (here ` = d2/δe+ 1).

4. Our goal here is to show polynomial bounds on the sample complexity, thus we do not care about the run time.
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1.3. Overview of Techniques

Robust Uniqueness of Tensor decompositions. Our proof broadly follows the outline of Kruskal’s
original proof (Kruskal (1977)): It proceeds by first establishing a permutation lemma, which gives
sufficient conditions for concluding that the columns of two matrices are permutations of each other
(up to scaling). Given two decompositions [A B C] and [A′ B′ C ′] for the same tensor, it is shown
that A,A′ satisfy the conditions of the lemma, and thus are permutations of each other (so also for
B,C). Finally, it is shown that the three permutations for A,B and C (respectively) are identical.

The main challenge in adapting this proof is proving a robust version of the permutation lemma.
The (robust) permutation lemma needs to establish that for every column of A′, there is some col-
umn of A (close to being) parallel to it. Kruskal’s proof uses downward induction to establish the
following claim: for every set of i ≤ K-rank columns of A′, there are at least i columns of A that
are in the span of the chosen column vectors. The downward induction infers this by considering
the intersection of columns that are close to i+ 1 dimensional spaces.

The natural analogue of this approach would be to consider columns of A which are “ε-close”
to the span of i columns of A′. However, the inductive step involves considering combinations and
intersections of the different spans that arise, and such arguments do not seem very tolerant to noise.
In particular, we lose a factor of τn in each iteration, i.e., if the statement was true for i + 1 with
error εi+1, it will be true for i with error εi = τn · εi+1. Since k steps of downward induction need
to be unrolled, we recover a robust permutation lemma only when the error< 1/(τn)k to start with,
which is exponentially small since k is typically Θ(n).

We overcome this issue by using a careful mix of combinatorial and linear algebra arguments:
instead of keeping track of sets of vectors close to the span of i columns, we maintain an intersection
of certain sets of vectors, and use the observation that they form a sunflower set system to obtain
the desired bound on the size. This allows us to avoid losing any error in the recursion. We describe
this in detail in Section 3.2. To carry forth this argument we crucially rely on the fact that A′ is also
“well-conditioned”, which we need to establish initially (and is interesting in its own right).

Uniqueness for higher order tensors The idea here is to “combine the modes”. Suppose we have
a 4th order tensor [ABCD] =

∑R
i=1Ai ⊗ Bi ⊗ Ci ⊗ Di (and for simplicity suppose each matrix

is n×R). Now suppose we view (Ci ⊗Di) as an n2 dimensional vector Ei, then what can we say
about the robust K-rank of the n2 × R dimensional matrix E (with columns Ei)? This notion is
called the Khatri-Rao Product, and we can show that (robustly)

K-rank(E) ≥ K-rank(C) + K-rank(D)− 1.

While this is tight in the worst case, it can be improved under stronger assumptions – and this
increases the rank R for which we obtain uniqueness. As mentioned earlier, this forms the basis for
the recent work of Bhaskara et al. (2014).

2. Notation and Preliminaries

We start with basic notation on tensors which we will use throughout the paper.
Tensors are higher dimensional arrays. An `th order, or `-dimensional tensor is an element in

Rn1×n2×···×n` , for positive integers ni. The various “dimensions” n1, n2, . . . are referred to as the
modes of the tensor.
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While tensors have classically been defined over complex numbers for certain applications, we
will consider only real tensors here. We now define the rank of a tensor. Firstly, a rank-1 tensor as
a product a(1) ⊗ a(2) ⊗ . . .⊗ a(`), where a(i) is an ni dimensional vector.

Definition 1 (Tensor rank, Rank R decomposition) The rank of a tensor T ∈ Rn1×n2×···×n` is
defined to be the smallest R for which there exist R rank-1 tensors T (i) whose sum is T .

A rank-R decomposition of T is given by a set of matrices U (1), U (2), . . . , U (`) with U (i) of
dimension ni ×R, such that we can write T = [U (1) U (2) . . . U (`)], which is defined by

[U (1) U (2) . . . U (`)] :=
R∑
r=1

U (1)
r ⊗ U (2)

r ⊗ . . .⊗ U (`)
r , where Ar to denotes the rth column of A.

Third order tensors (or 3-tensors) play a central role in understanding properties of tensors in
general (as in many other areas of mathematics, the jump in complexity occurs most dramatically
when we go from two to three dimensions, in this case from matrices to 3-tensors). For 3-tensors, we
often write the decomposition as [AB C], whereA,B,C have dimensions nA, nB, nC respectively.

Definition 2 (ε-close, ρ-bounded) Two tensors T1 and T2 are said to be ε-close if the Frobenius
norm of the difference is small, i.e., ‖T1 − T2‖F ≤ ε. We will sometimes write this as T1 =ε T2.

An n×R matrix A is said to be ρ-bounded if each of the columns has length at most ρ, for some
parameter ρ. A tensor [U (1) U (2) . . . U (`)] is called (ρ1, ρ2, . . . , ρ`)-bounded if the matrix U (i) is
ρi bounded for all i.

Unless mentioned specifically, the errors in the paper will be `2 (or Frobenius norm, which is
the square root of the sum of squares of entries in a matrix/tensor), since they add up conveniently.

We next define the notion of Kruskal rank, and its robust counterpart.

Definition 3 (Kruskal rank, K-rankτ (.)) LetA be an n×R matrix. The K-rank (or Kruskal rank)
of A is the largest k for which every set of k columns of A is linearly independent.

Let τ be a parameter. The τ -robust k-rank is denoted by K-rankτ (A), and is the largest k for
which every n× k sub-matrix A|S of A has σk(A|S) ≥ 1/τ .

Note that we only have a lower bound on the (kth) smallest singular value of A, and not for
example the condition number σmax/σk. This is because we will usually deal with matrices that are
also ρ-bounded, so such a bound will automatically hold, but our definition makes the notation a
little cleaner. Another simple linear algebra definition we use is the following

Definition 4 (ε-close to a space) Let V be a subspace of Rn, and let Π be the projection matrix
onto V . Let u ∈ Rn. We say that u is ε-close to V if ‖u−Πu‖ ≤ ε.

Other notation. For z ∈ Rd, diag(z) is the d× d diagonal matrix with the entries of z occupying
the diagonal. For a vector z ∈ Rd, nz(z) denotes the number of non-zero entries in z. Further,
nzε(z) denotes the number of entries of magnitude ≥ ε. As is standard, we denote by σi(A) the
ith largest singular value of a matrix A. Also, we abuse the notation of ⊗ at times, with u ⊗ v
sometimes referring to a matrix of dimension dim(u)× dim(v), and sometimes a dim(u) · dim(v)
vector. This will always be clear from context. Finally, polyδ(n) refers to any polynomial in the
parameter n, with δ > 0 being treated as a constant.
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Normalization. To avoid complications due to scaling, we will assume that our tensors are scaled
such that all the τA, τB, . . . , are ≥ 1 and ≤ poly(n). So also, our upper bounds on lengths
ρA, ρB, . . . are all assumed to be between 1 and some poly(n).

Error polynomials. We will, in many places, encounter statements such as “ifQ1 ≤ ε, thenQ2 ≤
(3n2γ)·ε”, with polynomials ϑ (in this case 3n2γ) involving the variables n,R, kA, kB, kC , τ, ρ, . . . .
In order to keep track of these, we use the notation ϑ1, ϑ2, . . . . Sometimes, to refer to a polyno-
mial introduced in Lemma 5, for instance, we use ϑ5. Unless specifically mentioned, they will be
polynomials in the parameters mentioned above, so we do not mention them each time.

3. Uniqueness of Tensor Decompositions

First we consider third order tensors and prove our robust uniqueness theorem for 3-tensors (Sec-
tions 3.1 and 3.3). Our proof broadly follows along the lines of Kruskal’s original proof of the
uniqueness theorem Kruskal (1977). The key ingredient, which is a robust version of the so-called
permutation lemma is presented in Section 3.2, since it seems interesting in its own right. Finally we
will see how to reduce the case of higher order tensors, to that of third order tensors (Section 3.4).

3.1. Uniqueness Theorem for Third Order Tensors

Theorem 5 (Unique Decompositions) Suppose a rank-R tensor T = [A B C] is (ρA, ρB, ρC)-
bounded, with K-rankτA(A) = kA,K-rankτB (B) = kB,K-rankτC (C) = kC satisfying kA + kB +
kC ≥ 2R+ 2. Then for every 0 < ε′ < 1, there exists

ε = ε′/
(
R6ϑ5(τA, ρA, ρ

′
A, nA)ϑ5(τB, ρB, ρ

′
B, nB)ϑ5(τC , ρC , ρ

′
C , nC)

)
,

for some polynomial ϑ5 such that for any other (ρ′A, ρ
′
B, ρ

′
C)-bounded decomposition [A′ B′ C ′]

of rank R that is ε-close to [A B C], there exists an (R × R) permutation matrix Π and diagonal
matrices ΛA,ΛB,ΛC such that

‖ΛAΛBΛC − I‖F ≤ ε′ and
∥∥A′ −AΠΛA

∥∥
F
≤ ε′ (similarly for B and C) (4)

Eq. (4) says thatA,B,C are scaled permutations ofA′, B′, C ′ respectively, and that the scalings
in each term multiply to one (approximately). The proof broadly has two parts. First, we prove that
if [A,B,C] ≈ [A′, B′, C ′], thenA is essentially a permutation ofA′,B ofB′, and C of C ′. Second,
we prove that the permutations in the (three) different “modes” (or dimensions) are indeed equal.
Let us begin by describing a lemma which is key to the first step.

The Permutation Lemma This is the core of Kruskal’s argument for the uniqueness of tensor
decompositions. Given two matrices X and Y , how does one conclude that the columns are per-
mutations of each other? Kruskal gives a very clever sufficient condition, involving looking at test
vectors w, and considering the number of non-zero entries of wTX and wTY . The intuition is that
if X and Y are indeed permutations, these numbers are precisely equal for all w.

More precisely, suppose X,Y are n × R matrices of rank k. Let nz(x) denote the number of
non-zero entries in a vector x. The lemma then states that if for all w, we have

nz(wTX) ≤ R− k + 1 =⇒ nz(wTY ) ≤ nz(wTX),

then the matricesX and Y have columns which are permutations of each other up to a scaling. That
is, there exists an R×R permutation matrix Π, and a diagonal matrix Λ s.t. Y = XΠΛ. We prove
a robust version of this lemma, stated as follows (recall the definition of nzε(.), Section 2)
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Lemma 6 (Robust permutation lemma) Suppose X,Y are ρ-bounded n×R matrices such that
K-rankτ (X) and K-rankτ (Y ) are ≥ k, for some integer k ≥ 2. Further, suppose that for ε < 1/ϑ6,
the matrices satisfy:

∀w s.t. nz(wTX) ≤ R− k + 1, we have nzε(wTY ) ≤ nz(wTX), (5)

then there exists an R × R permutation matrix Π, and a diagonal matrix Λ s.t. X and Y satisfy
‖X − YΠΛ‖F < ϑ6 · ε. In fact, we can pick ϑ6 := (nR2)ϑ12.

Remark 7 To see why this condition involving nzε(·) helps, let us imagine that nzε(wTY ) ≤
nz(wTX) for all w. Then considering a random w easily shows that X and Y must have columns
that are permutations of each other up to scaling. However, as we will soon see in Lemma 8, we
only have this condition for those w with nz(wTX) ≥ R− k + 1.

A key component in the proofs that follow is to view the three-dimensional tensor [A B C] as
a bunch of matrix slices, and argue about the ranks of weighted combinations of these slices. One
observation, which follows from the Cauchy-Schwarz inequality, is the following: if [A B C] =ε

[A′ B′ C ′], then by taking a combination of “matrix” slices along the third mode (with weights
given by x ∈ RnC ,

∀x ∈ RnC ,
∥∥A diag(xTC) BT −A′ diag(xTC ′) (B′)T

∥∥2
F
≤ ε2 ‖x‖22 . (6)

We now state the key technical lemma which allows us to verify that the hypotheses of Lemma 6
hold. It says for any kC − 1 vectors of C ′ there are at least as many columns of C which are close
to the span of the chosen columns from C ′.

Lemma 8 SupposeA,B,C,A′, B′, C ′ satisfy the conditions of Theorem 5, and suppose [AB C] =ε

[A′ B′ C ′]. Then for any unit vector x, we have

∀ε′, nzε′(x
TC ′) ≤ R− kC + 1 =⇒ nzε′′(x

TC) ≤ nzε′(xTC ′)

for ε′′ = ϑ8 · (ε+ ε′), where ϑ8 := 4R3(τAτBτC)2ρAρBρC(ρ′Aρ
′
Bρ
′
C)2.

Remark 9 This lemma, together with its corollary Lemma 10 will imply the conditions of the per-
mutation lemma. While the proof of the robust permutation lemma (Lemma 6) will directly apply
this Lemma with ε′ = 0, we will need the ε′ > 0 case for establishing Lemma 10 that lets us con-
clude that K-rankτϑ(C ′) ≥ K-rankτ (C) for some error polynomial ϑ. This is essential in our proof
of the robust permutation lemma, and it also has other implications, as we will see.

The proof of the lemma is quite involved and tricky – we defer the proof to the appendix D.1). The
next lemma uses the above to conclude that K-rankϑτ (C ′) ≥ K-rankτ (C), for some polynomial ϑ.
i.e. if T has a well-conditioned decomposition which satisfies the Kruskal conditions, then any other
bounded decomposition that approximates T sufficiently well should also be well-conditioned.

Lemma 10 Let A,B,C,A′, B′, C ′ be as in the setting of Theorem 5. Suppose [A B C] =ε

[A′ B′ C ′], with ε < 1/ϑ10, where ϑ10 = RτAτBτCϑ8 = 4R4τ3Aτ
3
Bτ

3
CρAρBρC(ρ′Aρ

′
Bρ
′
C)2. Then

A′, B′, C ′ have K-rankτ ′ to be at least kA, kB, kC respectively, where τ ′ := ϑ10.
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Proof We want to show that every nC × kC sub-matrix of C ′ has min. singular value σkC ≥ δ =
1/τ ′C . For contradiction, let C ′S be a nC × kC sub-matrix of C ′ and unit vector z ∈ RnC such that∥∥zTC ′S∥∥2 < δ. Then, it is easy to see (from Lemma 8) that∑

i∈S

〈
z, C ′i

〉2
< δ2 =⇒ nzδ(z

TC ′) ≤ nC − kC =⇒ nzε1(zTC) ≤ nC − kC

for ε1 = ϑ8(ε + δ). Now, picking the sub-matrix of C given by the these kC co-ordinates of zTC
that are small, we can contradict K-rank1/(Rε1)(C) ≥ kC .

Let us check that the conditions of the robust permutation lemma hold with C ′, C taking the
roles of X,Y in Lemma 6, and k = kC , and τ = ϑ10 · τC . From Lemma 10, it follows that
K-rankτ (C) and K-rankτ (C ′) are both ≥ k, and setting ε′ = 0 in Lemma 8, the other condition of
Lemma 6 holds. Now, we proceed to prove the robust permutation lemma.

3.2. A Robust Permutation Lemma

Let us now prove the robust version of the permutation lemma (Lemma 6). Recall that K-rankτ (X)
and K-rankτ (Y ) are ≥ k, and that the matrices X,Y are n×R.

Kruskal’s proof of the permutation lemma proceeds by induction. Roughly, he considers the
span of some set of i columns of X (for i < k), and proves that there exist at least i columns of
Y which lie in this span. The hypothesis of his lemma implies this for i = k − 1, and the proof
proceeds by downward induction. Note that i = 1 implies for every column of X , there is at least
one column of Y in its span. Since no two columns of X are parallel, and the number of columns
is equal in X,Y , there must be precisely one column, and this completes the proof.

The natural way to mimic this proof, as mentioned in the introduction, accumulates errors in
each inductive step. Thus the trick is to define the sets of columns differently. We start by introduc-
ing some notation. If V is a matrix and S a subset of the columns, denote by span(VS) the span
of the columns of V indexed by S. Now for S ⊆ [R] of size (k − 1), we define TS to be the set
of indices corresponding to columns of Y which are ε1-close to span(XS), where ε1 := (nR)ε,
and ε is as defined in the statement of Lemma 6. For smaller sets S (and this definition is crucial to
avoiding an accumulation of errors), we define: TS :=

⋂
|S′|=(k−1),S′⊃S

TS′ .

The main inductive claim will be that for every S ⊆ [R] of size ≤ (k − 1), we have |TS | = |S|.
Suppose we have this claim for a singleton, say S = {i}. Now if y is a column of Y which is in
span(XS′) for all (k − 1) element subsets S′ (of [R]) which contain i, by Lemma 12 which we
will prove (applied with A = {i} and B being any set of size (k − 1) not containing i), we will
obtain that y is ε1 · ϑ12-close to span(X{i}), completing the proof of the permutation lemma. Thus
it remains to show the inductive claim. The base case is the following, proved in Appendix C.1

Lemma 11 In the above notation, for any S ⊆ [R] of size k − 1, |TS | is precisely k − 1.

The next two lemmas are crucial to the analysis. The first is our main linear algebraic lemma,
and the second is a counting argument which lies at the heart of the proof. It is stated in the language
of sunflower set systems.

9
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Lemma 12 Let X be a matrix as above, with K-rankτ (X) ≥ k. Let A,B ⊆ [R], with |B| = q and
A ∩ B = ∅. For 1 ≤ i ≤ q, define Ti to be the union of A with all elements of B except the ith
one (when indexed in some way). Suppose further that |A|+ |B| ≤ k. Then if y ∈ Rn is ε-close to
span(XTi) for each i, it is in fact ϑ12 · ε close span(XA), where ϑ12 := 4nτρ.

Definition 13 (Sunflower set system) A set system F is said to be a “sunflower on [R] with core
T ∗” if F ⊆ 2[R], and for any F1, F2 ∈ F , we have F1 ∩ F2 ⊆ T ∗.

Lemma 14 Let {T1, T2, . . . , Tq}, q ≥ 2, be a sunflower on [R] with core T ∗, and suppose |T1| +
|T2| + · · · + |Tq| ≥ R + (q − 1)θ, for some θ. Then we have |T ∗| ≥ θ, and furthermore, equality
occurs iff T ∗ ⊆ Ti for all 1 ≤ i ≤ q.

The proofs of the lemmas are deferred to Appendix C.1. With these lemmas in place, we can prove
the main inductive claim.
Proof [Proof of Lemma 6.] We need to prove the following inductive claim:

Claim. For every S ⊆ [R] of size ≤ (k − 1), we have |TS | = |S|.

We show this by downward induction on |S|, for which the base case |S| = k − 1 is proved in
Lemma 11. Now consider some S of size |S| ≤ k − 2. W.l.o.g., we may suppose it is {R − |S| +
1, . . . , R}. Let Wi denote TS∪{i}, for 1 ≤ i ≤ R − |S|, and let us write q = R − |S|. By the
inductive hypothesis, |Wi| ≥ |S|+ 1 for all i.

Let us define T ∗ to be the set of indices of the columns of Y which are ε1 · ϑ12-close to
span(XS). We claim that Wi ∩ Wj ⊆ T ∗ for any i 6= j /∈ S. This can be seen as follows:
first note that Wi ∩Wj is contained in the intersection of TS′ , where the intersection is over S′ ⊃ S
such that |S′| = k− 1, and S′ contains either i or j. Now consider any k− |S| element set B which
contains both i, j (note |S| ≤ k − 2). The intersection above includes sets which contain S along
with all of B except the rth element (indexed arbitrarily), for each r. Thus by Lemma 12, we have
that Wi ∩Wj ⊆ T ∗.

Thus the sets {W1, . . . ,Wq} form a sunflower family with core T ∗. Further, we can check that
the condition of Lemma 14 holds with θ = |S|: since |Wj | ≥ |S| + 1 by the inductive hypothesis,
it suffices to verify that

R+ (q − 1)|S| ≤ q(|S|+ 1), which is true since R = q + |S|.

Thus we must have |T ∗| ≥ |S|.
But now, note that T ∗ is defined as the columns of Y which are ε1 ·ϑ12-close to span(XS), and

thus |T ∗| ≤ |S| (by Lemma 29), and thus we have |T ∗| = |S|. Now we have equality in Lemma 14,
and so the ‘furthermore’ part of the lemma implies that T ∗ ⊆Wi for all i.

Thus we have TS =
⋂
iWi = T ∗ (the first equality follows from the definition of TS), thus

completing the proof of the claim, by induction.
Once we have the claim, the lemma follows by applying to singleton sets.

3.3. Wrapping up the proof

We are now ready to complete the robust Kruskal’s theorem. From what we have seen (and the
permutation lemma), we have that A is a permutation of A′, B of B′ and C of C ′ (with scaling).

10
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So we only need to prove that these three permutations are in fact identical, and that the scalings
multiply to the identity (up to small error). Here we can imitate Kruskal’s argument, carefully
making each step robust. We do this in appendix D.3.

3.4. Uniqueness Theorem for Higher Order Tensors

We show the uniqueness theorem for higher order tensors by a reduction to third order tensors. This
is along the lines of Sidiropoulos and Bro (2000). This reduction will proceed inductively. We will
convert an order ` tensor to a order (` − 1) tensor by “combining” two of the modes of the tensor.
This is done by using the Khatri-Rao product:

Definition 15 (Khatri-Rao product) Given two matricesA (size n1×R) andB (size n2×R), the
(n1n2) × R matrix M = A � B constructed with the ith column equal to Mi = Ai ⊗ Bi (viewed
as a vector) is called the Khatri-Rao product.

The following lemma (proof in the appendix C.3) relates the robust K-rank of A � B with the
robust K-rank of A and B. This is the main tool in the proof of uniqueness in the general case, as
mentioned in the outline.

Lemma 16 (K-rank of the Khatri-Rao product) For two matrices A,B with R columns with
robust K-rank kA = K-rankτ1(A) and kB = K-rankτ2(B), the K-rank of the Khatri-Rao product
M = A�B is super-additive:

K-rank(τ1τ2
√
kA+kB)(M) ≥ min{k1 + k2 − 1, R}.

Given this lemma, the proof of the uniqueness theorem goes as follows: suppose we have a
decomposition [A1, A2, . . . , A`] which satisfies the Kruskal rank condition

K-rankτ (A1) + K-rankτ (A2) + · · ·+ K-rankτ (A`) ≥ 2R+ `− 1,

then we can first show the uniqueness of the tensor with decomposition [A1 � A2, A3, . . . , A`] by
induction (the inductive condition will hold because of Lemma 16), and then observe that A1 �
A2 uniquely identifies A1 and A2. The last observation is straightforward, but a robust version
introduces additional loss in the parameters.

The full details (and the formal statements) are presented in Section A.

4. Polynomial Identifiability of Latent Variable and Mixture Models

We now show how our robust uniqueness theorem can be used for learning latent variable models
with polynomial sample complexity.

Definition 17 (Polynomial Identifiability) An instance of a hidden variable model of size m with
hidden variables set Υ is said to be polynomial identifiable if there is an algorithm that given any
η > 0, uses only N ≤ poly(m, 1/η) samples and finds with probability 1 − o(1) estimates of the
hidden variables Υ′ such that ‖Υ′ −Υ‖∞ < η.

11
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Z1 Zq+1 Z2q Z2q+1

X1 X2 Xq+1 X2q X2q+1

Z2

Figure 1: An HMM with 2q + 1 time steps.

Zq+1

(Xq, Xq−1, . . . , X1) (Xq+2, . . . , X2q+1)Xq+1

Figure 2: Embedding the HMM into the Multi-
view model

We illustrate two results on polynomial identifiability implied by the robust Kruskal theorem.
The first will be on Multi-view mixture models, and the second on Hidden Markov Models (HMMs).

We start by recalling the multi-view model defined in Section 1.2 (see F for a formal set up). To
apply Kruskal’s theorem, we need to estimate (accurately enough) a tensor that encodes the parame-
ters of the model. This is done by the following lemma (proof is easy by conditional independence).

Lemma 18 (Allman et al. (2009); Anandkumar et al. (2012c)) In the notation established above
for multi-view models, ∀` ∈ N the `th moment tensor

E
[
x(1) ⊗ . . . x(j) ⊗ . . . x(`)

]
=
∑
r∈[R]

wrµ
(1)
r ⊗ µ(2)r · · · ⊗ µ(j)r ⊗ · · · ⊗ µ(`)r .

Since we can estimate the LHS up to any inverse polynomial accuracy using samples, using
the robust Kruskal theorem, we immediately obtain the informal theorem on multi-view models
(Section 1.2). We state and prove it formally in Appendix F, Theorem 37. We now move to the
application of our results to Hidden Markov Models.

4.1. Hidden Markov Models

Hidden Markov Models are extensively used in speech recognition, image classification, bioinfor-
matics etc. We follow the same setting as in Allman et al. (2009): there is a hidden state sequence
Z1, Z2, . . . , Zm taking values in [R], that forms a stationary Markov chain Z1 → Z2 → · · · → Zm
with transition matrix P and initial distribution w = {wr}r∈[R] (assumed to be the stationary distri-
bution). The observation Xt is from the set of discrete events5 {1, 2, . . . , n} and it is represented by
an indicator vector in x(t) ∈ Rn. Given the state Zt at time t, Xt (and hence x(t)) is conditionally
independent of all other observations and states. The matrix M (of size n×R) represents the prob-
ability distribution for the observations: the rth column Mr represents the probability distribution
conditioned on the state Zt = r i.e.

∀r ∈ [R],∀j ∈ [n], Pr [Xj = i|Zj = r] = Mir.

The HMM model described above is shown in Fig. 1.
Our result here states that we can recover the parameters of an HMM using polynomial many

samples (see Corollary 38 for a formal statement).

5. In general, we can also allow xt to be certain continuous distributions like multivariate gaussians.
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Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden markov mod-
els. The Annals of Applied Probability, pages 583–614, 2006.

Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions
of the Royal Society of London. A, 185:71–110, 1894.

John A Rhodes. A concise proof of kruskal’s theorem on tensor decomposition. Linear Algebra
and Its Applications, 432(7):1818–1824, 2010.

John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. Bulletin of
mathematical biology, 74(1):212–231, 2012.

Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition of
n-way arrays. Journal of chemometrics, 14(3):229–239, 2000.

Alwin Stegeman and Nicholas D Sidiropoulos. On kruskal’s uniqueness condition for the cande-
comp/parafac decomposition. Linear Algebra and its applications, 420(2):540–552, 2007.

GM Tallis and P Chesson. Identifiability of mixtures. J. Austral. Math. Soc. Ser. A, 32(3):339–348,
1982.

Henry Teicher. Identifiability of mixtures. The annals of Mathematical statistics, 32(1):244–248,
1961.

14

http://books.google.com.au/books?id=JTjv3DTvxZIC
http://books.google.com.au/books?id=JTjv3DTvxZIC


UNIQUENESS OF TENSOR DECOMPOSITIONS

Henry Teicher. Identifiability of mixtures of product measures. The Annals of Mathematical Statis-
tics, 38(4):1300–1302, 1967.

Appendix A. Uniqueness Theorem for Higher Order Tensors

We show the uniqueness theorem for higher order tensors by a reduction to third order tensors as
in Sidiropoulos and Bro (2000). This reduction will proceed inductively, i.e., the robust uniqueness
of order ` tensors is deduced from that of order (` − 1) tensors. We will convert an order ` tensor
to a order (` − 1) tensor by combining two of the components together (say last two) as a n`−1n`
dimensional vector (U (`−1) ⊗ U (`) say). This is precisely captured by the Khatri-Rao product of
two matrices:

Definition 19 (Khatri-Rao product) Given two matricesA (size n1×R) andB (size n2×R), the
(n1n2) × R matrix M = A � B constructed with the ith column equal to Mi = Ai ⊗ Bi (viewed
as a vector) is the Khatri-Rao product.

The following Lemma 20 (proof in the appendix C.3) relates the robust K-rank of A � B with
the robust K-rank of A and B. This turns out to be crucial to the proof of uniqueness in the general
case, which we present right after.

Lemma 20 (K-rank of the Khatri-Rao product) For two matrices A,B with R columns with
robust K-rank kA = K-rankτ1(A) and kB = K-rankτ2(B), the K-rank of the Khatri-Rao product
M = A�B is super-additive:

K-rank(τ1τ2
√
kA+kB)(M) ≥ min{k1 + k2 − 1, R}.

Theorem 21 (Uniqueness of Decompositions for Higher Orders) Suppose we are given an or-
der ` tensor (with ` ≤ R), T = [U (1) U (2) . . . U (`)], where ∀j ∈ [`] the nj-by-R matrix U (j) is
ρj-bounded, with K-rankτj (U

(j)) = kj ≥ 2 satisfying

∑̀
j=1

kj ≥ 2R+ `− 1.

Then for every 0 < ε′ < 1, there exists ε =
(
ϑ
(`)
21

(
ε′

R

))
·
(∏

j∈[`] ϑ21(τj , ρj , ρ
′
j , nj)

)−1
such

that, for any other (ρ′1, ρ
′
2, . . . , ρ

′
`)-bounded decomposition [V (1) V (2) . . . V (`)] which is ε-close to

T , there exists an R×R permutation matrix Π and diagonal matrices {Λ(j)}j∈[`] such that∥∥∥∥∥∥
∏
j∈[`]

Λ(j) − I

∥∥∥∥∥∥
F

≤ ε′ and ∀j ∈ [`],
∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
≤ ε′ (7)

Setting ϑ(`)21 (x) = x2
`

and ϑ21(τj , ρj , ρ′j , nj) = (τjρjρ
′
jnj)

O(1) suffice for the theorem.
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Proof Outline. The proof proceeds by induction on `. The base case is ` = 3, and for higher `, the
idea is to reduce to the case of ` − 1 by taking the Khatri-Rao product of the vectors in two of the
dimensions. That is, if [U (1) U (2) . . . U (`)] and [V (1) V (2) . . . V (`)] are close, we conclude that
[U (1) U (2) . . . (U (`−1)�U (`))] and [V (1) V (2) . . . (V (`−1)�V (`))] are close, and use the inductive
hypothesis, which holds because of Lemma 20 we mentioned above. We then need an additional
step to conclude that if A � B and C � D are close, then so are A,C and B,D up to some loss
(Lemma 31 – this is where we have a square root loss, which is why we have a bad dependence on
the ε′ in the statement). We now formalize this outline.
Proof [Proof of Theorem 21] We will prove by induction on `. The base case of ` = 3 is established
by Theorem 5. Thus consider some ` ≥ 4, and suppose the theorem is true for `− 1. Furthermore,
suppose the parameters ε and ε′ in the statement of Theorem 21 for (` − 1) be ε`−1 and ε′`−1. We
will use these to define ε` and ε′` which correspond to parameters in the statement for `.

Now consider U (i) and V (i) as in the statement of the theorem. Let us assume without loss of
generality that k1 ≥ k2 ≥ · · · ≥ k`. Also let K =

∑
j∈[`] kj . We will now combine the last two

components (`− 1) and ` by the Khatri-Rao product.

Ũ = U (`−1) � U (`) and Ṽ = V (`−1) � V (`).

Since we know that the two representations are close in Frobenius norm, we have∥∥∥∥∥∥
∑
r∈[R]

U (1)
r ⊗ U (2)

r ⊗ · · · ⊗ U (`−2)
r ⊗ Ũr −

∑
r∈[R]

V (1)
r ⊗ V (2)

r ⊗ · · · ⊗ V (`−2)
r ⊗ Ṽr

∥∥∥∥∥∥
F

< ε` (8)

Let us first check that the conditions for (` − 1)-order tensors hold for τ̃ = (τ`−1τ`
√
K) ≤

(τ`−1τ`
√

3R). From Lemma 20, K-rankτ̃ (Ũ) ≥ min{k` + k`−1 − 1, R}.
Suppose first that k` + k`−1 ≤ R+ 1, then∑

j∈[`−1]

k′j ≥
∑

j∈[`−2]

kj + k`−1 + k` − 1 ≥ 2R+ (`− 1)− 1.

Otherwise, if k` + k`−1 > R + 1, then k`−3 + k`−2 ≥ R + 2 (due to our ordering, and ` ≥ 4).
Hence ∑

j∈[`−1]

k′j ≥ (`− 4) + (R+ 2) + (R+ 1) ≥ 2R+ `− 1

We now apply the inductive hypothesis on this (` − 1)th order tensor. Note that ρ̃ ≤ (ρ`−1ρ`),
ρ̃′ ≤ (ρ′`−1ρ

′
`), τ̃ ≤

(
2τ`−1τ`

√
R
)

and ñ = n`−1n`.

We will in fact apply it with ε′`−1 < min{(R · τ`−1τ` · ρ′`−1ρ′`)−2, (ε′`)
2/R}, so that we can

later use Lemma 31. To ensure these, we will set

ε−1` = ϑ`21

(
R

ε′`

)
·

 ∏
j∈[`−2]

ϑ21(τj , ρj , ρ
′
j , nj)

ϑ21(τ̃ , ρ̃, ρ̃′, ñ),

where ϑ`21 = xO(2`). From the values of τ̃ , ρ̃, ñ above, this can easily be seen to be of the form in
the statement of the theorem.
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The inductive hypothesis implies that there is a permutation matrix Π and scalar matrices
{Λ(1),Λ(2), . . . ,Λ(`−2),Λ′}, such that

∥∥Λ(1)Λ(2) . . .Λ(`−2)Λ′ − I
∥∥ < ε′`−1 and

∀j ∈ [`− 2]
∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
< ε′`−1∥∥∥Ṽ − ŨΠΛ′

∥∥∥
F
< ε′`−1

Since ε′`−1 < ε′`, equation (7) is satisfied for j ∈ [`−2]. We thus need to show that
∥∥V (j) − U (j)ΠΛ(j)

∥∥
F
<

ε′` for j = `− 1 and `. To do this, we appeal to Lemma 31, to say that if the Frobenius norm of the
difference of two tensor products u⊗ v and u′ ⊗ v′ is small, then the component vectors are nearly
parallel.

Let us first set the parameters for applying Lemma 31. Each column vector is of length at most
Lmax ≤ ρ̃′ ≤ (ρ′`−1ρ

′
`) and length at least Lmin ≥ 1/τ̃ ≥ (2τ`−1τ`

√
R). Hence, because of our

choice of ε′`−1 �
(

4
√
R(τ`−1τ`)(ρ

′
`−1ρ

′
`)
)−1

earlier, the conditions of Lemma 31 are satisfied

with δ ≤ ε′`. Let δr =
∥∥∥Ṽr − Ũπ(r)Λ′(r)∥∥∥

2
.

Now applying Lemma 31 with δ = δr, to column r, we see that there are scalars αr(`− 1) and
αr(`) such that

|1− αr(`− 1)αr(`)| <
ε′`−1
L2
min

≤ ε′`.

By setting for all r ∈ [R], Λ(`−1)(r) = α(` − 1)r and Λ(`)(r) = α(2)Λ′(r), we see that the first
part of (7) is satisfied. Finally, Lemma 31 shows that

∀j ∈ {`− 1, `}
∥∥∥V (j)

r − U (j)
π(r)Λ

(j)(r)
∥∥∥
2
<
√
δr , ∀r ∈ [R]∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
< R1/4

√
ε′`−1 ( by Cauchy-Schwartz inequality).

< ε′`

This completes the proof of the theorem.

We show a similar result for symmetric tensors, which shows robust uniqueness upto permuta-
tions (and no scaling) which will be useful in applications to mixture models (Section 4).

Corollary 22 (Unique Symmetric Decompositions) For every 0 < η < 1, τ, ρ, ρ′ > 0 and `, R ∈
N, ∃ε` = ϑ

(`)
22 ( 1η , R, n, τ, ρ, ρ

′) such that, for any `-order symmetric tensor (with ` ≤ R)

T =
∑
r∈[R]

⊗̀
j=1

Ur

where the matrix U is ρ-bounded with K-rankτ (U) = k ≥ 2R−1
` + 1, and for any other ρ′ bounded,

symmetric, rank-R decomposition of T which is ε-close, i.e.,∥∥∥∥∥∥
∑
r∈[R]

⊗̀
j=1

Vr −
∑
r∈[R]

⊗̀
j=1

Ur

∥∥∥∥∥∥
F

≤ ε

17
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there exists an R×R permutation matrix Π such that

‖V − UΠ‖F ≤ η (9)

The mild intricacy here is that applying Theorem 21 gives a bunch of scalar matrices whose
product is close to the identity, while we want each of the matrices to be so. This turns out to be
easy to argue – see Section C.4.

Appendix B. Computing Tensor Decompositions

For matrices, the theory of low rank approximation is well understood, and they are captured using
singular values. In contrast, the tensor analog of the problem is in general ill-posed: for instance,
there exist rank-3 tensors with arbitrarily good rank 2 approximations Landsberg (2012). For in-
stance if u, v are orthogonal vectors, we have

u⊗ v ⊗ v + v ⊗ u⊗ v + v ⊗ v ⊗ u =
1

ε

[
(v + εu)⊗ (v + εu)⊗ (v + εu)− v ⊗ v ⊗ v

]
+N ,

where ‖N‖F ≤ O(ε), while it is known that the LHS has rank 3. However note that the rank-
2 representation with error ε uses vectors of length 1/ε, and such cancellations, in a sense are
responsible for the ill-posedness.

Hence in order to make the problem well-posed, we will impose a boundedness assumption.

Definition 23 (ρ-bounded Low-rank Approximation) Suppose we are given a parameter R and
an m× n× p tensor T which can be written as

T =

R∑
i=1

ai ⊗ bi ⊗ ci +N , (10)

where ai ∈ Rm, bi ∈ Rn, ci ∈ Rp satisfy max{‖ai‖2 , ‖bi‖2 , ‖ci‖2} ≤ ρ, and N is a noise tensor
which satisfies ‖N‖F ≤ ε, for some small enough ε. The ρ-bounded low-rank decomposition
problem asks to recover a good low rank approximation, i.e.,

T =
R∑
i=1

a′i ⊗ b′i ⊗ c′i +N ′,

such that a′i, b
′
i, c
′
i are vectors with norm at most ρ, and ‖N ′‖F ≤ O(1) · ε.

We note that if the decomposition into [A B C] above satisfies the conditions of Theorem 5,
then solving the ρ-bounded low-rank approximation problem would allow us to recover A,B,C up
to a small error. The algorithmic result we prove is the following.

Theorem 24 The ρ-bounded low-rank approximation problem can be solved in time poly(n) ·
exp(R2 log(Rρ/ε)).

In fact, the O(1) term in the error bound N ′ ≤ O(1) · ε will just be 5. Our algorithm is extremely
simple conceptually: we identify three R-dimensional spaces by computing appropriate SVDs, and
prove that for the purpose of obtaining an approximation with O(ε) error, it suffices to look for
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ai, bi, ci in these spaces. We then find the approximate decomposition by a brute force search using
an epsilon-net. Note that the algorithm has a polynomial running time for constant R, which is
typically when the low rank approximation problem is interesting.
Proof In what follows, let MA denote the m × np matrix whose columns are the so-called j, kth
modes of the tensor T , i.e., the m dimensional vector of Tijk values obtained by fixing j, k and
varying i. Similarly, we define MB (n×mp) and MC (p×mn). Also, we denote by A the m×R
matrix with columns being ai. Similarly define B (n×R), C (p×R).

The outline of the proof is as follows: we first observe that the matrices MA,MB,MC are all
approximately rank R. We then let VA, VB and VC be the span of the top R singular vectors of
MA,MB and MC respectively, and show that it suffices to search for ai, bi, and ci in these spans.
We note that we do not (and in fact cannot, as simple examples show) obtain the true span of the
ai, bi and ci’s in general. Our proof carefully gets around this point. We then construct an ε-net for
VA, VB, VC , and try out all possibleR-tuples. This gives the roughly exp(R2) running time claimed
in the Theorem.

We now make formal claims following the outline above.

Claim 25 Let VA be the span of the top R singular vectors of MA, and let ΠA be the projection
matrix onto VA (i.e., ΠAv is the projection of v ∈ Rn onto VA). Then we have

‖MA −ΠAMA‖F ≤ ε

Proof Because the top R singular vectors give the best possible rank-R approximation of a matrix
for every R, for any R-dimensional subspace S, if ΠS is the projection matrix onto S, we have

‖MA −ΠAMA‖F ≤ ‖MA −ΠSMA‖F

Picking S to be the span of the vectors {a1, . . . , aR}, we obtain

‖MA −ΠSMA‖F ≤ ‖N‖F ≤ ε.

The first inequality above is because the j, kth mode of the tensor
∑

i ai ⊗ bi ⊗ ci is a vector in
the span of {a1, . . . , aR}, in particular, it is equal to

∑
i bi(j)ci(k)ai, where bi(j) denotes the jth

coordinate of bi.
This completes the proof.

Next, we will show that looking for ai, bi, ci in the spaces VA, VB, VC is sufficient. The natural
choices are ΠAai,ΠBbi,ΠCci, and we show that this choice in fact gives a good approximation.
For convenience let ãi := ΠAai, and a⊥i := ai − ãi.

Claim 26 For T, VA, ãi, . . . as defined above, we have∥∥∥∥∥T −N −∑
i

ãi ⊗ b̃i ⊗ c̃i
∥∥∥∥∥
F

≤ 3ε.
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Proof The proof is by a hybrid argument. We write

T −N −
∑
i

ãi ⊗ b̃i ⊗ c̃i =
(∑

i

ai ⊗ bi ⊗ ci − ãi ⊗ bi ⊗ ci
)

+
(∑

i

ãi ⊗ bi ⊗ ci − ãi ⊗ b̃i ⊗ ci
)

+
(∑

i

ãi ⊗ b̃i ⊗ ci − ãi ⊗ b̃i ⊗ c̃i
)
.

We now bound each of the terms in the parentheses, and then appeal to triangle inequality (for
the Frobenius norm). Now, the first term is easy:∥∥∥∥∥∑

i

ai ⊗ bi ⊗ ci − ãi ⊗ bi ⊗ ci
∥∥∥∥∥
F

= ‖MA −ΠAMA‖F ≤ ε.

One way to bound the second term is as follows. Note that:∑
i

ai⊗bi⊗ci−ai⊗ b̃i⊗ci =
(∑

i

ãi⊗bi⊗ci− ãi⊗ b̃i⊗ci
)

+
(∑

i

a⊥i ⊗bi⊗ci−a⊥i ⊗ b̃i⊗ci
)
.

Now let us denote the two terms in the parenthesis on the RHS by G,H – these are tensors which
we view as mnp dimensional vectors. We have ‖G+H‖2 ≤ ε, because the Frobenius norm of the
LHS is precisely ‖MB −ΠBMB‖F ≤ ε. Furthermore, 〈G,H〉 = 0, because 〈ãi, a⊥j 〉 = 0 for any
i, j (one vector lies in the span VA and the other orthogonal to it). Thus we have ‖G‖2 ≤ ε (since
in this case ‖G+H‖22 = ‖G‖22 + ‖H‖22).

A very similar proof lets us conclude that the Frobenius norm of the third term is also ≤ ε. This
completes the proof of the claim, by our earlier observation.

The claim above shows that there exist vectors ãi, b̃i, c̃i of length at most ρ in VA, VB, VC resp.,
which give a rank-R approximation with error at most 4ε. Now, we form an ε/(Rρ2)-net over the
ball of radius ρ in each of the spaces VA, VB, VC . Since these spaces have dimension R, the nets
have size (O(Rρ2)

ε

)R
≤ exp(O(R) log(Rρ/ε)).

Thus let us try all possible candidates for ãi, b̃i, c̃i from these nets. Suppose we have âi, b̂i, ĉi
being vectors which are ε/(6Rρ2)-close to ãi, b̃i, c̃i respectively, it is easy to see that∥∥∥∥∥∑

i

ãi ⊗ b̃i ⊗ c̃i − âi ⊗ b̂i ⊗ ĉi
∥∥∥∥∥
F

≤
∑
i

∥∥∥ãi ⊗ b̃i ⊗ c̃i − âi ⊗ b̂i ⊗ ĉi∥∥∥
F

Now by a hybrid argument exactly as above, and using the fact that all the vectors involved are ≤ ρ
in length, we obtain that the LHS above is at most ε.

Thus the algorithm finds vectors such that the error is at most 5ε. The running time depends on
the time taken to try all possible candidates for 3R vectors, and evaluating the tensor for each. Thus
it is poly(m,n, p) · exp(O(R2) log(Rρ/ε)).

This argument generalizes in an obvious way to order ` tensors, and gives the following. We
omit the proof.
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Theorem 27 There is an algorithm, that when given an order ` tensor of size n with a rank R
approximation of error ε (in ‖·‖F ), finds a rank-R approximation of error O(`ε) in time poly(n) ·
exp(O(`R2) log(`Rρ/ε)).

B.1. Removing the ρ-boundedness Assumption

The assumption that there exists a low-rank decomposition which is ρ-bounded seems appropriate
in many settings, but it is natural to ask if it can be removed. Note that the Claim 26 still holds,
i.e., the spaces VA, VB, VC as defined earlier still contain vectors which give a good approximation.
However, we cannot use the same searching algorithm, since we do not have a bound on the lengths
of the vectors we should search for.

Another way to look at the above is as follows: let us consider some orthonormal basis for
each of VA, VB, VC (call them {vjA}Rj=1, etc), and write our tensor in this basis, plus some noise.
Formally, we write ei of the standard basis as a combination of the vectors vjA, plus noise, then write
out ei ⊗ ej ⊗ ek as a combination of vj1A ⊗ v

j2
B ⊗ v

j3
C , plus noise. This transforms the original low-

rank approximation problem to one for an R×R×R tensor, and we need to find a decomposition
with ãi, b̃i, c̃i being R dimensional vectors. However our main problem persists – we do not know
a bound on the vectors in the decomposition.

We thank Ravi Kannan for suggesting the following to get around this issue: the key is to simply
view this as a system of polynomial inequalities! Let us have 3R2 variables, R each for the entries
ãi, b̃i, c̃i. Now the fact that the squared Frobenius error with the original tensor is small (≤ 25ε2)
can be written down as a constraint the variables need to satisfy. We can then solve for our variables
using algorithmic results on solving general polynomial systems over the reals Basu et al. (1996)
(which are based on the decidability of the existential theory of reals). The best algorithms here
end up giving a running time which is exp(poly(R)) for our problem without the ρ-boundedness
assumption. We will not go into the details here.

However the algorithms to solve polynomial systems of equalities are extremely involved, as
opposed to the simple search process under the ρ-bounded assumption.

Appendix C. Auxiliary Lemmas and Complete proofs

We start by listing some of the (primarily linear algebra) lemmas we used in our proofs, which are
proven in the full version of the paper.

Lemma 28 Suppose X is a matrix in Rn×k with σk ≥ 1/τ . Then if ‖∑i αiXi‖2 < ε, for some αi,

we have ‖α‖ =
√∑

i α
2
i ≤ τε.

Proof From the singular value condition, we have for any y ∈ Rk,

‖Xy‖22 ≥ σ2k ‖y‖2 ,

from which the lemma follows by setting y to be the vector of αi.

Lemma 29 Let A ∈ Rn×R have K-rankτ = k and be ρ-bounded. Then,

21



BHASKARA CHARIKAR VIJAYARAGHAVAN

1. If S = span(S), where S is a set of at most k − 1 column vectors of A, then each unit vector
in S has a small representation in terms of the columns denoted by S:

v =
∑
i∈S

ziAi =⇒ 1

(ρ2 + 1)k
≤ (
∑
i

z2i )/ ‖v‖2 ≤ max{τ2, 1}

2. If S = span(S) where S is any subset of k− 1 column vectors S of A, the other columns are
far from the span S:

∀j ∈ [R] \ S,
∥∥∥Π⊥SAj

∥∥∥ ≥ 1

τ

3. If S is any `-dimensional space with ` < k, then at most ` column vectors of A are ε-close to
it for ε = 1/(τ

√
`): ∣∣∣∣{i :

∥∥∥Π⊥SAi

∥∥∥ ≤ 1

τ
√
`
}
∣∣∣∣ ≤ `

Proof We now present the simple proofs of the three parts of the lemma.

1. The first part simply follows because from change of basis. LetM be the n×nmatrix, where
the first |S| columns of M correspond to S and the rest of the n − |S| columns being unit
vectors orthogonal to S . Since A|S is well-conditioned, then λmax(M) ≤ (ρ + 1)

√
n and

λmin(M) ≥ 1/max τ, 1. The change of basis matrix is exactly M−1: hence z = (M)−1v.
Thus, λmin(M−1) ≤ ‖z‖ ≤ λmax(M−1) = 1/λmin(M) ≤ max{1, τ}.

2. Let S = {1, . . . , k− 1} and j = k without loss of generality. Let v =
∑

i∈S ziAi be a vector
ε-close to Ak. Let M ′ be the n × k matrix restricted to first k columns: i.e. M ′ = A|S∪{j}.
Hence, the vector z = (z1, . . . , zk−1,−1) has square length 1 +

∑
i z

2
i , and ‖M ′z‖ = ε.

Thus,

ε ≥ λmin(M ′)

√
1 +

∑
i

z2i ≥ 1/τ

3. Let ε = 1/(τ
√
k). For contradiction, assume that S = {i :

∥∥Π⊥SAi
∥∥ ≤ ε} is of size ` + 1.

Let vi = ΠSAi ∈ S. Since {vi}i∈S are `+ 1 vectors in a ` dimension space,

∃{αi}i∈S with
∑
i

α2
i = 1, s.t

∑
i

αivi = 0

Hence,
∥∥∑

i∈S αiAi
∥∥ ≤ ∥∥∑

i∈S αiΠ
⊥
SAi

∥∥ ≤ (
∑

i∈S |αi|)ε ≤
√
|S|ε (where the last in-

equality follows from Cauchy-Schwarz inequality). But these set of αi contradict the fact that
the minimum singular value of any n-by-k submatrix of A is at least 1/τ .
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C.1. Missing proofs – Permutation lemma

We first prove the base case, Lemma 11.
Proof Let V be the (n − k + 1) dimensional space orthogonal to the span of XS , and let t be
the number of columns of Y which have a projection > ε1 onto V . From Lemma 30 (applied to
the projections to V ), there is a unit vector w ∈ V (a random vector suffices) with dot-product
of magnitude > ε1/(Rn) = ε with each of the t columns. From the hypothesis, since w ∈ V
( =⇒ nz(wTX) ≤ R − k + 1), we have t ≤ R − k + 1. Thus at least (k − 1) of the columns
are ε1-close to span(XS). Now since K-rankτ (Y ) ≥ k, it follows that k columns of Y cannot be
ε1-close to the (k − 1)-dimensional space span(XS) (Lemma 29). Thus |TS | = k − 1.

Lemma 30 Let u1, . . . , ut ∈ Rd (for some t, d) satisfy ‖ui‖2 ≥ ε > 0 for all i. Then there exists a
unit vector w ∈ Rd s.t. |〈ui, w〉| > ε

20dt for all i ∈ [t].

Proof The proof is by a somewhat standard probabilistic argument.
Let r ∼ Rd be a random vector drawn from a uniform spherical Gaussian with a unit variance

in each direction. It is well-known that for any y ∈ Rd, the inner product 〈y, r〉 is distributed as
a univariate Gaussian with mean zero, and variance ‖y‖22. Thus for each y, from standard anti-
concentration properties of the Gaussian, we have

Pr
[
|〈ui, r〉| ≤

‖ui‖
10t

]
≤ 1

2t
.

Thus by a union bound, with probability at least 1/2, we have

Pr
[
|〈ui, r〉| >

ε

10t

]
for all i. (11)

Next, since E
[
‖r‖22

]
= d, Pr[‖r‖22 > 4d] < 1/4, and thus there exists a vector r s.t. ‖r‖22 ≤ 4d,

and Eq. (11) holds. This implies the lemma (in fact we obtain
√
d in the denominator).

C.1.1. PROOFS OF LEMMAS 12 AND 14

Let us now prove the main linear algebraic lemma and the sunflower lemma.
Proof [Proof of Lemma 12] W.l.o.g., let us suppose B = {1, . . . , q}. Also, let xj denote the jth
column of X . From the hypothesis, we can write:

y = u1 +
∑
j 6=1

α1jxj + z1

y = u2 +
∑
j 6=2

α2jxj + z2

...

y = uq +
∑
j 6=q

αrjxj + zq,
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where ui ∈ span(XA) and zi are the error vectors, which by hypothesis satisfy ‖zi‖2 < ε. We
will use the fact that |A| + |B| ≤ k to conclude that each αij is tiny. This then implies the desired
conclusion.

By equating the first and ith equations (i ≥ 2), we obtain

u1 +
∑
j 6=1

α1jxj + z1 = ui +
∑
j 6=i

αijxj + zi.

Thus we have a combination of the vectors xi being equal to zi − z1, which by hypothesis is small:
‖zi − z1‖2 ≤ 2ε. Now the key is to observe that the coefficient of xi is precisely α1i, because it is
zero in the ith equation. Thus by Lemma 28 (since K-rankτ (X) ≥ k), we have that |α1i| ≤ 2τε.

Since we have this for all i, we can use the first equation to conclude that

‖y − u1‖2 ≤
∑
j 6=1

|α1j | ‖xj‖2 + ‖z1‖2 ≤ 2qτρε+ ε < 4nτρε

The last inequality is because q < n, and this completes the proof.

Proof [Proof of Lemma 14] The proof is by a counting argument. By the sunflower structure, each
Ti has some intersection with T ∗ (possibly empty), and some elements which do not belong to Ti′
for any i′ 6= i. Call the number of elements of the latter kind ti. Then we must have

R+ (q − 1)θ ≤
∑
i

|Ti| =
∑
i

(ti + |Ti ∩ T ∗|) ≤
∑
i

ti + q|T ∗|.

Now since all Ti ⊆ [R], we have ∑
i

ti + |T ∗| ≤ R.

Combining the two, we obtain

R+ (q − 1)θ ≤ R+ (q − 1)|T ∗| =⇒ |T ∗| ≥ θ,

as desired. For equality to occur, we must have equality in each of the places above, in particular,
we must have |Ti ∩ T ∗| = |T ∗| for all i, which implies T ∗ ⊆ Ti for all i.

C.2. Lemmas about the Khatri-Rao product

Lemma 31 Suppose ‖u⊗ v − u′ ⊗ v′‖F < δ, and Lmin ≤ ‖u‖ , ‖v‖ , ‖u′‖ , ‖v′‖ ≤ Lmax,

with δ < min{L2
min,1}

(2max{Lmax,1}) . If u = α1u
′ + β1ũ⊥ and v = α2v

′ + β2ṽ⊥, where ũ⊥ and ṽ⊥ are unit
vectors orthogonal to u′, v′ respectively, then we have

|1− α1α2| < δ/L2
min and β1 <

√
δ, β2 <

√
δ.

Proof We are given that u = α1u
′ + β1ũ⊥ and v = α2v

′ + β2ṽ⊥. Now, since the tensored vectors
are close
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∥∥u⊗ v − u′ ⊗ v′∥∥2
F
< δ2∥∥(1− α1α2)u

′ ⊗ v′ + β1α2ũ⊥ ⊗ v′ + β2α1u
′ ⊗ ṽ⊥ + β1β2ũ⊥ ⊗ ṽ⊥

∥∥2
F
< δ2

L4
min(1− α1α2)

2 + β21α
2
2L

2
min + β22α

2
1L

2
min + β21β

2
2 < δ2 (12)

This implies that |1− α1α2| < δ/L2
min as required.

Now, let us assume β1 >
√
δ. This at once implies that β2 <

√
δ.

Also

L2
min ≤ ‖v‖2 = α2

2

∥∥v′∥∥2 + β22

L2
min − δ ≤ α2

2L
2
max

Hence, α2 ≥
Lmin

2Lmax

Now, using (12), we see that β1 <
√
δ.

Lemma 32 For λ ≥ 0, a vector v ∈ Rn with ‖v‖1 ∈ [1 − ε/4, 1 + ε/4], a probability vector
u ∈ Rn ( ‖u‖1 =

∑
i ui = 1), if

‖v − λu‖2 ≤
ε

4
√
n

then we have

1− ε/2 ≤ λ ≤ 1 + ε/2 and ‖v − u‖2 ≤ ε

Proof First we have ‖v − λu‖1 ≤ ε/4 by Cauchy-Schwartz. Hence, by triangle inequality,
|λ| ‖u‖1 ≤ 1 + ε/2.
Since ‖u‖1 = 1, we get λ ≤ 1 + ε/2. Similarly λ ≥ 1− ε/2.

Finally, ‖v − u‖2 ≤ ‖v − λu‖2+|λ− 1| ‖u‖2 ≤ ε (since λ ≥ 0). Hence, the lemma follows.

C.3. Khatri-Rao product adds up

We now prove the lemma that shows that the K-rank of the Khatri-Rao product is at least additive
in the worst case.
Proof [Proof of Lemma 20] Let τ = τ1τ2

√
kA + kB . Suppose for contradictionM has K-rankτ (M) <

k = kA + kB − 1 ≤ R (otherwise we are done).
Without loss of generality let the sub-matrix M ′ of size (n1n2)× k, formed by the first k columns
of M have λk(M) < 1/τ . Note that for a vector z ∈ RnR, ‖z‖2 = ‖Z‖F where Z is the natural
n×R matrix representing z. Hence

∃{αi}i∈[k] with
∑
i∈[k]

α2
i = 1 s.t.

∥∥∥∥∥∥
∑
i∈[k]

αiAi ⊗Bi

∥∥∥∥∥∥
F

< ε.
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Clearly ∃i∗ ∈ [k] s.t |αi| ≥ 1/
√
k : let i∗ = k without loss of generality. Let S = span({A1, A3, . . . AkA−1}),

and pick x = Π⊥SAk/
∥∥Π⊥SAk

∥∥ (it exists because K-rankτ (M) < R).
Pre-multiplying the expression in (C.3) by x, we get∥∥∥∥∥∥

k∑
i=kA

βiBi

∥∥∥∥∥∥ < ε where βi = αi 〈x,Ai〉

But |βk| ≥ 1/(
√
kτ1) (by Lemma 29), and there are only k− kA + 1 ≤ kB terms in the expression.

Again, by Lemma 29 applied to these (at most) kB columns ofB, we get that 1/ε < τ1τ2
√
k, which

establishes the lemma.

Remark. Note that the bound of the lemma is tight in general. For instance, if A is an n × 2n
matrix s.t. the first n columns correspond to one orthonormal basis, and the next n columns to
another (and the two bases are random, say). Then K-rank10(A) = n, but for any τ , we have
K-rankτ (A�A) = 2n−1, since the first n terms and the next n terms of A�A add up to the same
vector (as a matrix, it is the identity).

C.4. Symmetric Decompositions

Proof [Proof of Corollary 22] Applying Theorem 21 with ε′ < η(2ρτ
√
R)−1, to obtain a permuta-

tion matrix Π and scalar matrices Λj such that

∀j ∈ [`] ‖V − UΠΛj‖F < ε′

By triangle inequality, ∀j, j′ ∈ [`],
∥∥UΠ(Λj − Λj′)

∥∥
F
< 2ε′

Since Π is a permutation matrix and U has columns of length at least 1/τ , we get that

∀r ∈ [R], j ∈ [`], j′ ∈ [`],
∣∣Λj(r)− Λj′(r)

∣∣ < ε′τ

However, we also know that ∥∥∥∥∥∥
∏
j∈`
, Λj − I

∥∥∥∥∥∥ ≤ ε′
∀r ∈ [R], (1− ε′) ≤

∏
j∈[`]

Λj(i) ≤ 1 + ε′

Hence, substituting (C.4) in the last inequality, it is easy to see that ∀i ∈ [n], |λj(i)− 1| < 2ε′τ . But
since each column ofA is ρ-bounded, this shows that ‖A′ −AΠ‖F < 2ε′τρ

√
R ≤ η, as required.

Appendix D. Complete proofs for the Robust Uniqueness Theorem for 3-tensors.

D.1. Proof of Lemma 8

W.l.o.g., we may assume that kA ≥ kB (the proof for kA < kB will follow along the same lines).
For convenience, let us define α to be the vector xTC, and β the vector xTC ′. Let t be the number
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of entries of β of magnitude > ε′. The assumption of the lemma implies that t ≤ R− kC + 1. Now
from (6), we have

M :=
∑
i

αiAi ⊗Bi =
∑
i

βiA
′
i ⊗B′i + Z, (13)

where Z is an error matrix satisfying ‖Z‖F ≤ ε. Now, since the RHS has at most t terms with
|βi| > ε′, we have that σt+1 of the LHS is at most Rρ′Aρ

′
Bε
′ + ε. Using the value of t, we obtain

σR−kC+2(M) ≤ σt+1(M) < ε+ (Rρ′Aρ
′
B)ε′ (14)

We will now show that if xTC has too many co-ordinates which are larger than ε′′ then we
will contradict (14). One tricky case we need to handle is the following: while each of these non-
negligible co-ordinates of xTC will give rise to a large rank-1 term, they can be canceled out by
combinations of the rank-1 terms corresponding to entries of xTC which are slightly smaller than
ε′′. Hence, we will also set a smaller threshold δ and first handle the case when there are many
co-ordinates in xTC which are larger than δ. δ is chosen so that the terms with (xTC)i < δ can not
cancel out any of the large terms ((xTC)i ≥ ε′′).

Define S1 = {i : |(xTC)i| > ε′′} and S2 = {i : |(xTC)i| > δ}, where δ = ε′′/ϑ for some error
polynomial ϑ = 2R2ρAρBρCρ

′
Aρ
′
Bρ
′
CτAτBτC (which is always > 1). Thus we have S1 ⊆ S2. We

consider two cases.
Case 1: |S2| ≥ kB .

In this case we will give a lower bound on σR−kC+2(M), which gives a contradiction to (14).
The intuition is roughly that A,B have kA, kB large singular values, and thus the product should
have enough large ones as well. To formalize this, we use the following standard fact about singu-
lar values of products, which is proved by considering the variational characterization of singular
values:

Fact 33 Let P,Q be matrices of dimensions p ×m and m × q respectively. Then for all `, i such
that ` ≤ min{p, q}, we have

σ`(PQ) ≥ σ`+m−i(P )σi(Q) (15)

Now, let us view M as PQ, where P = A, and Q = diag(α)BT . We will show that σkB (Q) ≥
δ/τB , and that σ2R+2−kB−kC (A) ≥ 1/τA. These will then imply a contradiction to (14) by setting
` = R− kC + 2 and i = kB since

δ

τAτB
=

ε′′

ϑτAτB
> (Rρ′Aρ

′
Bε
′ + ε) by our choice of ϑ8.

(It is easy to check that ` ≤ min{kA, kB} ≤ min{nA, nB}, and thus we can use the fact above.)
Thus we only need to show the two inequalities above. The latter is easy, because by the

hypothesis we have 2R+ 2− kB − kC ≤ kA, and we know that σkA(A) ≥ 1/τA, by the definition
of K-rankτA(A). Thus it remains to prove the first inequality. To see this, let J ⊂ S2 of size
kB . Let BT

J and QJ be the submatrices of BT and Q restricted to rows of J . Thus we have
QJ = diag(α)JB

T
J . Because of the Kruskal condition, every kB sized sub matrix of B is well-

conditioned, and thus σkB (BJ) = σkB (BT
J ) ≥ 1/τB .

Further, since |αj | > δ ∀j ∈ J , multiplication by the diagonal cannot lower the singular
values by much, and we get σkB (QJ) ≥ δ/τB . This can also be seen formally by noting that
σkB (diag(α)J) ≥ δ, and applying Fact 33 with P = diag(α)J , Q = BT

J and ` = m = i = kB .
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Finally, since Q is essentially QJ along with additional rows, we have στB (Q) ≥ στB (QJ) ≥
δ/τB . From the argument earlier, we obtain a contradiction in this case.
Case 2: |S2| < kB .

Roughly, by defining S1, S2, we have divided the coefficients αi into large (≥ ε′′), small, and
tiny (< δ). In this case, we have that the number of large and small terms together (in M , see
Eq. (13)) is at most kB . For contradiction, we can assume the number of large ones is≥ t+ 1, since
we are done otherwise. The aim is to now prove that this implies a lower bound on σt+1(M), which
gives a contradiction to Eq. (14).

Now let us define M ′ =
∑

i∈S2
αi(Ai ⊗ Bi). Thus M and M ′ are equal up to tiny terms.

Further, let Π be the matrix which projects a vector onto the span of {B′i : |βi| ≥ ε′}, i.e., the span
of the columns of B′ which correspond to |βi| ≥ ε′. Because there are at most t such βi, this is a
space of dimension ≤ t. Thus we can rewrite Eq. (13) as

M ′ =
∑
i∈S1

αi(Ai ⊗Bi) +
∑

j∈S2\S1

αj(Aj ⊗Bj) =
t∑
i=1

βi(A
′
i ⊗B′i) + Err, (16)

where we assumed w.l.o.g. that |βi| ≥ ε′ for i ∈ [t], and Err is an error matrix of Frobenius norm
at most ε+R(ρAρBδ + ρ′Aρ

′
Bε
′) ≤ ε+ (RρAρBρ

′
Aρ
′
B)(δ + ε′).

Now because |S1| ≥ t + 1, and K-rankτB (B) ≥ kB ≥ t + 1, there must be one vector among
the Bi, i ∈ S1, which has a reasonably large projection orthogonal to the span above, i.e., which
satisfies

‖Bi −ΠBi‖2 ≥ 1/(τB
√
R).

Let us pick a unit vector y along Bi − ΠBi. Consider the equality (16) and multiply by y on both
sides. We obtain ∑

i∈S2

αi 〈Bi, y〉Ai = (Err)y.

Thus we have a combination of the Ai’s, with at least one coefficient being > ε′′/(RτB), having a
magnitude at most ‖(Err)y‖2 < ϑ1(δ + ε′ + ε), where ϑ1 was specified above.
Now kA ≥ kB ≥ |S2|. So, we obtain a contradiction by Lemma 28 since:

‖(Err)y‖2 < ϑ1(δ + ε′ + ε) = RρAρBρ
′
Aρ
′
B(δ + ε′ + ε)

= RρAρBρ
′
Aρ
′
B(
ε′′

ϑ
+ ε′ + ε)

<
1

τA
· ε′′

RτB

The last inequality follows because ϑ = 2R2ρAρBρCρ
′
Aρ
′
Bρ
′
CτAτBτC .

This completes the proof in this case, hence concluding the proof of the lemma.

D.2. Proof of Lemma 10

By symmetry, let us just show this for matrixC ′ (dimensions n×R), and let k = kC for convenience.
We need to show that every n-by-k submatrix of C ′ has minimum singular value ≥ δ = 1/τ ′C .
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For contradiction let C ′S be the submatrix corresponding to the columns in S (|S| = k), such
that σk(C ′S) < δ. Let us consider a left singular vector z which corresponds to σk(C ′S), and suppose
z is normalized to be unit length. Then we have∑

i∈S

〈
z, C ′i

〉2
< δ2

Thus | 〈z, C ′i〉 | < δ for all i ∈ S, so we have nzδ(zTC ′) ≤ n− k. Now from Lemma 8, we have

nzε1(zC) ≤ n− k, where ε1 = ϑ8(ε+ δ).

Let J denote the set of indices in zTC which are< ε1 in magnitude (by the above, we have |J | ≥
k). Thus we have ‖zCJ‖2 < Rε1, which leads to a contradiction if we have K-rank1/(Rε1)(C) ≥ k.

Since this is true for our choice of parameters, the claim follows.

D.3. Wrapping up the Proof of Theorem 5

Suppose we are given an ε′ < 1 as in the statement of the theorem. For a moment, suppose ε is small
enough, and A,B,C,A′, B′, C ′ satisfying the conditions of the theorem produce tensors which are
ε-close.

From the hypothesis, note that kA, kB, kC ≥ 2 (since kA, kB, kC ≤ R, and kA + kB + kC ≥
2R + 2). Thus from the Lemmas 10 and 8 (setting ε′ = 0), we obtain that C,C ′ satisfy the
hypothesis of the Robust permutation lemma (Lemma 6) with C ′, C set to X,Y respectively, and
the parameters

“τ” := ϑ10 ; “ε” := ϑ8ε.

Hence, we apply Lemma 6 to A, B and C, and get that there exists permutation matrices ΠA,
ΠB and ΠC and scalar matrix ΛA,ΛB,ΛC such that for ε2 = ϑ6ϑ8 · ε,∥∥A′ −AΠAΛA

∥∥
F
< ε2,

∥∥B′ −BΠBΛB
∥∥
F
< ε2 and

∥∥C ′ − CΠCΛC
∥∥
F
< ε2 (17)

We follow the outline given in the proof sketch. To show ΠA = ΠB = ΠC:
Let us assume for contradiction that ΠA 6= ΠB . We will use an index where the permutations

disagree to obtain a contradiction to the assumptions on the K-rank .
For notational convenience, let πA : [R] → [R] correspond to the permutation given by ΠA,

with πA(r) being the column that A′r maps to. Permutation πB : [R] → [R] similarly corresponds
to ΠB . Using (17) for A we have∥∥∥∥∥∥

∑
r∈[R]

(
A′r − ΛA(r)AπA(r)

)
⊗B′r ⊗ C ′r

∥∥∥∥∥∥
F

≤
∑
r∈[R]

∥∥(A′r − ΛA(r)AπA(r)
)
⊗B′r ⊗ C ′r

∥∥
F

≤ ε2
√
Rρ′Bρ

′
C using Cauchy-Schwarz

By a similar argument, and using triangle inequality ( along with ε2 ≤ 1 ≤ ρ′B) we get∥∥∥∥∥∥
∑
r∈[R]

A′r ⊗B′r ⊗ C ′r −
∑
r∈[R]

ΛA(r)ΛB ·AπA(r) ⊗BπB(r) ⊗ C ′r

∥∥∥∥∥∥
F

≤ 2ε2
√
R(ρ′Bρ

′
C + ρ′Aρ

′
C)
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Let us take linear combinations given by unit vectors v and w, of the given tensor T = [A B C]
along the first and second dimensions. By combining the above inequality along with the fact that
the two decompositions are ε-close i.e.

∥∥∥∑r∈[R]Ar ⊗Br ⊗ Cr −A′r ⊗B′r ⊗ C ′r
∥∥∥
F
≤ ε, we have∥∥Z − Z ′∥∥ ≤ ε3 = ε+ 2ε2Rρ

′
C(ρ′A + ρ′B) where

Z =
∑
r∈[R]

〈v,Ar〉 〈w,Br〉Cr and Z ′ =
∑
r∈[R]

ΛA(r)ΛB(r)
〈
v,AπA(r)

〉 〈
w,BπB(r)

〉
C ′r

Note that the ε term above is negligible compared to the second term involving ε2.
We know that πA 6= πB , so there exist s 6= t ∈ [R] such that r∗ = πA(s) = πB(t). We will now
use this r∗ to pick v and w carefully so that the vector Z ′ is negligible while Z is large. We partition
[R] into V,W with |V | = kA − 1 and |W | ≤ kB − 1, so that πA(t) ∈ V and πB(s) ∈ W and
for each r ∈ [R] − {s, t}, either πA(r) ∈ V or πB(r) ∈ W . Such a partitioning is possible since
R ≤ kA + kB − 2.

Let V = span(V ) andW = span(W ). We know that r∗ = πA(s) /∈ S and r∗ = πA(t) /∈ T .
Hence, pick v as unit vector along Π⊥VAr∗ and w as unit vector along Π⊥WBr∗ . By this choice, we
ensure that Z ′ = 0 (since v ⊥ V and w ⊥ W).

However, K-rankτA(A) ≥ kA and K-rankτB (B) ≥ kB , so 〈v,Ar∗〉 〈w,Br∗〉 ≥ 1/τAτB (by
Lemma 29). Further, |V | = kA − 1 implies that at most R − kA + 1 ≤ kC − 1 terms of Z is
non-zero. ∥∥∥∥∥∥

∑
r∈[R]\V

βrCr

∥∥∥∥∥∥ ≤ ε3 where βr = 〈v,Ar〉 〈w,Br〉

Further, |βr∗ | ≥ (τAτB)−1, and since K-rankτC (C) = kC ≥ R− |V |+ 1, we have a contradic-
tion if ε3 < (τAτBτC)−1 due to Lemma 29. This will be true for our choice of parameters. Hence
ΠA = ΠB , and similarly ΠA = ΠC . Let us denote Π = ΠA = ΠB = ΠC . In the remainder, we
assume Π is the identity, since this is without loss of generality.
To show ΛAΛBΛC =ε′ IR:

Let us denote βi = λA(i)λB(i)λC(i). From (17) and triangle inequality, we have as before∥∥∥∥∥∥
∑
r∈[R]

A′r ⊗B′r ⊗ C ′r −
∑
r∈[R]

ΛA(r)ΛB(r)ΛC(r) ·AπA(r) ⊗BπB(r) ⊗ CπC(r)

∥∥∥∥∥∥
F

≤ 5ε2
√
Rρ′Aρ

′
Bρ
′
C

Combining this with the fact that the decompositions are ε-close we get∥∥∥∥∥∥
∑
r∈[R]

(1− βr)Ar ⊗Br ⊗ Cr

∥∥∥∥∥∥ < ε4 = ε+ 5
√
Rρ′Aρ

′
Bρ
′
Cε2 ≤ 6

√
Rρ′Aρ

′
Bρ
′
Cε2.

By taking linear combinations given by unit vectors x, y along the first two dimensions (i.e. xA and
yB) we have ∥∥∥∥∥∥

∑
r∈[R]

(1− βr)(xAr)(yBr)Cr

∥∥∥∥∥∥ < ε4.
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We will show each βr is negligible. SinceR+2 ≤ kA+kB , let S,W ⊆ [R]−{r} be disjoint sets
of indices not containing r, such that |S| = kA−1 and |W | ≤ kB−1. Let S = span({Aj : j ∈ S})
andW = span({Bj : j ∈W}). Let x and y be unit vectors along Π⊥SAr and Π⊥WBr respectively.

Since K-rankτA(A) ≥ kA and K-rankτB (B) ≥ kB , we have that
∥∥Π⊥SAr

∥∥ ≥ 1/τA (similarly
for Br). Hence, from Lemma 29

(1− βr)(
1

τAτB
) ‖Cr‖ < ε4 =⇒ 1− βr < ε4τAτBτC .

Thus, ‖ΛAΛBΛC − I‖ ≤ ε4τAτBτC ≤ ε′ (our choice of ε will ensure this). This implies the
theorem.

Let us now set the ε for the above to hold (note that ϑ6 involves a τ term which depends on ϑ10)

ε :=
ε′

6(RτAτBτC)ρ′Aρ
′
Bρ
′
C · ϑ8ϑ6

,

which can easily be seen to be of the form in the statement of the theorem. This completes the proof.

Appendix E. Sampling Error Estimates for Higher Moment Tensors

In this section, we show error estimates for `-order tensors obtained by looking at the `th moment of
various hidden variable models. In most of these models, the sample is generated from mixture of
R distributions {Dr}r∈[R], with mixing probabilities {wr}r∈[R]. First the distribution Dr is picked
with probability wr, and then the data is sampled according to Di, which is characteristic to the
application.

Lemma 34 (Error estimates for Multiview mixture model) For every ` ∈ N, suppose we have
a multi-view model, with parameters {wr}r∈[R] and {M (j)}j∈[`], such that every entry of x(j) ∈ Rn
is bounded by cmax (or if it is multivariate gaussian). Then, for every ε > 0, there exists N =
O(c`maxε

−2√` log n) such that
if N samples {x(1)(j)}j∈[`], {x(2)(j)}j∈[`], . . . , {x(N)(j)}j∈[`] are generated, then with high prob-
ability ∥∥∥∥∥∥E

[
x(1) ⊗ x(2) ⊗ . . . x(`)

]
− 1

N

∑
t∈[N ]

x(t)(1) ⊗ x(t)(2) ⊗ x(t)(`)

∥∥∥∥∥∥
∞

< ε (18)

Proof We first bound the ‖ · ‖∞ norm of the difference of tensors i.e. we show that

∀{i1, i2, . . . , i`} ∈ [n]`,

∣∣∣∣∣∣E
∏
j∈[`]

x
(j)
ij

− 1

N

∑
t∈[N ]

∏
j∈[`]

x(t)
(j)
ij

∣∣∣∣∣∣ < ε/n`/2.

Consider a fixed entry (i1, i2, . . . , i`) of the tensor.
Each sample t ∈ [N ] corresponds to an independent random variable with a bound of c`max.

Hence, we have a sum of N bounded random variables. By Bernstein bounds, probability for (18)

to not occur exp

(
−(εn−`/2)

2
N2

2Nc`max

)
= exp

(
−ε2N/

(
2(cmaxn)`

))
. We have n` events to union
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bound over. Hence N = O(ε−2(cmaxn)`
√
` log n) suffices. Note that similar bounds hold when

the x(j) ∈ Rn are generated from a multivariate gaussian.

Lemma 35 (Error estimates for Gaussians) Suppose x is generated from a mixture ofR-gaussians
with means {µr}r∈[R] and covariance σ2I , with the means satisfying ‖µr‖ ≤ cmax.
For every ε > 0, ` ∈ N, there exists N = poly

(
1
ε , σ

2, n,R
)

such that if x(1), x(2), . . . , x(N) ∈ Rn
were the N samples, then

∀{i1, i2, . . . , i`} ∈ [n]`,

∣∣∣∣∣∣E
∏
j∈[`]

xij

− 1

N

∑
t∈[N ]

∏
j∈[`]

x
(t)
ij

∣∣∣∣∣∣ < ε. (19)

In other words, ∥∥∥∥∥∥E
[
x⊗`
]
− 1

N

( ∑
t∈[N ]

(x(t))⊗`
)∥∥∥∥∥∥
∞

< ε

Proof Fix an element (i1, i2, . . . , i`) of the `-order tensor. Each point t ∈ [N ] corresponds to an
i.i.d random variable Zt = x

(t)
i1
x
(t)
i2
. . . x

(t)
` . We are interested in the deviation of the sum S =

1
N

∑
t∈[N ] Z

t. Each of the i.i.d rvs has value Z = xi1xi2 . . . x`. Since the gaussians are spherical
(axis-aligned suffices) and each mean is bounded by cmax, |Z| < (cmax + tσ)` with probability
O
(
exp(−t2/2)

)
. Hence, by using standard sub-gaussian tail inequalities, we get

Pr |S − E [z]| > ε < exp

(
− ε2N

(M + σ` log n)`

)
Hence, to union bound over all n` events N = O

(
ε−2(` log nM)`

)
suffices.

Appendix F. Applications to Polynomial Identifiability

F.1. Multi-view Mixture Model

Multi-view models are mixture models with a latent variable h, where we are given multiple obser-
vations or views x(1), x(2), . . . , x(`) that are conditionally independent given the latent variable h.
Multi-view models are very expressive, and capture many well-studied models like Topic Models
Anandkumar et al. (2012c), Hidden Markov Models (HMMs) Mossel and Roch (2006); Allman
et al. (2009); Anandkumar et al. (2012c), random graph mixtures Allman et al. (2009). Allman et
al Allman et al. (2009) refer to these models by finite mixtures of finite measure products. We first
introduce some notation, along the lines of Allman et al. (2009); Anandkumar et al. (2012c).

Definition 36 (Multi-view mixture models)

• The latent variable h is a discrete random variable having domain [R], so that Pr [h = r] =
wr,∀r ∈ [R].
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• The views {x(j)}j∈[`] are random vectors ∈ Rn (with `1 norm at most 1), that are condition-
ally independent given h, with means µ(j) ∈ Rn i.e.

E
[
x(j)|h = r

]
= µ(j)r and E

[
x(i) ⊗ x(j)|h = r

]
= µ(i)r ⊗ µ(j)r for i 6= j

• Denote by M (j), the n × R matrix with the means {µ(j)r }r∈[R] (normalized with `1 norm at
most 1) comprising its columns i.e.

M (j) = [µ
(j)
1 | . . . |µ(j)r | . . . |µ

(j)
R ].

The parameters of the model to be learned are the matrices {M (j)}j∈[`] and the mixing weights
{wr}r∈[R]. In many settings, the n-dimensional vectors x(j) are actually indicator vectors: this is
commonly used to encode the case when the observation is one of n discrete events.

Our main theorem is formally the following.

Theorem 37 (Polynomial Identifiability of Multi-view mixture model) The following statement
holds for any constant integer `. Suppose we are given samples from a multi-view mixture model
(see Def 36), with the parameters satisfying:

1. For each mixture r ∈ [R], the mixture weight wr > γ.

2. For each j ∈ [`], K-rankτ (M (j)) ≥ k ≥ 2R
` + 1.

then there is a algorithm that given any η > 0 uses N = ϑ37
(`)
(
1
η , R, n, τ, 1/γ

)
samples,

and finds with high probability {M̃ (j)}j∈[`] and {w̃r}r∈[R] (upto renaming of the mixtures {1, 2, . . . , R})
such that

∀j ∈ [`],
∥∥∥M (j) − M̃ (j)

∥∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (20)

The function ϑ37(`)(·, . . . , ·) = poly(Rn/(γη))2
`
poly(n, τ, 1/γ)` is a polynomial for constant ` and

satisfies the theorem.

Remarks:

1. Note that the condition (a) in the theorem about the mixing weights wr > γ is required to
recover all the parameters, since we need poly(1/wr) samples before we see a sample from
mixture r. However, by setting γ � ε′, the above algorithm can still be used to recover the
mixtures components of weight larger than ε′.

2. The theorem also holds when for different j, the K-rankτ (M (j)) have bounds kj which are
potentially different, and satisfy the same condition as in Theorem 21.

Proof [Proof of Theorem 37] Set η′ = ηγ
16`n . We know from Lemma 34 that the `th moment tensor

can be estimated to accuracy

ε1 =
(
` · ϑ21(`)(R/η′) · ϑ21(τ/γ, cmax

√
n, cmax

√
n, n)

)−1
in ‖·‖F norm usingN = O(ε−21 R(cmax)`

√
` log n)

samples. This estimated tensor T̃ has a rank-R decomposition upto error ε1.
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Next, we will apply our algorithm for getting approximate low-rank tensor decompositions from
Section B on T̃ . Since each µ(j)r is a probability distribution, we can obtain vectors {ũ(j)r }j∈[`],r∈[R]

(let us call the corresponding n×R matrices Ũ (j)) such that

∀j ∈ [`− 1], r ∈ [R]
∥∥∥ũ(j)r ∥∥∥

1
∈ [1− δ, 1 + δ] where δ = ε1

√
R <

η

2`
.

This is possible since the algorithm in Section B searches for the vectors ũ(j)r , by just enumerating
over ε-nets on an R-dimensional space. An alternate way to see this is to obtain any decomposition
and scale all but the last column in the matrices Ũ (j) so that they have `1 norm of 1 (upto error δ).
Note that this step of finding an ε-close rank-R decomposition can also just comprise of brute force
enumeration, if we are only concerned with polynomial identifiability. Hence, we have obtained a
rank-R decomposition which is O(`ε1) far in ‖ · ‖F .

Now, we apply Theorem 21 to `th moment tensor T to claim that these Ũ (j) are close to M (j)

upto permutations. When we apply Theorem 21, we absorb the co-efficients wr into M (`). In other
words

U (j) = M (j) for all j ∈ [`− 1], and U (`) = M (`)diag(w).

We know that K-rankτ (M (j)) = kj , and K-rankτ/γ(U (`)) = k`. We now apply Theorem 21 with
our choice of ε1, and assuming that the permutation is identity without loss of generality, we get

∀r ∈ [R]
∥∥∥ũ(j)r − Λ(j)(r)µ(j)r

∥∥∥ < η′ ≤ ηγ

16n`
∀j ∈ [`− 1]

and
∥∥∥ũ(`)r − Λ(`)(r)wrµ

(`)
r

∥∥∥ < η′ ≤ ηγ

16`n

for some scalar matrices Λj (on R-dims) such that∥∥∥∏Λ(j) − IR
∥∥∥ ≤ η

16`n

Note that the entries in the diagonal matrices Λj (the scalings) may be negative. We first transform
the vectors so that each of the entries in Λj are non-negative (this is possible since the product of
Λj is close to the identity matrix, which only has non-negative entries).

∀j ∈ [`], r ∈ [R], ṽ(j)r = sgn
(

Λ(j)(r)
)
· ũ(j)r (21)

This ensures that

∀j ∈ [`− 1], r ∈ [R]
∥∥∥ṽ(j)r − ∣∣∣Λ(j)(r)

∣∣∣µ(j)r ∥∥∥ < η′ ≤ ηγ

16n`
and (22)

∀r ∈ [R]
∥∥∥ṽ(`)r − ∣∣∣Λ(`)(r)

∣∣∣wrµ(`)r ∥∥∥ < η′ ≤ ηγ

16`n
(23)

Moreover, the µ(j)r correspond to probability vectors which have ‖µ(j)‖1 = 1, we have ensured
that

∥∥∥ṽ(j)r ∥∥∥
1
∈ [1− δ, 1 + δ]. Applying Lemma 32 we get that the required estimates ṽ(j)r (i.e. µ̃(j)r )

satisfy:

∀j ∈ [`− 1], r ∈ [R],
∥∥∥ṽ(j)r − µ(j)r ∥∥∥ ≤ ηγ

4`
√
n

and
∣∣∣Λ(j)(r)

∣∣∣ ∈ [1− ηγ

8`
√
n
, 1− ηγ

8`
√
n

]
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Now, set µ̃(`)r = ṽ
(`)
r∥∥∥ṽ(`)r ∥∥∥

1

, and w̃r =
∥∥∥ṽ(`)r ∥∥∥

1
, for all r ∈ [R]. Now, from equations (F.1) and (F.1)

we get that

∀r ∈ [R]
∣∣∣Λ(`)(r)− 1

∣∣∣ ≤ ηγ

8
√
n

Hence from (23),
∥∥∥ṽ(`)r − wrµ(`)r ∥∥∥ ≤ ηγ

4
√
n∥∥∥w̃rµ̃(`)r − wrµ(`)r ∥∥∥ ≤ ηγ

4
√
n

wr

∥∥∥∥ w̃rwr µ̃(`)r − µ(`)r
∥∥∥∥ ≤ ηγ

4
√
n

Using the fact that wr ≥ γ and using Lemma 32, we see that w̃r and µ̃(`)r are also η-close estimates
to wr and µ(`)r respectively, for all r.

F.2. Hidden Markov Models

Our result on HMMs can be formally stated as follows.

Corollary 38 (Polynomial Identifiability of Hidden Markov models) The following statement holds
for any constant δ > 0. Suppose we are given a Hidden Markov model as described above, with
parameters satisfying:

1. The stationary distribution {wr}r∈[R] has ∀r ∈ [R] wr > γ1,

2. The observation matrix M has K-rankτ (M) ≥ k ≥ δR,

3. The transition matrix P has minimum singular value σR(P ) ≥ γ2,

then there is a algorithm that given any η > 0 uses N = ϑ37
( 1
δ
+1)
(
1
η , R, n, τ,

1
γ1γ2

)
samples

of m = 2d1δ e+ 3 consecutive observations (of the Markov Chain), and finds with high probability,
P ′,M ′ and {w̃r}r∈[R] such that∥∥M −M ′∥∥

F
≤ η,

∥∥P − P ′∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (24)

Further, this algorithm runs in time nOδ(R
2 log( 1

ηγ1
))
(
n · τ

γ1γ2

)Oδ(1)
time.

Remark: Allman et al. (2009) show identifiability under weaker conditions than ours. This is
because they prove their results for generic values of the parameters (this formally means they hold
for all M,P except a set of measure zero, but they do not give a characterization). Our bounds are
weaker, but hold whenever the K-rankτ (M) ≥ δn condition holds. Further, since we rely on robust
uniqueness, our result holds when we only have a finite number of samples.
Proof [Proof sketch] Here, the idea is to cleverly come up with three independent views of the
HMM, so that it fits into the multi-view framework. The proof follows along the lines of Allman
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et al. (2009), so we only sketch it here. We now show to cast this HMM into a multi-view model
(Def. 36) using a nice trick of Allman et al. (2009). We can then apply Theorem 37 and prove
identifiability (Corollary 38). We will choose m = 2q + 1 where q = d1δ e + 1, and then use the
hidden state Zq+1 as the latent variable h of the Multi-view model. We will use three different views
(` = 3) as shown in Fig. 2: the first viewA comprises the tuple of observations (Xq, Xq−1, . . . , X1)
(ordered this way for convenience), the second viewB is the observationXq+1, while the third view
C comprises the tuple V3 = (Xq+2, Xq+3, . . . , X2q+1). This fits into the Multi-view model since
the three views are conditionally independent given the latent variable h = Zq+1.

Abusing notation a little, let A,B,C be matrices of dimensions nq ×R,n×R,nq ×R respec-
tively. They denote the conditional probability distributions as in Definition 36. For convenience,
let P̃ = diag(w)P T diag(w)−1, which is the “reverse transition” matrix of the Markov chain given
by P . We can now write the matricesA,B,C in terms ofM and the transition matrices. The matrix
product X � Y refers to the Khatri-Rao product (Lemma 20). Showing that these are indeed the
transition matrices is fairly straightforward, and we refer to Allman et al. Allman et al. (2009) for
the details.

A = ((. . . (MP̃ )�M)P̃ )�M) . . . P̃ )�M)P̃ (25)

B = M (26)

C = ((. . . (MP )�M)P )�M) . . . P )�M)P (27)

(There are precisely q occurrences of M,P (or P̃ ) in the first and third equalities). Now we can
use the properties of the Khatri-Rao product. For convenience, define C(1) = MP , and C(j) =
(C(j−1) �M)P for j ≥ 2, so that we have C = C(q). By hypothesis, we have K-rankτ (M) ≥ k,
and thus K-rankτ2τ (MP ) ≥ k (because P is a stochastic matrix with all eigenvalues≥ τ2). Now by
the property of the Khatri-Rao product (Lemma 20), we have K-rank(ττ2)τ (C(2)) ≥ min{R, 2k}.
We can continue this argument, to eventually conclude that K-rankτ ′(C(q)) = min{R, qk} = R for
τ ′ = τ qγq

2

2 (qk)q/2.
Precisely the same argument lets us conclude that K-rankτ ′(A) ≥ R, for the τ ′ = τ qγq

2

2 (qk)q/2.
Now since K-rankτ (B) ≥ 2, we have that the conditions of Theorem 5 hold. Now using the argu-
ments of Theorem 37 (here, we use Theorem 5 instead of Theorem 21), we get matrices A′, B′, C ′

and weights w′ such that ∥∥A′ −A∥∥
F
< δ and similarly for B,C∥∥w′ − w∥∥ < δ

for some δ = poly(1/η, . . . ). Note that M = B. We now need to argue that we can obtain a
good estimate P ′ for P , from A′, B′, C ′. This is done in Allman et al. (2009) by a trick which is
similar in spirit to Lemma 31. It uses the property that the matrix C above is full rank (in fact well
conditioned, as we saw above), and the fact that the columns of M are all probability distributions.

Let D = C(q−1), as defined above. Hence, C = (D �M)P . Now note that all the columns
of M represent probability distributions, so they add up to 1. Thus given D �M , we can combine
(simply add) appropriate rows together to get D. Thus by performing this procedure (adding rows)
on C, we obtain DP . Now, if we had performed the entire procedure by replacing q with (q − 1)
(we should ensure that (q − 1)k ≥ R for the Kruskal rank condition to hold), we would obtain the
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matrix D. Now knowing D and DP , we can recover the matrix P , since D is well-conditioned.
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